
URB Excalibur: The New
VMware All-Platform VM

Escapes
Yuhao Jiang (@danis_jiang)

Xinlei Ying (@0x140ce)

Who are we?

Security researchers at Ant Group Light-Year Security Lab

Escaped from virtual machine many times

Won the Pwnie Awards🦄 at 2023

Yuhao Jiang
(@danis_jiang)

Xinlei Ying
(@0x140ce)

Talk Roadmap

1. Introduction

2. A journey of finding vulnerabilities in VMware’s hypervisor

3. Exploit development of VMware VM escape

Introduction

What is Virtual Machine escape and the danger of it

● Escape from the isolation
sphere

● Take control over the whole
hypervisor

● Network escape

One of the most catastrophic
threats to the Cloud

VMware’s Architecture

VMware hypervisors’ attack surface

Virtual Device

Hard Disk
LSI Logic

NVME
Network
Adapter

E1000/E1000e
VMXNET3

USB
Controller

UHCI Tianfu Cup 2021 Workstation (CVE-2021-22041),
Tianfu Cup 2023 Workstation (CVE-2024-22253, CVE-22255)

EHCI GeekPwn 2022 Fusion (CVE-2022-31705)

XHCI Tianfu Cup 2021 ESXi (CVE-2021-22040),
Tianfu Cup 2023 ESXi (CVE-2024-22252)

USB Device

HID (mouse)

Bluetooth Pwn2Own 2023 Workstation (CVE-2023-20869,
CVE-2023-20870)

…

GPU
SVGA 2D
SVGA 3D

Sound Card ES1371
TPM vTPM

…
GuestRPC Backdoor

VMM

Vulnerability
Discovery
A journey of finding

vulnerabilities in VMware’s
hypervisor

Start vulnerability discovery in VMware

First encounter with VMware, closed-source hypervisor

1. Focusing on an interesting and potentially risky attack surface
● Having studied QEMU EHCI vulnerabilities
● Interested in VMware's EHCI implementation

2. Reverse engineering
● Using string search as an entry point
● Understanding EHCI specification and QEMU code while reverse

engineering VMware

EHCI / USB 2.0 Controller

VMware’s virtual EHCI
controller

VMware’s virtual video device (face
time)

EHCI / USB 2.0 Controller

EHCI / USB 2.0 Controller

Endpoint/Pipe:

● Control
● Bulk
● Interrupt
● Isochronous

Token:

● Setup
● In: Device -> Software
● Out: Software -> Device

How the data flow

QEMU

VMware

ehci_control_transfer

while (1)

setup

in

out

VUsb_NewUrb

urb_submit

ehci_state_fetchqh ehci_state_fetchqtd usb_handle_packet

do_token_setup

do_token_in

do_token_out

CVE-2020-14364

Could there be
bugs here?

YES!

CVE-2022-31705

CVE-2022-31705

urb’s size =
0x98 + 8 + setup_len

SETUP qTD

CVE-2022-31705

OUT qTD IN qTD

Where is the BUG?

CVE-2022-31705

OUT qTD IN qTD

Where is the BUG?

Check if
qTD->tbytes is

valid

CVE-2022-31705

OUT qTD IN qTD

Where is the BUG?

Check if
qTD->tbytes is

valid

NO CHECK!
Directly subtract

tbytes from setup_len

● Missing tbytes check when handling IN qTD
● setup_len downward integer overflow

● setup_len is much larger than the size of urb
● Use OUT qTD to obtain heap out-of-bounds write

CVE-2022-31705

SETUP
0x340

IN
0x7FFF

IN
0x7FFF

IN
0x7FFF

OUT
0x340+0x100

0x340 -0x7CBF -0xFCBE -0xFCBE 0x6004c339

QH

Value of
setup_len

How VMware fixed it

OUT qTD IN qTD

What else did we find?

BUG 1: Out-of-bounds read vulnerability

● Pipe type confusion (Control ⇐⇒ ISOC)
● Handle urb incorrectly

Always be 1 in
control pipe’s urb

Fixed

What else did we find?

BUG 2: Information disclosure vulnerability

● In many virtual USB devices (USB Audio, USB Video, USB RNG…)
● No memset, writeback_len is set to the data size of urb.

Fixed

Exploit
Development

The problem

● [Again] Closed-source

● No public exploit code and rarely disclosed exploit flow

● Most of past exploit primitives have been patched

● Few code paths that can be controlled with in the guest OS.

Some patches for old primitives

● DnD/CP objects in backdoor module (2017)
a. VMware remove dynamic allocation and release of DnD/CP objects

● ResourceContainer in SVGA backend module (2018)
a. VMware first removed the function pointer table in the ResourceContainer

in 15.5.7
b. VMware moves SVGA backend module into sandbox (mksSandbox) in 16

● GMR in SVGA front-end module (2021)
a. VMware adds a check at the head of GMR chunk

(MKSMemMgrSafeMalloc)
● ……

URB: Powerful Excalibur

● USB Request Block
● Used by all virtual USB

controllers

● Dynamic allocate and free
● Has:

○ A variable length data array
○ A member to control length to

read
○ A data pointer
○ A pipe pointer

● …

Out-of-bounds write -> Out-of-bounds Read

1. Allocate URB1 and URB2, leaving
space for EHCI Control URB

2. Allocate EHCI Control URB, then
overwrites writeback_len of URB1

3. Read back URB1, we can read the
buffer address and pipe address

Arbitrary Address Read

1. Allocate EHCI Control URB again

2. This time overwrite
purb_data_cursor to any location

3. Read back URB1

Everywhere

Arbitrary Address Write

● Write from a pointer in frame to
another pointer in frame

● frame is a member in pipe
● We can fake the pipe in urb using

out-of-bonds write

Control the RIP

pipe
1. A dynamically allocated object that

holds function pointers
2. We can trigger a call to the function

pointer

Control the RIP

Path 1

● The pipe when calling cancel_pipe in ehci_check_and_writeback comes from the
pointer of urb

● We can use out-of-bounds write to forge the urb->pipe to implement arbitrary
address calls.

Path 2

● Fake a new pipe directly in vusbDev by arbitrary address write

Control the RIP

EHCI
port reset destory_all_pipe cancel_pipe

Use Path 2 when we can’t reserve EHCI urb, although it needs more actions

What’s more? We need heap grooming

Heap spraying and grooming primitive: SVGA_3D_CMD_SET_SHADER

Allocate and free in large quantities, the heap size is sizeInBytes+8

svga_3d_cmd_define_gb_shader(shid, SVGA3D_SHADERTYPE_MIN, sizeInBytes);

svga_3d_cmd_bind_gb_shader(shid, mobid, 0);

svga_3d_cmd_set_shader(cid, SVGA3D_SHADERTYPE_MIN, shid);

svga_3d_cmd_destroy_gb_shader(shid);

https://census-labs.com/media/straightouttavmware-wp.pdf

https://census-labs.com/media/straightouttavmware-wp.pdf

Try on the VMware Fusion!

1 out-of-bounds read, 3 arbitrary address reads, and 2 arbitrary address writes

1. Heap grooming
2. Leak pipe address and heap address
3. Leak the program base address (pipe->dev)
4. Leak ehci state address (in .data)
5. Leak vusbdev address (in ehci state)
6. Write the upper 4 bytes of the fake pipe to vusbdev
7. Write the lower 4 bytes of the fake pipe to vusbdev
8. Trigger cancel pipe
9. Escape

Big problem. Magazine

● MacOS’s libmalloc uses magazines to manage heap blocks
● Each CPU core will have a unique corresponding magazine

○ Increase cpu’s occupancy and try to increase cpu core switching
○ Add sleep between each allocation

Big problem. Magazine. How we deal with it

● Repeat the basic heap layout, and try to have at lease one layout on each magazine
● Try a large number of times for every step (place objects, do oob read…)
● How to ensure that all magazines are occupied?

● Remove sleep, speed up exploit
● Use a huge number of spray

rounds (0x1000)

Success rate > 80%

Demo

http://www.youtube.com/watch?v=qL2CxfNUMeg

On VMware Workstation

● In the default configuration, there will be no device on the EHCI
○ Plug in a usb device to connect to ehci

● To avoid the randomization of LFH:
○ Use chunks larger than 0x4000
○ Select a size that has not been used by LFH when we can’t allocate larger than 0x4000

1. Leak heap address
2. Leak process base address
3. Leak the address of

createProcessW
(KERNEL32.dll)

4. Call WinExec

Demo

https://docs.google.com/file/d/16Z-XjFuywu5RCIw2weUnh_i0O--Zy0wl/preview

On ESXi

● Same as Workstation, no default device on EHCI
● Similar to CentOS 7, use very old glibc-2.17 (2.28 after ESXi 8.0.2)
● Basically the same as on Fusion (No need to face magazines)
● Use GMR instead of Shader

Takeaways

● Where bugs have arisen with similar software, there may be new bugs

● When looking for exploit primitives, try to look for objects related to the
vulnerability

● Virtual devices, especially USB-related devices, are now a popular attack
surface

Questions?

