Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Marcos Bonada¹, Cassandra Collins², Paul Petrie¹

¹South Australian Research and Development Institute, Urrbrae, Australia
²The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, Glen Osmond, Australia

Abstract

Aim: Interactions between soil, climate and management that modulate vine growth, yield and grape composition are strongly defined by vine water availability and nutrient uptake during the season. Carbon isotope discrimination ($\delta^{13}C$) has been used as an integrative measurement of vine water availability during the season, with the potential to identify spatial variations of terroir in vineyards that do not receive irrigation. We measured juice $\delta^{13}C$ at harvest across multiple vineyards with the aim to discriminate sub-regions based on soil water availability due to variation in climate, soil and management (especially supplementary irrigation). We explored the relationship between $\delta^{13}C$ and pruning mass, yield and fruit parameters important for wine quality.

Methods and Results: The study was conducted in 2019 in irrigated Shiraz vineyards spread across six sub-regions in the Barossa Valley, SA. A total of 63 samples collected at harvest (approx. 25⁰ Brix) were subject to $\delta^{13}C$ analysis, this included three samples from each of 21 vineyards. Yield, pruning mass and berry maturity (total soluble solids, titratable acidity and pH) and quality parameters (total tannins, anthocyanins and phenolics) were assessed. Carbon isotope composition of the grape sugars was measured on autoclaved berry juice using a continuous flow isotope ratio mass spectrometer. $\delta^{13}C$ discriminated between sub-regions and within vineyards. Vineyards from sub-regions, Eden Valley, Central and Northern Grounds had lower $\delta^{13}C$ than vineyards from the Western Ridge and Eastern Edge, with the Southern Grounds. Similarly, zones within a vineyard with lower plant biomass, as indicated by PCD imagery, showed lower $\delta^{13}C$. A significant relationship was observed between $\delta^{13}C$ and yield ($r = -0.72^{***}$), pruning mass ($r = -0.54^{**}$), anthocyanins ($r = 0.65^{**}$) and total phenolics ($r = 0.61^{**}$). Higher water stress (< $\delta^{13}C$) during the season was associated with a lower yield, lower pruning mass but with higher total anthocyanins and phenolics. No significant relationships between $\delta^{13}C$ and other berry traits (including total tannins) were observed.

Conclusions: $\delta^{13}C$ is a useful method to integrate and distinguish components of terroir that affect vine productivity and some fruit quality parameters which remains sound even when the vines receive irrigation.

Significance and Impact of the Study: This study shows the potential use of $\delta^{13}C$ to discriminate between blocks with different moisture availability that may induce changes in yield and some aspects of fruit quality. $\delta^{13}C$ may emerge as a proxy for terroir in zoning studies of irrigated vines, but further validation is needed using cluster analysis that integrates soil, climate and fruit composition geospatially across multiple seasons.

Keywords: Carbon isotope discrimination, water availability, grapevine growth, fruit composition, terroir