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Executive summary 

This Deliverable falls under the SAFE-UP Project Work Package 3 “Active safety systems for 

vehicle-VRU interaction” and specifically under the Task 3.4 “Advanced intervention functions 

to avoid critical events”. It is a purely technical document that targets to support the efficient 

monitoring of the technical developments for Demonstrator 3 “Vehicle demonstrator for 

trajectory planning and control for combined automatic emergency braking and steering 

maneuvers including system for VRU detection, motion planning and trajectory control to 

enhance real world performance”.   

The present document is the first of two deliverables related to Demo 3 and focuses on the 

scenario selection method, initial scenario selection results, and a description of the Demo 3 

algorithms under development. Initial test results show the current status and maturity level 

of the algorithms. 

A detailed description of the Demo 3 architecture and technical specifications can be found 

in the deliverable report D3.1 (SAFE-UP, Deliverable report D3.1, 2021). 

This report is organized as follows: an overview of the hardware and software architecture 

are presented in section 2. In section 3, the scenario selection method, data base and the 

simulation results are described. The latter are used for an initial Demo 3 scenario 

specification. Section 4 gives an overview about the developed algorithm subsystems and 

their current development status. Initial test results are presented in section 5, followed by a 

discussion, conclusion and a description of the next steps in section 6. 
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1.  Introduction  

This deliverable reports on the current development status of WP3 Demo 3. The scope of 

Demo 3 is to develop advanced vehicle dynamics intervention functions to avoid or mitigate 

critical events. The demonstrator will include a vehicle with trajectory control algorithms for 

both emergency braking and steering. 

The purpose of this document is mainly to support the technical coordination and monitoring 

of the Demo 3 development. It is therefore working as a technical document, supporting the 

work of the system developers throughout the process, as well as the related work that will 

be performed in T3.6 focusing on technical verification. This version of the deliverable focuses 

on the scenario selection method, initial scenario selection results, and a description of the 

Demo 3 algorithms under development supported by initial test results showing the current 

status and maturity level of the algorithms. 

An updated version of this Deliverable is scheduled for Month 26 of the project (July 2022), 

when Demo 3 has completed its development phase. 
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2. Architecture 

2.1  Demonstrator hardware architecture 

A Bosch development vehicle as depicted in Figure 1 is used as Demo 3 integration platform. 

The vehicle contains several sensors and actuators with enhanced interfaces as well as a 

computing platform utilizing the Robot Operating System (ROS) as middleware to facilitate 

communication between different subsystems. 

A detailed description of the Demo 3 hardware architecture and technical specification can 

be found in the deliverable report D3.1 (SAFE-UP, Deliverable report D3.1, 2021). 

 

Figure 1: Demo 3 integration platform. A Bosch development vehicle featuring a radar/video sensor 
set and steering and braking interfaces with enhanced dynamics. 

 

2.2 Demonstrator software architecture 

The software for Demo 3 consists of several functionalities developed by different partners. 

Figure 2 shows the high-level interactions between the functionalities developed by the 

partners for Demo 3. These functionalities are implemented in the ROS2 (Robot Operating 

System) framework, which acts as a middleware and facilitates communication between the 

functionalities. Within the ROS framework, the functionalities are implemented as separate 

executables, or nodes, and these nodes communicate with each other via topics, using a 

publish-subscribe pattern or services, using a server-client pattern. 

A detailed description of the Demo 3 software architecture and technical specification can be 

found in the deliverable report D3.1 (SAFE-UP, Deliverable report D3.1, 2021). 
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Figure 2: High level interaction layouts between functionalities (light blue) and inputs needed from 
other work packages (grey block). 
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3. Scenario selection 

With the main goal of developing advanced active safety systems including autonomous 

emergency steering (AES) as a novelty, special focus is given in understanding the potential 

field of effect of such a system, especially in comparison to current state-of-the-art active 

safety systems. Therefore, a simulative analysis to quantify a theoretical field of effect is 

performed. 

The goal of the following Demo 3 scenario selection process is to identify scenarios that 

cannot be avoided by state-of-the-art systems and have the theoretical potential to be avoided 

by AES. These scenarios are then used to steer Demo 3 development towards a real-world 

safety benefit by directly addressing accident types that are not yet covered by any active 

safety system. 

3.1  Scenario selection method 

The scenario selection method is based on a simulation of generic implementations of 

Autonomous Emergency Braking (AEB) and Autonomous Emergency Steering (AES) 

systems. Those systems are then simulated using Pre-Crash-Matrix (PCM) accident data 

(German In-Depth Accident Study, n.d.). Based on an assessment of the accident avoidance 

potential, accident clusters are formed and specified by their parameter distributions. Figure 

3 shows an overview of the simulation process.  

The following chapters describe the data base, as well as the simulation assumptions and 

workflow. 

 

Figure 3: Overview of the simulation process for scenario selection. Clusters derived from accident 
data are used to simulatively assess the accident avoidance potential of an AES maneuver and build 

clusters of AES relevant traffic situations. 
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3.1.1 Data base 

In Task 2.1 of the SAFE-UP project, various analyses of crash data and naturalistic driving 

data were performed to derive scenarios for further work in the project. For car-to-VRU 

crashes in adverse weather conditions four use cases were selected, which are shown in 

Table 1. The focus of this analysis was on pedestrians and bicyclists as VRU types and on 

precipitation as it is significantly more prevalent in crashes with VRUs than other weather 

phenomena like fog. For the use cases, conflict scenarios with a high relative occurrence of 

precipitation, as well as conflict scenarios with a high absolute occurrence of precipitation 

were selected. The highest absolute number of cases under precipitation is in the conflict 

scenario cluster P-CLwoSO (Pedestrian crossing from left without sight obstruction), which is 

therefore selected with priority for the analysis in this document.  

For more detailed information on the analysis and the selected use cases, refer to Deliverable 

D2.6 of the project SAFE-UP (SAFE-UP, Deliverable report D2.6, 2021). 

 

AWC-P1 scenario: P-CLwoSO 

 

AWC-P2 scenario: P-PCTurnL 

 

AWC -B1 scenario: B-CR  

 

AWC-B2 scenario: B-PCTurnL  

 

Table 1: Car-to-VRU scenarios recommended in D2.6 for consideration for safety systems with 
improved sensor performance (SAFE-UP, Deliverable report D2.6, 2021). 

 

For the first iteration of the demonstrator development, special focus is given to the three 

most common UTYPs (401, 431, and 461) in the cluster P-CLwoSO, which are displayed in 

Figure 3. For these, 137 cases in the PCM database could be identified, 109 of which could 

be used for the simulation. The GIDAS-PCM database is a subset of the GIDAS database, 

which contains the kinematic information of the pre-crash phase, including trajectories and 
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speed information from the initiation of the conflict situation until the actual collision. Based 

on information from the crash reconstruction, the pre-crash phase is described at least 

approximately TTC=5 seconds before the collision and stored as a pre-crash matrix format 

(PCM). 

In further iterations, the present method is planned to be applied to all UTYPs within the 

clusters and to the other relevant accident clusters from the SAFE-UP project scope. 

3.1.2 Simulation assumptions 

To be able to generate useful and realistic simulation results, several assumptions must be 

made. Figure 4 shows an overview of the general simulation assumptions. 

 

Figure 4: Simulation assumptions for the assessment of the accident avoidance potential of an AES 
maneuver. 

 

The main limiting factors for the AES field of effect are expected to be the available space for 

an evasive maneuver, the allowed lateral dynamics and the trigger time of the system. The 

AES system under investigation is considered to be a SAE Level 2 system (SAE, 2018) and 

has to fulfill the legal requirements of the UNECE R79 regulation (UNECE, 2018), resulting 

in the following general simulation assumptions: 

1. In accordance with the UNECE R79 regulation, the AES maneuver is limited to 

evade within the current ego lane only. 

2. Based on Bosch controllability studies (Schneider, Schmitz, Ahrens, Löffler, & 

Neukum, 2018), the lateral dynamic interventions are limited to a maximum lateral 

acceleration of 5 m
s2. 

3. Sensor characteristics are considered by a field of view model only, sensor 

detection or situational uncertainties are not considered. 

4. AES maneuvers are performed by steering only. A combination of AES and AEB 

is not considered in this initial step. 
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5. The system trigger time is limited by a Bosch internal approach, which, if a driver 

does not trigger an intervention, delays the system trigger until it is estimated that 

a driver would not able to perform an avoidance maneuver on her own. 

 

To assess the AES systems performance, criteria for collision avoidance have to be defined. 

An illustration of the chosen collision avoidance criteria is shown in Figure 5. 

The first and most obvious criterion is full collision avoidance. In this case there is no contact 

of the ego vehicle and the pedestrian at any time during the AES maneuver. 

As the velocity of the crossing pedestrian from the accident reconstruction is always constant 

and the simulation does not make any assumptions regarding reactions of the pedestrians to 

the ego vehicles evasive motion, cases occur where a collision of the pedestrian with the ego 

vehicles front is avoided, but the pedestrian gets in contact with the side of the vehicle. 

Because of the missing pedestrian reactions, the fact that a pedestrian is able to reduce its 

velocity to stand-still on quasi-instant timescales and the assumption that side collisions may 

be less critical than frontal collisions, a frontal collision avoidance criterion is used as a second 

performance measure. 

 

Figure 5: Avoidance criteria for the assessment of the accident/collision avoidance of an emergency 
steering or braking maneuver. 

3.1.3 Simulation workflow 

The simulation workflow is depicted as a flow chart in Figure 6. 

The initial step of the simulation is the extraction of ego and VRU trajectories and dynamics 

as well as lane information from the PCM accident scenario. Based on the trajectories and 

dynamics, the Time-To-Collision (TTC) and the collision overlap are calculated for each 
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timestamp and then fed into the calculation of the system trigger. At the timestamp where 

TTC falls below the system trigger threshold AES and AEB maneuvers are initiated. 

For the AEB maneuver, a longitudinal acceleration profile is used to calculate the vehicle’s 

future motion until stand-still.  

For the AES maneuver, two trajectories are calculated for every accident scenario: One 

evading to the left and one to the right. Both trajectories end on the maximum lateral 

displacement possible (given by the ego lane information) and use the maximum allowed 

lateral dynamics. 

For both maneuvers, the vehicle dynamics of the component of motion which is not affected 

by the maneuver (lateral in case of AEB, longitudinal in case of AES) are assumed to be 

constant. For an AEB maneuver lateral dynamics are calculated with a model of constant 

acceleration, starting at the time of the system trigger. Likewise, for the AES maneuvers 

longitudinal dynamics are calculated with a model of constant acceleration, starting at the 

time of the system trigger. 

The trajectories and dynamics of the ego maneuvers are then used to perform collision 

checks with the pedestrian trajectory to decide if full collision avoidance or frontal collision 

avoidance can be realized. 

 

 

Figure 6: Logical view of the simulation workflow. 

 

3.2 Selected scenarios for Demo 3 

3.2.1 Overall results 

The overall simulation results are separated into evaluations for the two collision avoidance 

criteria: full collision avoidance and frontal collision avoidance.  

Figure 7 shows an illustration of the AEB and AES field of effect for full collision avoidance. 

Out of the 109 simulated PCM cases, 76.15% can be avoided by AEB and 54.45% only by 
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AEB and not by AES. 36.7% can be avoided by AES and 11.93% only by AES and not by 

AEB. 

 

Figure 7: Field of effect estimations for AEB and AES maneuvers using the full collision avoidance 
criterion. 

 

These 11.93% of sole AES avoidance potential, equaling a number of 13 cases, are the ones 

of interest for the Demo 3 development, as addressing these cases with novel avoidance 

functions would have a direct impact on total accident avoidance numbers. 

Figure 8 contains distribution plots of ego vehicle and pedestrian velocities, angles between 

ego vehicle and pedestrian (all at the time of the original accident and the time of the system 

trigger), overlap of the ego vehicle and the pedestrian in the original accident and the system 

trigger time (green distributions) as well as a potential mitigation effect of an AEB by the 

reduction of collision velocity (blue distributions). 

The distribution plots contain the discrete values of each case, shown as dark green or blue 

dots, as well estimated distributions around them. Due to the limited data the validity of theses 

distributions can not be guaranteed and should only be taken to guide the eye.  
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Figure 8: Parameter distributions for PCM cases with unique AES avoidance potential (green) and 
AEB mitigation potential (blue) using the full collision avoidance criterion. 

 

The collision hitpoint of the original accident is a parameter of special interest here, as it 

already separates the original scenarios along the system performance criteria. The original 

scenarios can be clustered into frontal collisions and side collisions, where the latter cluster 

would meet the frontal collision avoidance criterion even without any emergency system. An 

illustration of the hitpoint definition can be found in Figure 9.  

Six out of the 13 cases where the AES maneuver is able to realize full collision avoidance are 

frontal collisions with a hitpoint on the leftmost part of the ego vehicle’s front (hitpoint = 0 for 

all cases). The remaining seven cases are side collisions with hitpoints predominantly 

distributed along the front-half of the vehicle side (see Figure 10). 

 

Figure 9: Hitpoint definitions for frontal and side collisions as used by the scenario selection 
simulations. 
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Figure 10: Distribution of original accident hitpoints in PCM cases with unique AES avoidance 
potential using the full collision avoidance criterion. 

 

Using the frontal collision avoidance criterion 51.38% out of the 109 simulated PCM cases 

can be avoided by AES and 9.17% (equals ten cases) only by AES and not by AEB. The AEB 

field of effect remains identical. Cases with side-collisions in the original accident scenario 

are not considered here, since no intervention is needed to fulfill the frontal collision avoidance 

criterion. Figure 11 shows the AEB and AES field of effect for the frontal collision avoidance 

criterion. 

Analog to the full avoidance analysis, Figure 12 contains plots of the parameter distributions 

for the frontal collision avoidance evaluation. 

 

Figure 11: Field of effect estimations for AEB and AES maneuvers using the frontal collision 
avoidance criterion. 
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Figure 12: Parameter distributions for PCM cases with unique AES avoidance potential (green) and 
AEB mitigation potential (blue) using the frontal collision avoidance criterion. 

 

With the frontal collision avoidance criterion, the overall AES field of effect increases by about 

15%, while the percentage of AES avoidance only cases decreases by about 2%. 

In four out of the ten relevant cases, frontal collisions are converted into side collisions. These 

cases enlarge the potential field of effect of the AES system, as they do not occur in the 

evaluation using the full collision avoidance criterion. In the remaining six cases, the frontal 

collisions can be fully avoided. 

The distribution of hitpoints in the original accident is shown in Figure 13. 
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Figure 13: Distribution of original accident hitpoints in PCM cases with unique AES avoidance 
potential using the frontal collision avoidance criterion. 

 

In conclusion, accidents of the three UTPYs 401, 431, and 461 with avoidance potential using 

the aforementioned AES system are characterized by: 

1. Hitpoints on the front half of ego vehicle’s left side, 

2. Hitpoints on the leftmost part of the ego vehicle’s front, 

3. Initial ego vehicle velocities in the range of about 30 km/h to 60 km/h, 

4. Initial pedestrian velocities in the range of about 2 km/h to 10 km/h and 

5. Collision angles in the range of 260° to 280°. 

3.2.2 Scenario description 

Based on the simulation results the following scenario specifications for the first iteration of 

the Demo 3 AES development are chosen: 

1. Ego vehicle velocity: 40 km/h, 50 km/h, 60 km/h, 

2. Pedestrian velocity: 3 km/h, 6 km/h, 9 km/h, 

3. Collision angle: 90° and 

4. Collision hitpoint on the ego vehicle’s front: 0, 0.2, 0.4. 

Figure 14 shows an illustration of those first iteration scenarios. An obstruction of the 

pedestrian (black solid line) will be used for better demonstrability of the criticality of the 

accident scenarios and the resulting of rather late system trigger times.  
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Figure 14: Illustration of the Demo 3 scenarios chosen for the first iteration of the demonstrator. 

 

3.3 Applicability for future scenarios for Demo 3 

The general method of scenario selection can be applied on any other data base or scenario 

set. So when definitions of future accident scenarios become available (SAFE-UP, 

Deliverable report D2.8, 2021) (SAFE-UP, Deliverable report D2.13, 2021), the scenarios that 

could be addressed by Demo 3 can be extended. 
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4. Demo 3 development status 

4.1 Overall demonstrator scope 

In the first iteration of Demo 3 the focus will be on demonstrating the basic functionality of all 

algorithms and the whole algorithm chain. The general layout of the software is shown in 

Figure 2. 

System integration and functional verification of the whole architecture will be done using the 

scenarios described in chapter 3.2.2. An extensive analysis of further relevant scenarios for 

Demo 3 based on the results of D2.6 (SAFE-UP, Deliverable report D2.6, 2021) using the 

scenario selection method described in section 3.1 will be performed in the further course of 

the project. 

Preliminaries: 

The terminology used within this report can have in literature slightly different interpretations. 
To avoid confusion, this paragraph defines the terminology and ontology used in this chapter, 
which is an extension on the review article of (Laurène Claussmann, 2020) where widely 
accepted terminologies are explained.    
In a general hierarchical scheme of automated vehicles (see Figure 15) once the high level 

route and decision are known, the motion strategy includes generating and selecting a path 

and a trajectory. 

 

Figure 15: General hierarchical abstraction scheme of automated vehicles adopted from (Laurène 
Claussmann, 2020), where the generation block contains the path and trajectory generation. 

 
Path here refers to the sequence of space-related states in the free space (also referred to 
as geometric waypoints) and trajectory refers to the sequence of spatiotemporal states in the 
free space (also referred to as time-varying waypoints). 
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Furthermore, maneuvers refer to a predefined motion considered as a subspace of paths or 
trajectories, i.e. motion and actions or tasks refer to symbolic operations of maneuvers or 
intentions of road users. 

4.2 Demonstrator subsystems 

A general overview of the demonstrator subsystems is given in Figure 2. Detailed descriptions 

for each subsystem can be found in the following subsections. 

With the goal of demonstrating the basic functionality of all algorithms and the whole algorithm 

chain within this first iteration of Demo 3, special focus is given on developing the most 

relevant subsystems. These are Path Planning, VRU Intent & Trajectory Prediction, 

Trajectory Generation and Crash Prediction & Avoidance Estimation, which will be described 

in more detail in the following sections. The subsystems Localization, Global Planning, Safety 

Decision and Vehicle Control are implemented in a way that the system works as a whole but 

kept rather simple. The subsystem Sensor Input and Object Fusion & Tracking mainly uses 

already available algorithms which are embedded into the radar sensor module.   

4.2.1 Subsystem Localization 

As localization is merely an enabling technology for the Demo 3 developments, validation and 

demonstration, the vehicle will be equipped with a high end GNSS-RTK sensor. This sensor 

will output high frequent and accurate GNSS data, which can be fused with odometry and/or 

IMU data if needed.  

4.2.2 Subsystem Global Planning 

Global goal points are provided from the global planning module for to the path planning 

module to plan towards. These goal points will be updated periodically and are always an 

approximate fixed distance away from the current vehicle position. The goal points can be 

extracted from a stored map (e.g. in OpenDrive format), or from a recorded GNSS trace. 

Besides the geometry point in a world fixed frame (e.g. UTM), the goal point can contain 

information on the threshold for which it is considered reached, or alternatively be a goal area, 

represented by a polygon.  

Furthermore, the global planner is able to provide road information such as lane centers 

and/or boundaries, which can be used by the path planner module to find a better solution.  

4.2.3 Subsystems Sensor Input and Object Fusion & Tracking 

As Demo 2 covers the aspects of advanced sensor perception and Demo 3 is focused on the 

development of an evasive emergency maneuvering, the subsystems Sensor Input and 

Object Fusion & Tracking are realized using a single front-facing radar sensor module and 
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single front-facing video camera module with close-to-series hardware and software 

revisions. 

Fusion of radar and video data is performed using radar locations (single reflexes detected 

by the radar detector) and video objects (object data derived from solely raw video signals by 

the camera module). Video objects are communicated by the camera module via a CAN FD 

bus to the radar sensor module. The sensor data fusion and object tracking algorithms are 

executed on hardware embedded into the radar sensor module. 

Fusion objects (object data derived from the sensor data fusion and tracking algorithms) are 

then provided to the Localization and VRU Intent & Trajectory Prediction subsystems. 

4.2.4 Subsystem Path Planning 

To perform any automated driving task the basic idea is to safely traverse a state space to 

get from point A to point B. When given a driving goal by a route/global planner, if a path can 

be found then also sequentially a trajectory can be found that ensures the desired 

smoothness, continuity, comfort, speed and that obeys vehicles constraints. 

The challenge of selecting a good path for automated driving tasks (e.g. lane changes, 

obstacle avoidance, car following, merging, etc..) can be solved with different algorithms each 

having their own advantages and disadvantages. The review by (D. González, 2016) 

distinguishes 4 main categories of motion planning algorithms: graph search, sampling, 

interpolating and numerical optimization. Other recent review papers, such as (Laurène 

Claussmann, 2020) highlight that depending on the architecture that is selected for motion 

planning and the scope of the automated vehicle, different algorithms have been used to find 

a feasible and optimal path for the vehicle. 

Current challenges in real-time planning lie in dealing with dynamic environments in urban 

scenarios with multiple agents (i.e. pedestrians, cyclists, other vehicles) and dealing with 

extended ODDs (operational design domains), such as bad weather, complex road layouts, 

bad light and so on. This extra complexity requires the algorithms to become proactive rather 

than reactive, be robust to perception uncertainties and also be interaction-, risk- and context-

aware.  

To discover which algorithm performs better for the use cases considered here, two of the 

four classes of algorithms are implemented in this work: the sampling based and the 

numerical optimization.  The sampling based planner is selected due to its wide usage by 

multiple previous research, its ability to deal with high dimensional spaces and allowing a fast 

planning in semi structured environments by executing a random search through the 

navigation area. The second algorithm selected, MPC (Model Predictive Control) was 

selected to investigate the currently existing trend of bringing more of the vehicle control tasks 

upwards towards the motion planner and to research if MPC can include predicted information 

of other road users and make the vehicle react more proactively. Compared to the sampling 

based algorithm which leads to suboptimal solutions, MPC has the potential to offer an 

optimal one. Both algorithms have the ability to consider non-holonomic constraints such as 
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vehicles’ momentum and maximum turning radius and both algorithms consider the same 

inputs as shown in Figure 16. 

 

Figure 16: Path Planning subsystem (inter)dependencies. 

4.2.4.1 Sampling-based Path Planning 

Most sampling based planners sample a new state in the selected state space. Such state 

spaces can be ℝ2, Dubin or Reeds-Shepp. However, planning in such space either puts a 

massive limit on the movement of the car (e.g. the constant curve radius in Dubin) or does 

not necessarily satisfy the differential and/or kinematic constraints of vehicle's motion model. 

To facilitate the integration of kinematic and differential constraints while maintaining flexibility 

on the reachable space of the vehicle, action space sampling is an alternative. Contrary to 

state space sampling, action space sampling (alternatively called control space sampling) 

samples inputs to a dynamical system. Integrating this control input over a specified time 

interval given a fixed initial state (sample) will then result in a new state space sample, which 

satisfies the kinematic constraints. In this case, the following state and input are used: 

𝑋 = [𝑥 𝑦 𝜃 𝑣𝑙𝑖𝑛𝑒𝑎𝑟 𝑡]
𝑇, 

𝑈 = [𝑎𝑙𝑖𝑛𝑒𝑎𝑟 𝜑]𝑇, 

with  𝑥, 𝑦 being the positions in a world-fixed frame, 𝜃 the orientation in a world fixed frame, 

𝑣𝑙𝑖𝑛𝑒𝑎𝑟 and 𝑎𝑙𝑖𝑛𝑒𝑎𝑟 respectively the forward speed and acceleration, 𝜑 the steering angle and 

𝑡 a (reference) time. For the forward propagation of the dynamic system, the following non-

linear kinematic bicycle model discrete-time system is used:  

𝑋𝑡+Δ𝑡 = 𝑓(𝑋𝑡 , 𝑈𝑡 , Δ𝑡),  

with 

𝑓(𝑋𝑡 , 𝑈𝑡 , Δ𝑡) =  𝑋𝑡 + 

[
 
 
 
 

𝑣𝑙𝑖𝑛𝑒𝑎𝑟cos (𝜃)
𝑣𝑙𝑖𝑛𝑒𝑎𝑟sin (𝜃)

𝑣𝑙𝑖𝑛𝑒𝑎𝑟

𝑤ℎ𝑒𝑒𝑙 𝑏𝑎𝑠𝑒
∗ tan (𝜑)

𝑎𝑙𝑖𝑛𝑒𝑎𝑟

1 ]
 
 
 
 

Δ𝑡. 
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The control inputs are sampled based on a Gaussian distribution with a parametrizable mean 

and standard deviation. 

First, the propagated state is checked for validity based on free space and collision with other 

targets (VRU’s, vehicles). If feasibly, the states are awarded a penalty based on several, 

parametrizable, objectives such as:  

- Desired speed, 

- Path length, 

- Driveable space, 

- Distance to targets 

and added to the tree. If multiple solutions are found from start- to end state, the solution is 

chosen with the lowest cumulative cost. The full algorithm is described in (Yanbo Li, Zakary 

Littlefield, Kostas E. Bekris, Sampling-based Asymptotically Optimal Sampling-based 

Kinodynamic Planning, 2014). For the implementation of this planner, the Open Motion 

Planning  Library  (OMPL) is used (Ioan A. Șucan, Mark Moll, Lydia E. Kavraki, The Open 

Motion Planning Library, IEEE Robotics & Automation Magazine, 19(4):72–82, December 

2012. https://ompl.kavrakilab.org).  

 

 

Figure 17: Sample based planner result. 

 

Figure 17 shows a visual representation of the path planner output with the vehicle negotiating 

a left turn. Here a penalty grid map based on driveable space (following from the lane 

geometry) is shown, together with the virtual lane markings (in blue) and resulting path (green 

arrows).  

https://ompl.kavrakilab.org/
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4.2.4.2 MPC-based Path Planning 

Parallel to the sample based path planners, research is conducted involving the design of a 

local planner using a model-predictive control (MPC) algorithm. As opposed to a trajectory 

generator using MPC, the MPC formulation for a local planner usually looks slightly different 

since the goal is not to follow a certain trajectory, defined at each time-step, but to follow a 

discrete set of points generated by a behavior planner (e.g., using a Dijkstra algorithm). These 

points are usually spaced at a low resolution and primarily provide the information to, e.g., 

take a left turn or to keep driving straight. These discrete points work well in a scenario where 

the environment is unstructured and you simply need an algorithm to move from  point A to 

B, collision-free, while satisfying constraints. 

 An example in which this information is not sufficient is the scenario in which you are 

expected to follow a lane (not necessarily straight), or have the possibility to follow multiple 

lanes. The exact reference to the center of the lane, or even which lane to drive on based on 

surrounding obstacle positions is not something which can be captured in these low-

resolution positions.  

 On the public road, a driver and its vehicle is expected to always follow the lanes and respect 

regulations. For this purpose, many research papers have augmented the problem with a 

potential field or a "risk-assessment" field. This field captures analytically the risk of driving at 

certain positions. For example, driving off-center in an empty lane poses a higher risk than 

simply driving in the center. Using this risk-assessment field, the vehicle can guide itself 

through the environment in a potentially optimal way, up to the goal point.  

The MPC formulation of the path planner is formulated as follows:  

𝐽
0→𝑁𝑝(𝑋𝑠)=min

𝑢
∑ 𝑙𝑋(𝑋𝑘−𝑟𝑘)+∑ 𝑙𝑢(𝑢𝑘)+𝑚(𝑥𝑁𝑝+1−𝑟𝑁𝑝+1)+𝑈(𝑋𝑘,𝑜𝑘)

𝑁𝑐
𝑘=0

𝑁𝑝
𝑘=0 

∗  

𝑠. 𝑡. 𝑋0 = 𝑋𝑠,  

 𝑋𝑘+1 = 𝑓(𝑋𝑘 , 𝑢𝑘), ∀𝑘 ≥ 0, 

ℎ(𝑋𝑘 , 𝑢𝑘) ≤ 0, ∀𝑘 ≥ 0, 

𝑔(𝑋𝑘 , 𝑢𝑘 , 𝑜𝑘) ≤ 0, ∀𝑘 ≥ 0,  

where 𝑋𝑘  and 𝑢𝑘 represent the same state and input vectors as the sampling based planner, 

functions 𝑔(. ) and ℎ(. ) represent constraint functions,  𝑈(. ) represents the artificial potential 

field function which could depend on state 𝑋𝑘 and objects 𝑜𝑘, 𝑙𝑋 and 𝑙𝑢 are the stage cost of 

the state w.r.t. reference 𝑟𝑘 and input respectively, 𝑚(. ) represents the terminal costs and 𝑁𝑝 

is the prediction horizon. The model for MPC synthesis considered here is the same non-

linear kinematic bicycle model as used in the sample based planner.  

Note, that the stage cost 𝑙𝑋 may not be used due to an absence of a trajectory to follow at 

each time-step. The terminal cost, however, is used and is compared to the low-resolution 

discrete-points, in this case 𝑟𝑁𝑝+1
. Moreover, the constraint 𝑔(𝑋𝑘 , 𝑢𝑘 , 𝑜𝑘) ≤ 0 may not be used 

due to the fact that the potential field could incorporate the presence of surrounding objects. 
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This reduces the complexity at the cost of it becoming more difficult to guarantee a collision-

free trajectory. The potential field is composed of 2 parts, one representing the infrastructural 

potential field (i.e. the road lanes) and one representing a potential field taking into account 

static and/or dynamic objects and predictions.  

4.2.5 Subsystem VRU Intent & Trajectory Prediction 

The ability of an automated vehicle to accurately sense its surroundings and anticipate how 

the driving environment will evolve is crucial for road safety. If the vehicle is fully aware of the 

current and future positions of all static (e.g. road infrastructure) and dynamic (e.g. other road 

users) objects, it can plan its own trajectory optimally and prevent any hazardous situations. 

The task predicting the future positions of road users can be solved with different algorithms. 

These algorithms can be classified along two main dimensions: (i) the choice of modeling, 

and (ii) the contextual information they use (see Figure 18). The different modeling 

approaches have their own strengths and weaknesses. Physics-based approaches are 

accurate for short prediction horizons, but they don’t capture the complexity of real-world 

dependencies and therefore their performance degrades rapidly for longer horizons. 

 

Figure 18: Taxonomy of behavior prediction models. Adapted from (Rudenko, et al., 2020). 

 

Pattern-based approaches can approximate complex behavior without prior expert’s domain 

knowledge, but if some behavior is not present in the data used to develop them, they will 

perform poorly on those situations. Finally, planning-based approaches capture well the goal-

oriented nature of humans, but their running time scales exponentially with the number of 

objects in the scene, and automatic goal inference requires a complex understanding of the 

driving environment.  

In recent years pattern-based prediction models have gained popularity due to their 

performance in a variety of applications (Lecun, Bengio, & Hinton, 2015). In particular for 

trajectory prediction, recurrent neural networks (RNNs) are at the center of most state-of-the-

art methods (Rasouli, 2020). Long short-term memory (LSTM) is one of such RNN 

architectures which is commonly chosen due to its ability to capture temporal dependencies 

(Hochreiter & Schmidhuber, 1997). Thus, this architecture is also chosen for this submodule. 

Additionally, the more contextual information considered in the predictions, the more accurate 

the predictions tend to get. However, the required information is not always available or 
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accurate while driving, and in these cases the predictions of pattern-based models become 

unpredictable, so it is vital to have other simpler, fail-safe models that are at least reliable for 

short prediction horizons. 

 

Figure 19: Overview of the VRU Intent & Trajectory Prediction subsystems (inter)dependencies. 

 

To that end, this subsystem has been developed as overviewed in Figure 19. The inputs 

considered result from the object fusion & tracking module. An initial assessment is performed 

to verify if sufficient information is available for the implemented pattern-based model. If this 

information is not available (e.g. missing past target trajectory due to a late detection), the 

future positions are predicted with a constant velocity model, which is shown to describe 

pedestrian motion well in nominal conditions (Scholler, Aravantinos, Lay, & Knoll, 2020). The 

implemented pattern-based model is detailed next. 

 

Pattern-based model – LSTM Autoencoder 

The selected architecture for the first choice of prediction model is an LSTM Autoencoder, a 

flexible architecture allowing inputs and outputs of varying type and size.  

 

Figure 20: Overview of the LSTM autoencoder architecture. 

 

Figure 20 provides an overview of the model’s currently implemented architecture. Its inputs 

are 1 second of past states (positions, velocities, headings, etc.) of target(s) to be predicted, 

and its outputs are the target’s estimated positions for the next 8 seconds. In future iterations, 
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the model will also consider as input the static environment (i.e. road infrastructure) and 

dynamic environment (i.e. other road users). 

To train and evaluate the implemented LSTM Autoencoder, the Waymo Open Motion Dataset 

was considered (Ettinger, et al., 2021). This dataset contains hundreds of thousands of 

annotated trajectories for three types of road users: pedestrians, cyclists, and vehicles. 

4.2.6 Subsystem Trajectory Generation 

The Trajectory Generation subsystem is responsible for the computation of vehicle 

trajectories (spatiotemporal information about the vehicles future motion) on the basis of the 

information provided by the Path Planning and VRU Intent & Trajectory Prediction 

subsystems. Vehicle trajectories are evaluated regarding a risk estimation associated with 

their potential realization by the Crash Prediction & Avoidance Estimation subsystem and 

handed over to the Safety Decision subsystem (see Figure 21). 

The Trajectory Generation subsystem constitutes of three subsystems of its own: Nominal 

driving trajectory generation, AEB trajectory generation and AES trajectory generation. 

 

 

Figure 21: Overview of the Trajectory Generation (inter)dependencies. 

 

Nominal driving trajectory generation is used to compute the vehicle's trajectories for driving 

under nominal conditions when there is no need for any emergency maneuvering and the 

driving goal is to follow the path planned by the Path Planning subsystem (see Figure 22). 

Here the trajectory generation utilizes an inverted stationary state approximation of the linear 

single-track model (Schramm, Hiller, & Bardini, 2010) to calculate a path-following trajectory 

as well as the control command for the vehicle's steering system based on the vehicles 

current velocity (assuming constant velocity for future motion) and the path information. 

AEB trajectory generation performs the calculation of vehicle trajectories for an automated  

emergency braking maneuver (see Figure 22). Trajectories are generated using the same 

model inversion as used by the Nominal driving trajectory generation, but employs a fixed 

deceleration profile for the computation of the vehicles future motion. Thus, AEB trajectories 

are planned to be path-following with a deceleration of the vehicle until stand-still. For 
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determination of the spatiotemporal starting point of an emergency braking maneuver an 

adaptive sampling of starting times for the computation of the vehicle's deceleration is used. 

Trajectories are iteratively sampled with starting times chosen from the interval of the time of 

trajectory calculation to the time of a predicted collision with a target object (VRU) when the 

vehicle would follow the Nominal driving trajectory. For each iteration the sampled trajectories 

are handed over to the Crash Prediction & Avoidance Estimation subsystem for a collision 

and risk estimation, that is used to determine the sampling of starting times for successive 

iterations. 

AES trajectory generation computes vehicle trajectories for an automated emergency 

steering maneuver (see Figure 22). Trajectories are generated by adaptively sampling 

deviations from the path planned by the Path Planning subsystem. Deviations are given in 

terms of deviation profiles that are generated using a switched feedback controller topology 

(Sira-Ramirez & Agrawal, 2004), that uses an extended linear single-track model (Uhler, 

2021) to take higher (compared to nominal driving) lateral vehicle dynamics into account and 

features the possibility of an intrinsic handling of state variable and model input constraints 

(Joos, Bitzer, Karrelmeyer, & Graichen, 2018). The latter allows to consider external (e.g. 

legal, safety, human-factors) and system constraints at the level of trajectory planning which 

guarantees the feasibility of all planned maneuvers. The deviation profiles thereby maximize 

the usage of the vehicle dynamics potential within the constraints given by an emergency 

situation. The degrees of freedom of the sampling of deviation profiles are their 

spatiotemporal starting point and maximum lateral deviation. Profiles are iteratively sampled 

with starting times chosen from the interval of the time of trajectory calculation to the time of 

a predicted collision with a target object (VRU) when the vehicle would follow the Nominal 

driving trajectory and maximum lateral deviations chosen from the interval of vehicle overlap 

with a target object when the vehicle would follow the Nominal driving trajectory to the 

maximum possible lateral deviation (given by lane boundaries\legal constraints). As for AEB 

trajectory generation sampled trajectories of each iteration are handed over to the Crash 

Prediction & Avoidance Estimation subsystem for a collision and risk estimation to determine 

the sampling for successive iterations. 
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Figure 22: Overview of the trajectory generation by the Nominal driving trajectory generation, AEB trajectory 

generation and AES trajectory generation subsystems. Planned trajectories are displayed with offsets to the 
planned path for clarity. Details see text. 

 

Iterative sampling of AEB and AES trajectories is terminated either by reaching the sampling 

tolerances of the respective subsystems or the cycle time of environmental information 

updates as provided by the Object Fusion & Tracking subsystem. The final sets of trajectories 

generated by the Nominal driving trajectory generation, AEB trajectory generation and AES 

trajectory generation subsystems and their collision and risk estimates are then handed over 

to the Safety Decision subsystem. 

4.2.7 Subsystem Crash Prediction & Avoidance Estimation 

The crash prediction and avoidance estimation are based on a risk assessment for a set of 

ego and object trajectories. Therefore, the inputs for this subsystem are an ego trajectory and 

the predicted trajectories of dynamic objects. Note that static objects are not considered since 

the ego trajectories are already collision-free for those. The output is a value of risk for the 

ego trajectory. Risk is defined as the product of collision severity and collision probability. The 

risk function is based on (Wang, Wu, Zheng, Ni, & Li, 2016). Due to the computational 

complexity of field-based functions, the work is adapted to evaluate single points on 

trajectories, reducing the computational complexity by multiple magnitudes.  

The algorithm uses trajectories of the form 𝑡 ∈ [𝑡0, 𝑡𝑓] × (𝑥, 𝑦, 𝜃, 𝑣), where 𝑡0 and 𝑡𝑓 are the 

start and end times of the trajectory. The position is denoted as (𝑥, 𝑦), and the heading angle 

is 𝜃. Lastly, 𝑣 denotes the velocity. From this information, a distance-vector 𝑟(𝑡) = (𝑥ego(𝑡) −
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𝑥obj(𝑡), 𝑦ego(𝑡) − 𝑦obj(𝑡)) is computed. The vector represents the distance of points of the 

trajectory at the same time instances. Figure 23 depicts this pointwise comparison.   

 

Figure 23: Illustration of distance vector calculations. 

 

After computing the distance-vector, the risk is evaluated for each distance-vector. Since the 

risk function depends on the inverse absolute value of the distance-vector, the risk increases 

towards infinity when both trajectories intersect at the same time.    

Since thus far only points are compared in the time domain, it is unlikely to detect a collision 

due to points not having a size. To ensure the computational feasibility, the object sizes are 

approximated by circles as (Ziegler & Stiller, 2010). As depicted in Figure 24, three circles 

approximate vehicles, and VRU's are approximated with one circle. 

 

Figure 24: Illustration of circular bounding box estimations. 

 

The collision function detects a collision if and only if the sum of the radii of one circle of the 

ego and the circle of the object is less or equal to the distance vector between both center 

points. Having three circles in the ego vehicle enables the risk function to distinguish between 

a front, mid and rear collision. Therefore, a factor is introduced that can model the differences 

in collision severity of each case.  
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The chosen risk assessment methodology ensures that a subsequent decision module can 

make a reasonable decision based on potential harm and closeness to objects. Further, it 

can compute where and when a collision occurs. 

4.2.8 Subsystem Safety Decision 

The subsystem safety decision is implemented to decide between different motion 

alternatives. The sampling-based planner provides the motion alternatives (see Figure 22). 

For the first implementation of the proposed system design, the decision will be solely based 

on the risk value assigned to each trajectory by the crash prediction and avoidance estimation 

module (see Figure 21). Still, this subsystem will be designed such that it can be easily 

extended to include more information for a decision process.   

4.2.9 Subsystem Vehicle Control 

Vehicle control is executed via the vehicles steering and braking system. Steering and braking 

command references corresponding to the planned maneuvers (nominal driving, emergency 

braking, emergency steering) are generated by respective trajectory generation subsystems. 

These command references are used to directly control vehicle dynamics by means of 

feedforward control only, without a feedback path on short timescales. On longer timescales 

the cyclic trajectory replanning acts as a feedback path for vehicle control by taking updates 

of the vehicle state as well as environmental information into account. Due to the short 

timescales of higher (than nominal driving) dynamics during an emergency maneuver, errors 

in the vehicle control that accumulate within one trajectory planning cycle are estimated to be 

negligible for the first iteration of Demo 3. A dedicated short timescale feedback path for 

vehicle control is planned for the second iteration of Demo 3.   
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5. Initial test results for Demo 3 

As described in section 4.2, the goal of this first iteration of Demo 3 is to demonstrate the 

basic functionality of the whole algorithm chain with special focus on the subsystems Path 

Planning, VRU Intent & Trajectory Prediction, Trajectory Generation and Crash Prediction & 

Avoidance Estimation. 

Initial test results for each of these subsystems are described in the following. 

5.1 Initial test results Path Planning 

The path planning algorithms are tested and benchmarked on one of the TNO Carlab 

vehicles, which are shown in Figure 25. To be able to test the system in closed-loop, dummy 

modules are created for the global planner and vehicle controller. The localization and object 

tracking & fusion modules are taken from TNO background IP.  

 

Figure 25: TNO Carlabs. 

 

The tests are performed at the RDW test track in Lelystad, the Netherlands. First, several 

virtual routes are recorded in an offline run representing different road layouts, e.g. straight 

road, corner, roundabout and intersection. From these virtual routes, virtual lanes and road 

layouts are created, as if there were physical lines on the asphalt. These are sent to the 

vehicle to mock the input from e.g. a road camera sensor.  

Then, the path planner is enabled together with the other modules in the closed loop system 

and these different road layouts are navigated in closed loop. The results are recorded and 

stored for post-processing and the algorithms are evaluated based on several safety and 

comfort criteria, such as deviation from lane center and acceleration.   

A sample of the results of the TNO Carlab negotiating an oval track is shown in Figure 26 for 

the sample based Path Planner and in Figure 27 for the MPC based path planner. Here, the 
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vehicle is controlled and actuated based on the path planner outputs. In these figures, some 

relevant KPI’s are shown (e.g. deviation from lane center).  

 

Figure 26: Sample of the TNO sample based path planning in closed loop. 

 

 

Figure 27: Sample of the TNO MPC based path planning in closed loop. 

 



 

 

SAFE-UP D3.3: Demo 3 Vehicle demonstrator for 
advanced vehicle dynamics intervention  

 

 

 

 

This project has received funding from the European Union’s Horizon 2020 research  

and innovation programme under Grant Agreement 861570. 
38 

5.2 Initial test results VRU Intent & Trajectory Prediction 

A preliminary evaluation of the developed LSTM’s predictive accuracy was performed using 

a part of the Waymo dataset reserved for this purpose (i.e. these trajectories were not used 

during model development), and a constant velocity model is used as a baseline for model 

comparison.  

Figure 28 shows the final displacement error (FDE) of the predicted trajectory with respect to 

the actual trajectory for approximately 1 second in the future. As can be seen in the figure, 

the constant velocity model is more reliable for very short prediction horizons (i.e. <0.2 

seconds), and after that point the LSTM results in a lower error. For predictions of up to one 

1 second, both models present a mean error lower than 0.2 meters, although the variability 

of this error is considerably lower with the LSTM. 

 

 

Figure 28: Short-term prediction accuracy of the LSTM and CV models on pedestrian trajectories. 
Vertical bars denote standard deviation of the errors. 

 

Figure 29 depicts the same information for predictions of up to 8 seconds. Overall, the LSTM 

presents slightly superior performance in terms of accuracy and variability of the errors in the 

predictions. However, the benefits of the LSTM over a simple CV model are not directly visible 

from this model evaluation. The reason for such a minute improvement is the fact that most 

recorded pedestrian trajectories follow a straight path with approximately constant velocity. In 

other words, a simple CV model describes pedestrian motion reasonably well in most cases, 

and the advantages of more sophisticated models are most noticeable when a pedestrian 

suddenly turns, accelerates or decelerates. 
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Figure 29: Long-term prediction accuracy of the LSTM and CV models on pedestrian trajectories. 
Vertical bars denote standard deviation of the errors. 

 

Figure 30 depicts example predictions of both the CV and LSTM models for a crossing 

pedestrian that performs a minor change in direction. The LSTM is able to anticipate this 

minor turn and adapt its predictions accordingly, resulting in significantly higher predictive 

accuracy. 

 

Figure 30: Example predictions on a scene where a pedestrian is crossing in front of the ego vehicle. 

 

5.3 Initial test results Trajectory Generation 

In the first iteration of Demo 3, special testing focus has been given to the AES trajectory 
generator, while testing of both the nominal and AEB trajectory remains open. For an initial 
evaluation regarding feasibility and potential unforeseen limitations, the AES trajectory 
generator has been tested within both a simulation framework and the demo 3 in-vehicle 
integration platform. 

The simulation testing has the purpose of verifying and validating both the base trajectory 
generation algorithm, generating one trajectory from a predefined target lateral displacement 
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and predefined settling dynamics considering dynamic constraints, and the sampling 
algorithm, sampling target lateral displacement values and trajectory start times. 

Figure 31 shows an exemplary case with a crossing pedestrian from the left side of the road, 
according to the defined scenarios in section 3.2.2. The ego vehicle is depicted as a black 
rectangle at the current timestamp, one second before a collision. The pedestrian is depicted 
as a red rectangle at the predicted collision timestamp, leading to a minimum required lateral 
displacement of 0.4m. Note that the x and y axes are not scaled equally for a better visibility 
of the trajectories, leading to a distortion of the objects. The right lane border is included to 
the figure as a dashed red line. Sampled trajectories are shown in blue. The sampling space 
in lateral direction is defined from the minimum required lateral displacement to the maximum 
possible lateral displacement, delimited by the right lane border. The sampling space for the 
trajectory starting time is given by the current timestamp and the collision timestamp. 
Trajectory sampling is activated when a collision is predicted by the crash prediction 
subsystem. Note that the length of each trajectory is automatically given by the predefined 
settling dynamics of the base trajectory generation algorithm. For this simulation example, 
five samples for both the sampling in lateral and longitudinal direction have been chosen, 
leading to a total sum of 25 trajectories. The specific starting times and lateral displacement 
values are displayed as black dashed lines. The collision timestamp is marked in red. Note 
that trajectory sampling will be repeated with each object data update, ensuring a fast 
adaptation to changes in the situation as well as adaptations due to prediction uncertainties. 

 

 

Figure 31: AES Trajectory Generation example in a crossing pedestrian case. The pedestrian 
position is displayed at the collision timestamp, while the ego vehicle position is displayed at the 

current timestamp. Sampled trajectories are displayed in blue.  
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The simulation results show that trajectories are generated within the defined sampling space, 

considering the dynamic constraints as specified.  

The in-vehicle testing has the purpose of tuning the trajectory dynamics in a way that the 

steering actuator can follow the required steering angle command. Furthermore, the steering 

actuator’s dynamic constraints are determined and incorporated into the trajectory generation 

base algorithm. 

Figure 32 shows the result of one planned AES trajectory with a target lateral displacement 

of 1m, including all planned vehicle states from the enhanced linear single track model 

described in section 4.2.6. Measured vehicle states are show in magenta, in case this was 

possible. Because no GNSS based reference system was available at the time of testing, 

lateral displacement, yaw angle and slip angle could not be measured. For the lateral 

displacement and the yaw angle, an estimation has been performed based on an integration 

of the measured yaw rate, displayed in dash-dotted magenta. The yaw rate of the maneuver 

is limited to a maximum of 12 °/s to ensure controllability by the driver, shown in dashed black. 

As described in section 4.2.9, the maneuvers are executed by means of feedforward only, 

without closed-loop control on short timescales for the first iteration of Demo 3. Because of 

the model based nature of the used trajectory generator, a feedforward steering angle 

command can directly be calculated using the model equations. 

 

Figure 32: One planned AES trajectory, consisting of the displayed planned vehicle states in blue. 
The measured or estimated vehicle states are displayed in magenta. 

 



 

 

SAFE-UP D3.3: Demo 3 Vehicle demonstrator for 
advanced vehicle dynamics intervention  

 

 

 

 

This project has received funding from the European Union’s Horizon 2020 research  

and innovation programme under Grant Agreement 861570. 
42 

The in-vehicle testing results show a good following behavior of the steering actuator. A 

communication latency of ~100ms can be observed. Despite a short overshoot in the counter 

steering phase, the given yaw rate limitation can be fulfilled. The estimated lateral 

displacement shows values below the planned curve, leading to a stationary deviation of 

~0.2m at the end of the maneuver. This is expected to be due to the fact that the slip angle 

of the vehicle is not considered for the lateral displacement estimation. Furthermore, a closed-

loop trajectory controller could improve the trajectory following behavior. 

The next step is the integration and test of the complete trajectory sampling algorithm within 
the demo 3 in-vehicle integration platform. 

5.4 Initial test results Crash Prediction & Avoidance 

Estimation 

Figure 33 shows two use cases: on the left side, no collision is occurring, but both trajectories 

come close to a collision. On the right side, a collision occurs, leading to the risk value's rapid 

growth. 

 

Figure 33: Evaluations of the time-resolved risk calculation for the use cases of no collision (left) and 
collision (right). 

 

To return a single risk value for one ego trajectory, the accumulated risk value over time is 
computed. The inputs to the risk function are: One ego trajectory, one object trajectory (as 
described in 4.2.7) and the timewise length of the trajectory as well as the timewise step size 
for each discrete trajectory value. After executing the function, the risk function returns the 
accumulated risk value, if a collision occurs, where the collision occurs and when the collision 
occurs.  
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6. Discussion, conclusions and next 

steps 

In this first phase of the project several important development steps towards Demonstration 

3 (Advanced Intervention Functions) have been done, which form a good basis for the 

previous and future developments to realize the active safety ambitions in WP3. These 

developments have started with the high level vehicle design specification, to scenario 

selection, software architecture and interfaces definition until sub-system specification and 

design.  

Hereafter, all individual algorithms have been defined and developed in a first version for a 

subset of scenario variations. Each individual algorithm was evaluated in simulations and, 

when needed, through tests at each individual project partner. The first remote-integration of 

all software functionalities and interface verification has made an additional step towards the 

upcoming integration and in-vehicle testing.  

The immediate next step will focus on applying, integrating, and porting all individual 

components to the Demo 3 vehicle. A set of (incrementally difficult) tests will be performed to 

ensure the desired integration and test the behavior according to the specified scenarios. 

After these first Demo 3 tests the algorithms will be further advanced and a new 

demonstration will be done in the next year. 

The final system will be tested on the test track with VRU dummy systems under controlled 

environments with a subset of the selected scenarios, as well as in simulations with the 

complete set of scenarios.  
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