Take a Transradial Approach to Above- or Below-the-knee Peripheral Interventions

The Sublime™ Radial Access Guide Sheath is masterfully designed to meet the specific demands of transradial access to the periphery. The proprietary braiding technology and high metal composition within the shaft are designed to provide a unique balance of kink resistance, flexibility, radial strength and torque power.

The result is an ideal solution for delivering lower extremity treatment—above- or below-the-knee—via the transradial approach.

To learn how the Sublime Radial Access Guide Sheath compares to other available devices, see reverse.

For additional information on the Sublime™ Radial Access Guide Sheath, please contact us at info@sublimeradial.com.

INDICATIONS FOR USE

The Guide Sheath is intended for use in peripheral interventions in the peripheral vasculature, excluding the coronary and neurovasculature. See the Instructions for Use for further indications and contraindications.

Comparison Testing


TEST METHODS

Radial Strength: Each test device was made into a loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Torque: Each test device was placed in calibrated torque test instrument. Devices are clamped into the torque test instrument on the distal end and rotated via the proximal hub. Devices were observed on the test device and the mandrel radius at which the kink occurred was recorded.

Kink Resistance: Each test device was made into a loop and placed in kink resistance test fixture. mandrel. Visual inspection of kink was administered. If no kink occurred, the devices were made into the next smallest size loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Force at an Angle: Each test device was placed into a flat plat and compressed with a 90 deg. and 180 deg. compression force on the test device. A force at the strain % end point was recorded.

Radial Torque: Each test device was placed into calibrated torque test instrument. Devices were observed on the test device and the mandrel radius at which the kink occurred was recorded.

TEST METHODS

Radial Strength: Each test device was made into a loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Torque: Each test device was placed in calibrated torque test instrument. Devices where clamped into the torque test instrument on the distal end and rotated via the proximal hub. Devices were observed on the test device and the mandrel radius at which the kink occurred was recorded.

Kink Resistance: Each test device was made into a loop and placed in kink resistance test fixture. Visual inspection of kink was administered. If no kink occurred, the devices were made into the next smallest size loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Force at an Angle: Each test device was placed into a flat plat and compressed with a 90 deg. and 180 deg. compression force on the test device. A force at the strain % end point was recorded.

TEST METHODS

Radial Strength: Each test device was made into a loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Torque: Each test device was placed in calibrated torque test instrument. Devices are clamped into the torque test instrument on the distal end and rotated via the proximal hub. Devices were observed on the test device and the mandrel radius at which the kink occurred was recorded.

Kink Resistance: Each test device was made into a loop and placed in kink resistance test fixture. Visual inspection of kink was administered. If no kink occurred, the devices were made into the next smallest size loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Force at an Angle: Each test device was placed into a flat plat and compressed with a 90 deg. and 180 deg. compression force on the test device. A force at the strain % end point was recorded.

TEST METHODS

Radial Strength: Each test device was made into a loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Torque: Each test device was placed in calibrated torque test instrument. Devices are clamped into the torque test instrument on the distal end and rotated via the proximal hub. Devices were observed on the test device and the mandrel radius at which the kink occurred was recorded.

Kink Resistance: Each test device was made into a loop and placed in kink resistance test fixture. Visual inspection of kink was administered. If no kink occurred, the devices were made into the next smallest size loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Force at an Angle: Each test device was placed into a flat plat and compressed with a 90 deg. and 180 deg. compression force on the test device. A force at the strain % end point was recorded.

TEST METHODS

Radial Strength: Each test device was made into a loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Torque: Each test device was placed in calibrated torque test instrument. Devices are clamped into the torque test instrument on the distal end and rotated via the proximal hub. Devices were observed on the test device and the mandrel radius at which the kink occurred was recorded.

Kink Resistance: Each test device was made into a loop and placed in kink resistance test fixture. Visual inspection of kink was administered. If no kink occurred, the devices were made into the next smallest size loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Force at an Angle: Each test device was placed into a flat plat and compressed with a 90 deg. and 180 deg. compression force on the test device. A force at the strain % end point was recorded.

TEST METHODS

Radial Strength: Each test device was made into a loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Torque: Each test device was placed in calibrated torque test instrument. Devices are clamped into the torque test instrument on the distal end and rotated via the proximal hub. Devices were observed on the test device and the mandrel radius at which the kink occurred was recorded.

Kink Resistance: Each test device was made into a loop and placed in kink resistance test fixture. Visual inspection of kink was administered. If no kink occurred, the devices were made into the next smallest size loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Force at an Angle: Each test device was placed into a flat plat and compressed with a 90 deg. and 180 deg. compression force on the test device. A force at the strain % end point was recorded.

TEST METHODS

Radial Strength: Each test device was made into a loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Torque: Each test device was placed in calibrated torque test instrument. Devices are clamped into the torque test instrument on the distal end and rotated via the proximal hub. Devices were observed on the test device and the mandrel radius at which the kink occurred was recorded.

Kink Resistance: Each test device was made into a loop and placed in kink resistance test fixture. Visual inspection of kink was administered. If no kink occurred, the devices were made into the next smallest size loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Force at an Angle: Each test device was placed into a flat plat and compressed with a 90 deg. and 180 deg. compression force on the test device. A force at the strain % end point was recorded.

TEST METHODS

Radial Strength: Each test device was made into a loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Torque: Each test device was placed in calibrated torque test instrument. Devices are clamped into the torque test instrument on the distal end and rotated via the proximal hub. Devices were observed on the test device and the mandrel radius at which the kink occurred was recorded.

Kink Resistance: Each test device was made into a loop and placed in kink resistance test fixture. Visual inspection of kink was administered. If no kink occurred, the devices were made into the next smallest size loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Force at an Angle: Each test device was placed into a flat plat and compressed with a 90 deg. and 180 deg. compression force on the test device. A force at the strain % end point was recorded.

TEST METHODS

Radial Strength: Each test device was made into a loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Torque: Each test device was placed in calibrated torque test instrument. Devices are clamped into the torque test instrument on the distal end and rotated via the proximal hub. Devices were observed on the test device and the mandrel radius at which the kink occurred was recorded.

Kink Resistance: Each test device was made into a loop and placed in kink resistance test fixture. Visual inspection of kink was administered. If no kink occurred, the devices were made into the next smallest size loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Force at an Angle: Each test device was placed into a flat plat and compressed with a 90 deg. and 180 deg. compression force on the test device. A force at the strain % end point was recorded.

TEST METHODS

Radial Strength: Each test device was made into a loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Torque: Each test device was placed in calibrated torque test instrument. Devices are clamped into the torque test instrument on the distal end and rotated via the proximal hub. Devices were observed on the test device and the mandrel radius at which the kink occurred was recorded.

Kink Resistance: Each test device was made into a loop and placed in kink resistance test fixture. Visual inspection of kink was administered. If no kink occurred, the devices were made into the next smallest size loop and placed in the mandrel. This was continued with a disk that rotated clockwise one full rotation and maximum torque force on torque sensor was recorded.

Radial Force at an Angle: Each test device was placed into a flat plat and compressed with a 90 deg. and 180 deg. compression force on the test device. A force at the strain % end point was recorded.
The Sublime™ Radial Access Guide Sheath is the industry’s first 5 Fr sheath available in lengths up to 150 cm and sets a new standard for lower extremity treatment through a transradial approach.

Radial artery access has been widely adopted for use in coronary procedures where devices have been developed to accommodate clinical need. However, the transradial approach for peripheral intervention has been limited by a lack of purpose built devices that fulfill the needs of these procedures. Many available options are too short to reach the target treatment area from the radial access site, have outer diameters that are too large for the smaller radial artery, and are not specifically designed to navigate the long distances that are required when using the radial approach for lower periphery treatment.

Designed with Radial Access to the Periphery in Mind

Radial artery access has been widely adopted for use in coronary procedures where devices have been developed to accommodate clinical need. However, the transradial approach for peripheral intervention has been limited by a lack of purpose built devices that fulfill the needs of these procedures. Many available options are too short to reach the target treatment area from the radial access site, have outer diameters that are too large for the smaller radial artery, and are not specifically designed to navigate the long distances that are required when using the radial approach for lower periphery treatment.

A Solution That’s Simply Sublime

Purpose-designed to overcome the challenge of radial access to the periphery, the Sublime Radial Access Guide Sheath incorporates a proprietary Surmodics braided shaft technology to maximize kink resistance, radial strength, and torque. Both 5 Fr and 6 Fr profile options in lengths of 120 cm or 150 cm, the Sublime Radial Access Guide Sheath is suitable for both above the knee and below the knee treatments using a transradial access approach.

Radiopaque markers on guide sheath and radiopaque dilator increase visibility under fluoroscopy

Available to 5 Fr and 6 Fr diameters, 120 cm and 150 cm lengths

Polymer outer jacket

Kink Resistance

- Higher number is better

Radial Strength

- Higher number is better

Torque Transmission

- Higher number is better

Full-length Serene™ hydrophilic coating designed to minimize vessel damage and spasm while optimizing trackability through distal tortuosity

Proprietary braided shaft technology designed to offer maximum kink resistance, radial strength, and torque

PTFE lined inner lumen for smooth device passage and easy device tracking to distal target lesions

Radial artery access has been widely adopted for use in coronary procedures where devices have been developed to accommodate clinical need. However, the transradial approach for peripheral intervention has been limited by a lack of purpose built devices that fulfill the needs of these procedures. Many available options are too short to reach the target treatment area from the radial access site, have outer diameters that are too large for the smaller radial artery, and are not specifically designed to navigate the long distances that are required when using the radial approach for lower periphery treatment.