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Abstract

I develop a general equilibrium model of the macroeconomic impacts of microeconomic
weather shocks accounting for production networks and non-linearities in production.
In the model, weather shocks directly affect the productivity of local producers. I find
a closed-form solution for the general equilibrium of the model and use it to draw
insights. The first insight is that, though weather shocks are local, in the presence of
networks and shared labor markets, direct effects from weather shocks can generate
indirect impacts throughout the economy. This suggests that empirical estimates that
relate economic outcomes, such as income, to weather variations can be biased if they
do not account for these spillovers. Second, I show that non-linearities in production
from complementarities can generate non-linearities in the aggregation of local weather
shock impacts. This depends critically on variability in microeconomic impacts. Third,
I show that labor reallocation can moderate the aggregate impacts of weather shocks,
but again only if there is variability in microeconomic impacts. Using an empirical
setting of 14 sectors across counties spanning the continental United States from 2001
to 2017, I empirically constrain the economic importance of my theoretical findings. I
find that, given inherent variability in weather shocks and in the response of industries
to weather shocks, accounting for non-linearities in aggregation increase the aggregate
economic costs of weather impacts in the US economy by 33%. I find that free labor
reallocation reduces these aggregate impacts by 10%. Accounting for local variability
and non-linearities is not just theoretically relevant, its economically significant.
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1 Introduction

Weather is both local and variable. For a given day, a worker in Phoenix, AZ could experience

a hot and sunny 90◦F day while a worker in Boston, MA experiences a cold and rainy 45°F
day. The hot weather may affect the productivity of the worker in Phoenix, but it does not

directly affect the worker in Boston. Similarly, the cold and rainy weather may affect the

productivity of the worker in Boston, but it does not directly affect the worker in Pheonix.

Yet, as I argue in this paper, there can be indirect effects through networks in the larger

economy. Accounting for these network effects and how they interact with the inherent

variability of weather has important implications for aggregate climate impacts and for

climate policy.

To reflect this reality of the problem, I develop a general equilibrium model where weather

shocks are embedded in local production technology. The productivity of each producer in a

given region is a function of the weather in that region only. This means that the productivity

of producers in Phoenix is only a function of the weather in Phoenix, not Boston. Further,

the relationship between weather and production technology can vary across sectors. The

agricultural sector in Phoenix may respond differently to weather shocks than the finance

industry.

This model builds on recent advances in macroeconomic theory examining the role of

production networks (Acemoglu et al., 2012; Baqaee and Farhi, 2019; Blackburn and Moreno-

Cruz, 2021). In the presence of production networks, I demonstrate that local weather shocks

can both propagate – causing indirect impacts elsewhere in the economy – and amplify as

heterogeneous weather shocks interact. Leveraging the closed-form equilibrium of this model

and analyzing the aggregate impacts of microeconomic weather shock impacts, I draw several

important theoretical findings.

First, while the direct effects of weather shocks are defined to be local, I show that these

shocks can have indirect spillover effects throughout the economy in equilibrium. When a

weather shock decreases the productivity of an industry in one locale, this increases the

price of their output and lowers wages. This increase in prices is then, in turn, passed on to

consumers of their output as intermediate inputs in their production process. This process

propagates weather shock impacts through the economy. Overlooking these spillovers can

lead to imprecise partial equilibrium estimates of impacts and could bias empirical estimates

of the relationship between weather shocks and economic outcomes.

Second, I turn to the aggregate impact of microeconomic weather shock impacts through-

out an economy. I show that non-linearities in production from complementarities can in-

teract with heterogeneity in microeconomic impacts to affect aggregate impacts. When
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industries are complementary and weather shocks are heterogeneous, non-linearities amplify

negative weather shock impacts and dampen positive weather shock impacts.

Third, these non-linearities in production also provide a channel through which economic

systems can act as an adaptation mechanism. When microeconomic impacts of weather

shocks are heterogeneous across the economy, factors of production can reallocate across the

economy away from less productive producers towards more productive producers, moving

factor inputs to where they are most productive. When there are complementarities to

production, this reallocation amplifies positive weather shocks and dampens negative weather

shocks.

To examine the economic importance of these theoretical findings, I turn to an empirical

setting in the continental United States, considering 14 NAICS industry classifications across

all 3,080 counties from 2001 to 2017. To identify a relationship between weather shocks and

productivity, I use panel data fixed effects methods to estimate a non-linear relationship

between productivity growth and both temperature and precipitation. I flexibly allow for

the responses to vary across industry classifications and find evidence of heterogeneity across

industries in both the size and shape of these relationships.

I use these empirically estimated response functions to estimate the aggregate impacts of

microeconomic weather shock impacts across the economy over the sample period according

to my theoretical findings. In a naive estimate, I find that weather shock impacts have a

predominantly negative impact ranging up to an annual loss of 0.5% of GDP in a given

year and a cumulative loss over the sample period of around $350 billion. Decomposing

these aggregate impacts, I find evidence of considerable heterogeneity in both the sign and

magnitude of weather shock impacts across both industries and space.

Next, I examine whether this heterogeneity in microeconomic impacts interacts with

non-linearities in production to meaningfully affect aggregate impacts. Cumulative over the

sample period, I find that accounting for these non-linearities in accordance with my theoret-

ical findings raises aggregate losses by 33%. This indicates that accounting for non-linearities

at the microeconomic scale is economically important in the climate change problem. Fur-

ther, I find that allowing for factor reallocation recovers around 10% of these aggregate

losses. This provides evidence that adjustments in economic systems can be an important

adaptation mechanism.

This work contributes builds on a long literature on the aggregate impacts of microeco-

nomic fluctuations or growth accounting. Building on seminal works by the likes of Hulten

(1978) and Long and Plosser (1983), recent research has revisited the growth accounting

problem to highlight the importance of microeconomic structural characteristics. Gabaix

(2011) and Acemoglu et al. (2017) highlight the role of dispersion in the size of firms in
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generating macroeconomic fluctuations. Atalay (2017), Baqaee and Farhi (2019), and others

highlight the importance of production network characteristics. This paper contributes to

this literature by bringing its seminal models and insights to the climate change economics

problem. In particular, this paper shows how non-linearities in the climate change problem

can interact and amplify important non-linearities identified in the aggregation problem.

This paper also contributes to theoretical and empirical work in climate change eco-

nomics, analyzing the role of market-based adjustments as an adaptation mechanism. In-

sights about reallocation as an adaptation mechanism derived from this framework are con-

sistent with theoretical and empirical findings for trade following changes in agricultural

productivity (Costinot et al., 2016; Gouel and Laborde, 2021) and labor reallocation be-

tween agriculture and manufacturing due to changes in labor productivity (Colmer, 2018).

Closer to this paper is a concurrently growing literature on climate impacts in dynamic spa-

tial general equilibrium models. Rudik et al. (2021) and Cruz and Rossi-Hansberg (2021) use

these models to explore the role of market-based adaptation through trade and migration

in climate change impacts. These models require strict modeling assumptions to allow for

inversion of the model; the assumption of Cobb-Douglas production technologies is partic-

ularly relevant in this setting. This paper contributes to this literature by relaxing these

assumptions in a closed-form general equilibrium model, highlighting the importance of the

interaction between micro-level heterogeneity and non-Cobb-Douglas production technolo-

gies.

The insights drawn from this paper contribute to the empirical climate econometric liter-

ature. This literature has predominantly focused on distinctly microeconomic or macroeco-

nomic scales. For example, empirical microeconomic studies estimate the effect of weather on

productivity at the level of counties, firms, or even individuals (Deschênes and Greenstone,

2007; Schlenker and Roberts, 2009; Graff Zivin and Neidell, 2014; Burke and Emerick, 2016;

Colmer, 2018; Park et al., 2020). Alternatively, macroeconomic empirical studies estimate

response at the level of countries (Dell et al., 2012; Burke et al., 2015; Letta and Tol, 2019).

This paper provides both theoretical and empirical evidence emphasizing the importance

of using high-resolution data to capture the true underlying relationships and justification

for focusing on economic primitives to avoid bias from spillovers. Close to this, Damania

et al. (2020) shows that spatial aggregation can wash out important micro-level variation,

attenuating the effect of precipitation on growth.

The paper proceeds as follows. In Section 2 I present a general equilibrium theoretical

framework that introduces weather shocks through local labor productivity. In Section 3 I

provide a closed-form solution to the equilibrium of the model and describe how to construct

estimates of the macroeconomic impacts of weather shocks from microeconomic estimates
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and highlight the importance of heterogeneity. In Section 4 I describe the data in the empir-

ical application of the theoretical model and estimate the microeconomic response functions

between weather and growth. In Section 5 I apply the theoretical findings to construct

estimates of the aggregate impacts from microeconomic weather impacts. In Section 6, I

provide comparative analyses where I remove different sources of micro-level heterogeneity

to demonstrate their importance. In Section 7 I conclude.

2 Theoretical Framework

The model is a static general equilibrium model of an economy that follows the multi-sector

general equilibrium model of Long and Plosser (1983) and Acemoglu et al. (2012), augmented

to capture the regional aspects of production rather than just industry aggregates. The

economy is composed of two types of agents, a representative consumer and many producers.

The representative consumer consumes final goods to maximize their utility. Each producer

in the model represents an industry producing a region-specific good or service. Producers

combine labor inelastically supplied by the representative consumer and intermediate inputs

from other producers to minimize the cost of production. Output is either used by other

producers as intermediate inputs to their production or consumed by the representative

consumer.

I extend the model to incorporate local weather shocks. To capture the sources of het-

erogeneity found in empirical studies of climate impacts (Graff Zivin and Neidell, 2014; Park

et al., 2020), weather in a given region directly affects the labor productivity of industries

in that region. This means that a hot day in Phoenix, AZ will only directly affect labor

productivity in Phoenix. Industries within each region are also flexible in their response

to weather. The hot day in Phoenix could have a different effect on productivity in the

construction industry than in the finance industry.

2.1 Setup

2.1.1 Households

The preferences of the representative consumer are characterized as a constant elasticity of

substitution (CES) utility function U . Given income M received for inelastically supplied

labor, L̄, and prices, pir, the representative consumer chooses a consumption bundle cir of

final goods and services across industries i ∈ {1, ..., N} in regions r ∈ {1, ..., R} to maximize

utility. This constrained maximization problem is given as
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U(c11, ..., cNR) = max
c11,...,cNR

[ N∑
i=1

R∑
r=1

α
1
σ
irc

σ−1
σ

ir

] σ
σ−1

s.t. M =
N∑
i=1

R∑
r=1

pircir

(1)

where σ > 0 is the elasticity of substitution and αir represents the consumer’s taste for

region-specific goods and services.1

From the consumer’s utility maximization problem in Equation (1), I derive the con-

sumer’s demand for final goods from the first-order conditions.

cir = αir

(
pir
PC

)−σ
M

PC

(2)

PC represents the consumer price index, which I set as the numeraire, (Blackburn and

Moreno-Cruz, 2021; Lemoine, 2020).

PC =

( N∑
i=1

R∑
r=1

αirp
1−σ
ir

) 1
1−σ

= 1

2.1.2 Producers

Producers combine labor inputs and intermediate inputs according to a constant returns-to-

scale CES production technology.2. The production technology for the producer in industry

i and region r is given as

yir =

[
γ

1
σ
ir(Air(Wr)Lir)

σ−1
σ +

N∑
j=1

R∑
s=1

ω
1
σ
js,irx

σ−1
σ

js,ir

] σ
σ−1

(3)

σ is the elasticity of substitution. γir is the labor share parameter, Air(Wr) is labor produc-

tivity as a function of local weather, and Lir is labor input. ωjs,ir is the share parameter for

intermediate inputs from a producer in industry j and region s, and xjs,ir is the corresponding

quantity of intermediate inputs.3

1Note, the elasticity of substitution parameter σ is the same for both the consumer’s preferences and produc-
ers’ technologies. Follows Baqaee (2018) and Blackburn and Moreno-Cruz (2021), this assumption allows
a tractable closed-form solution. In reality, this elasticity parameter may differ between the consumer and
the producers, so I consider a range of elasticity parameters in my emprical analysis below.

2The assumption that producers within an industry but located in different regions produce distinct goods
or services is a common trade model assumption following Armington (1969).

3Note, we assume labor is the only primary factor of production and assume that weather shocks are
factor-augmenting productivity shocks. We focus on labor for consistency with our empirical analysis
below, but the model can be expanded to include other primary factor inputs without loss of generality, eg.
Blackburn and Moreno-Cruz (2021). Similarly, one can generalize the results of this model for Hicks-neutral
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Given their production technology, wages, and the prices of intermediate inputs, produc-

ers choose bundles of labor and intermediate inputs to minimize total costs. I consider both

the scenario of no labor reallocation and free labor reallocation. When labor reallocation

is constrained, a producer in industry i and region r faces wage rates wir. When labor

is free to reallocate across the economy, producers face a single economy-wide wage rate

wir = w. Prices of intermediate inputs are given as pir. The cost minimization problem for

each producer in industry i and region r is given as

min
Lir,xjsir

wLir +
N∑
j=1

R∑
s=1

pjsxjs,ir

s.t. yir =

[
γ

1
σ
ir(Air(Wr)Lir)

σ−1
σ +

N∑
j=1

R∑
s=1

ω
1
σ
jsirx

σ−1
σ

js,ir

] σ
σ−1

(4)

From the first-order conditions for the cost minimization problems given by Equation

(4), I derive the conditional intermediate input and labor demand.

xjs,ir = ωjsir

(
pjs
µir

)−σ

yir (5)

Lir =
γir

Air(Wr)1−σ

(
wir

µir

)−σ

yir (6)

Here µir is the marginal cost of the good produced by industry i in region r, which is given

as

µir =

[
γir

Air(Wr)1−σ
w1−σ +

N∑
j=1

R∑
s=1

ωjs,irp
1−σ
js

] 1
1−σ

(7)

3 General Equilibrium and Aggregate Impacts

3.1 Equilibrium

The general equilibrium of the competitive economy is a collection of prices, quantities,

labor, and wages such that the following four conditions are satisfied:

1. (Perfect Competition) Markets are perfectly competitive, so equilibrium prices

equal marginal costs, pir = µir ∀i ∈ {1, ..., N}, r ∈ {1, ..., R}.

productivity shocks. Baqaee and Farhi (2019) conceptualize this as a Hicks-neutral productivity shock to
an intermediate producer that only supplies labor. Hicks-neutral productivity shocks give an additional
amplification effect measured by the ratio of gross output relative to GDP.
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2. (Utility Maximization) The representative consumer chooses consumption cir to

solve the budget constrained utility maximization problem in Equation (1) given equi-

librium prices pir.

3. (Cost Minimization) Representative producers choose factor demands Lir and xjs,ir

to solve the cost minimization problem in Equation (4) subject to their production

technology given equilibrium prices pir and wages wir.

4. (Market Clearing)Markets for output of each region-sector pair and the labor market

clear. Output market clearing gives yir = cir +
N∑
j=1

R∑
s=1

xir,js. When there is no labor

reallocation, the labor market clearing condition is L̄ir = Lir ∀i ∈ {1, ..., N}, r ∈
{1, ..., R}. When there is free labor reallocation, the labor market clearing condition

is L̄ =
N∑
i=1

R∑
r=1

Lir.
4

Before providing a closed-form solution for the general equilibrium of the economy, I first

introduce a useful economic measure called the Leontief Inverse matrix. In matrix form, it

is denoted as

L = [I−Ω]−1 (8)

where I is the identity matrix and Ω, known as the direct requirements matrix, is a matrix

composed of the intermediate input share parameters ωjs,ir. Elements Ljs,ir of the Leontief

Inverse measure the quantity of intermediate inputs required, both directly and indirectly,

from each producer j in region s for producer i in region r to produce a unit of output.

I also define a productivity adjusted labor share parameter as γ∗
ir(Wr) = γirAir(Wr)

σ−1.

Scaling the labor share term by productivity, the adjusted labor share parameter measures

effective labor share in production rather than the physical units of labor input. Because

labor productivity is a function of a producer’s local weather, so is their effective labor share.

Proposition 1. Economy Equilibrium Applying the four conditions of a general equi-

librium, I characterize a closed-form solution of the equilibrium prices, sales, and wages as

follows.

1. Equilibrium prices of output5

P1−σ = L′(γ∗(W)⊙w1−σ) (9)

4Throughout I use free labor reallocation and no labor reallocation as extreme cases of costless labor reallo-
cation across regions and industries and infinitely costly labor reallocation, respectively.

5The exponents here signify element-wise exponentiation. The symbol ⊙ signifies the Hadamard product or
element-wise multiplication of the vectors.
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2. Equilibrium sales

Pσ ⊙Y = LαM (10)

3. Equilibrium wages

wir =


((

Lα
)′
γ∗(W)

) 1
σ−1

, if free labor reallocation(
γ∗
ir(Wr)L

−1
ir p

σ
iryir

) 1
σ
, if no labor reallocation

(11)

Equilibrium prices in Equation (9) relate the prices of output to their net consumption

of factor demand, labor in this case, times factor prices, here wages. The net consumption of

labor input accounts for both direct and indirect use of labor input embedded in intermediate

inputs to production. This relationship highlights the role of input-output networks and

substitutability in equilibrium outcomes. When goods are substitutes, σ > 1, producers that

are more central in the input-output network have lower prices. Here, a more central producer

is a larger net consumer of factor inputs. Alternatively, when goods are complements, σ < 1,

producers that are more central in the input-output network have higher prices. Consider

a shock to wages. When goods are complements, producers that are more central in the

network are more exposed to that shock because its effect amplifies as it passes through

the input-output network. Alternatively, if goods are substitutes, producers that are more

central in the network are less exposed to the shock because its effect dampens as it passes

through the input-output network.

Similarly, Equation (10) relates sales to total income in the economy and consumption

shares of output, both direct and indirect. This relationship indicates that producers that

more central in the input-output network–here central in that they are larger net suppliers

of output–will have higher sales. This follows intuitively. If a producer is an important

supplier, both directly through final sales to the consumer and indirectly through supplying

intermediate inputs to other producers, they receive a larger share of the total income in the

economy.

Finally, Equation (11) relates wages to labor demand, both with free labor reallocation

and with no labor reallocation. When there is free labor reallocation, there is a single

economy-wide wage rate. When there is no labor reallocation, each producer representing

an industry in a region faces a distinct wage rate. As with the price of output, wages depend

on the net demand for labor and the elasticity of substitution parameter.

Though the direct effects of weather were defined to be strictly local, a quick glance at

these equilibrium characterizations indicates that these direct effects can propagate through

the input-output networks in the economy, creating far-reaching impacts. Let’s consider this
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in more detail.

3.2 Comparative Statics

Given the closed-form characterization of the equilibrium, how do weather shocks impact

equilibrium prices and quantities? Let’s consider an idiosyncratic weather shock to a pro-

ducer in industry i and region r in a comparative statics analysis. Assume there is no direct

effect from the weather shock for any other producers to clarify underlying mechanisms. I

separately consider the net effect for the producer in industry i and region r, which I term

the own effect, and the net effect for other producers in industries j across regions s, which

I term the indirect effect. I also separately consider the scenarios of free labor reallocation

and no labor reallocation.

Proposition 2. Comparative Statics (Own Effects) The quasi-elasticities of wages,

labor input, and sales for a producer in industry i and region r with respect to an idiosyncratic

weather shock are given as

1. Sales effect
∂ log(pσiryir)

∂Wr

= λir
∂ log(Air(Wr))

∂Wr

(12)

2. Wage effect

∂ log(wir)

∂Wr

=


λir

∂ log(Air(Wr))
∂Wr

, if free labor reallocation(
(σ−1)

σ
+ λir

σ

)
∂ log(Air(Wr))

∂Wr
, if no labor reallocation

(13)

3. Labor effect

∂ log(Lir)

∂Wr

=

(σ − 1)(1− λir)
∂ log(Air(Wr))

∂Wr
, if free labor reallocation

0, if no labor reallocation
(14)

where λir = wirLir∑
j

∑
s
wjsLjs

is the share of value-added for producer i in region r relative to the

GDP of the economy.

TheOwn Sales Effect is the marginal change in sales for a producer due to a weather shock

to that producer. Weather does not affect the underlying production network structure,

captured by the Leontief-Inverse matrix L or on consumer’s tastes α. Thus, from Equation

10, weather can only affect sales through changes to aggregate income. Independent of
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assumptions about labor reallocation, this aggregate income effect is always given as the size

of the shocked producer times their sensitivity to the weather shock.

The Own Wage Effect captures how the wage rate faced by the producer responds to a

weather shock to that producer. When there is no labor reallocation, this effect is the same

for all producers because there is a single wage rate. In this case, the Own Wage Effect is

the same as the Own Sales Effect and captures the change in income from the change in

productivity for the affected sector. When there is no labor reallocation, the Own Wage

Effect also depends on the elasticity of substitution.

The Own Labor Effect only exists when labor is allowed to reallocate. It captures how

a producer’s labor input responds to a weather shock to that producer. The sign and

magnitude of this effect depends on the economic size of the producer and the elasticity

of substitution. When goods are substitutes (σ > 1), labor input increases for a positive

weather shock, as consumption substitutes towards the more relatively productive producer.

When goods are complements (σ < 1), labor reallocates away from the producer to increase

complementary production.

Now let’s consider the indirect effects. These effects capture the change in equilibrium

prices and quantities for producers that are not directly affected by the idiosyncratic weather

shock.

Proposition 3. Comparative Statics (Indirect Effects) The quasi-elasticities of wages,

labor input, and sales for a producer in industry j and region s with respect to an idiosyncratic

weather shock to a producer in industry i and region r where i, r ̸= j, s are given as

1. Sales effect
∂ log(pσjsyjs)

∂Wr

= λir
∂ log(Air(Wr))

∂Wr

(15)

2. Wage effect

∂ log(wjs)

∂Wr

=

λir
∂ log(Air(Wr))

∂Wr
, if free labor reallocation

λir

σ
∂ log(Air(Wr))

∂Wr
, if no labor reallocation

(16)

3. Labor effect

∂ log(Ljs)

∂Wr

=

−λir(σ − 1)∂ log(Air(Wr))
∂Wr

, if free labor reallocation

0, if no labor reallocation
(17)

The Indirect Sales Effect and the Indirect Wage Effect with no labor reallocation are

identical to the Own Effect counterparts. This is because both effects reduce to an income
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effect, which holds independent of the producer when there is one wage rate. Alternatively,

when labor is free to reallocate, the Indirect Wage Effect again depends on the size of the

producer directly affected by the idiosyncratic weather shock and the elasticity of substi-

tution. When goods are substitutes, σ > 1, the Indirect Wage Effect is smaller without

labor reallocation. When goods are complements, σ < 1, the Indirect Wage Effect is larger

without reallocation.

The Indirect Labor Effect characterizes the change in labor inputs for a producer not

directly affected by the weather shock. The sign and magnitude of this effect depends on the

size of the producer and the elasticity of substitution. When goods are substitutes (σ > 1),

labor input decreases for a positive weather shock as consumption substitutes towards the

relatively more productive producer. When goods are complements (σ < 1), a positive

weather shock to producer i in region r leads to labor reallocation towards producer j in

region s to increase complementary production.

The existence of these indirect effects provides an important insight for econometric

estimates of climate impacts and the projection of regional climate impacts. Specifically,

Proposition 3 indicates that local weather shocks can have indirect spillover effects on other

producers in an economy. Without this theoretical underpinning, previous reduced-form

empirical studies provide evidence supporting the economic importance of this finding. For

example, Jones and Olken (2010) find empirical evidence that higher temperatures negatively

impact the growth of trade exports in poorer countries. With firm-level data, Boehm et al.

(2018) find empirical evidence that the Tohoku Earthquake in 2011 negatively impacted

Japanese firms and that these shocks propagated to negatively impact firms that relied on

imported inputs from these Japanese firms. This result indicates that econometric analyses

that use economic outcomes, such as GDP, as the dependent variable but do not control for

these potential spillover channels may result in biased estimates. This bias can be corrected

for by either explicitly incorporating spillover channels in the estimating equation or by

focusing on economic primitives, such as productivity, rather than equilibrium outcomes. I

do the latter in the empirical analysis below. Additionally, when applying empirical estimates

to project or estimate the regional impacts of climate, one needs to account for propagation

through these spillover channels.

3.3 Aggregate Impacts

Equipped with an equilibrium solution and comparative statics for weather shock impacts,

let’s now turn to how local weather shocks aggregate to generate macroeconomic impacts in

equilibrium. Let Y be the aggregate output of the economy. Again consider an idiosyncratic
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weather shock to a producer in industry i and region r, assuming no direct affect to other

producers in the economy. I first characterize the impact of this weather shock on aggregate

output to a first-order approximation.

Proposition 4. First-order aggregate impact of idiosyncratic weather shock To a

first-order, the aggregate impact of a weather shock directly to a producer in industry i and

region r is given by
d logY
dWr

= λir

d log
(
Air(Wr)

)
dWr

(18)

To a first-order, the aggregate impact of a weather shock directly to a producer in industry

i and region r is governed by two factors. The first is the economic size of the producer

subjected to the weather shock, given as the ratio of their value-added to the GDP of the

economy. The second is the marginal effect of the weather shock on the producer’s labor

productivity. For a given shock to productivity, a larger producer will have a larger impact

on the aggregate output of the economy. And, for a given producer size, a producer that is

more sensitive to weather shocks will have a larger impact on aggregate output. This result

is consistent with Hulten’s Theorem (Hulten, 1978) and holds for any factor augmenting

productivity shock in a competitive economy, independent of production technology (Baqaee

and Farhi, 2019).

The intuition behind this result is as follows. The aggregate output of the economy is

equal to the aggregate income of the economy, which in this model only comes from the labor

supplied times the corresponding wage rates. Labor is inelastically supplied, so there is no

change in the total quantity of labor across the economy. Thus, the impact of an idiosyncratic

weather shock on aggregate output, to a first-order, only comes from the aggregate effect on

wages, as captured in Equation (13). This result is independent of the ability of labor to

reallocate.

Equation (18) characterizes the aggregation equation typical used in empirically-based

projections of climate impacts. For example, to project climate change damages in terms

of gross world product, Burke et al. (2015) and Burke et al. (2018) aggregate country-

level climate damages weighted by their share of gross world product. When production is

log-linear, i.e. Cobb-Douglas, Proposition 4 exactly holds. But, for non-linear production

technologies, production networks introduce non-linearities in aggregate impacts (Baqaee and

Farhi, 2019). I characterize these non-linearities by considering the second-order terms in an

approximation of the aggregate impact weather shocks. First, again consider an idiosyncratic

weather shock that only directly affects a producer in industry i and region r.

Proposition 5. Second-order aggregate impact of an idiosyncratic weather shock.

The second-order aggregate impact of a weather shock directly to producer i in region r is
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given by

d2 logY
dW 2

r

=
dλir

dWr

d log
(
Air(Wr)

)
dWr

+ λir

d2 log
(
Air(Wr)

)
dW 2

r

=


λir(1− λir)(σ − 1)

(
d log

(
Air(Wr)

)
dWr

)2

+ λir
d2 log

(
Air(Wr)

)
dW 2

r
, if free labor reallocation

λir(1− λir)(1− 1
σ
)

(
d log

(
Air(Wr)

)
dWr

)2

+ λir
d2 log

(
Air(Wr)

)
dW 2

r
, if no labor reallocation

(19)

The second-order term for the aggregate impact of an idiosyncratic weather shock to a

producer in industry i and region r is composed of two components. The first component,

given by the first term on the right-hand side of Equation (19), captures economic produc-

tion non-linearities. When a weather shock impacts the producer’s productivity, it changes

the value-added share of the producer. In turn, this changes the aggregate impact of the

weather shock.6 The second component, given by the second term on the right-hand side

of Equation (19), captures non-linearities in the marginal effect of the weather shock on

productivity. When the marginal effect of a weather shock is constant, this term is zero.

However, considerable empirical evidence, including in the empirical analysis below, suggests

that weather shock impacts exhibit strong non-linearities.

I further break down the first term on the right-hand side of Equation (19), which captures

economic production non-linearities. This non-linearity is characterized by the value-added

share of the affected producer, the elasticity of substitution, and the marginal effect of the

weather shock on labor productivity. The value-added share, λir, is always less than one, so

the sign of this second-order term depends on the elasticity of substitution. I illustrate this

dependence in Figure 1.

When σ = 1, i.e. Cobb-Douglas production technology, value-added shares in the econ-

omy are constant, and this term is equal to zero. As a result, aggregate output is linear

in the size of the resulting productivity shock. When goods are substitutes, σ > 1, this

term is positive. Thus, the aggregate impact of a weather shock is convex in the size of the

resulting productivity shock. When goods are substitutes, intermediate inputs are reallo-

cated and sourced from more productive producers. Thus, for a positive productivity shock,

there will be a substitution towards the affected producer. This amplifies the aggregate

6With continuous observations of weather and economic production one could integrate the impacts of
weather shocks over time (See footnote 45 of Baqaee and Farhi (2019) for more on this). This would negate
the need for these higher-order terms beyond eliciting economic intuition. However, even if weather data
can be gathered at the temporal resolution of days or even hours, economic data is typically measured in
years or, at best, months. Thus, we use this approximation approach to empirically estimate weather shock
impacts in the empirical analysis below.
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d log
(
Air(Wr)

)
dWr

dY

σ = 1

σ > 1, FL
σ > 1, NL

σ < 1, FL

σ < 1, NL

Figure 1: Aggregate effect of idiosyncratic shock for different elasticities of substitution
and labor reallocation assumptions. FL indicates free labor reallocation. NL indicates no
labor reallocation

impact of their positive productivity shock. For a negative productivity shock, there will

be substitution away from the affected producer. This dampens the aggregate impact of

their negative productivity shock. The same intuition holds for labor reallocation. When

labor is free to reallocate, this increases the convexity. Given a positive productivity shock,

the affected producer can increase their labor input. This further amplifies their aggregate

impact. The opposite holds for a negative productivity shock. Alternatively, when goods are

complements, σ < 1 the term is negative. Thus, the aggregate impact of a weather shock is

concave in the size of the resulting productivity shock. The aggregate impact of a positive

productivity shock will be dampened and a negative productivity shock will be amplified.

The ability of labor to freely reallocate moderates this concavity.

A second-order approximation of the aggregate impact of weather shock also includes

the interaction of weather shocks to producers throughout the economy in cross-effect terms.

Consider the cross-effect of simultaneous shocks that directly affect a producer in industry i

and region r and another distinct producer in industry j and region s.

Proposition 6. Second-order effect of correlated shocks. The second-order aggregate

impact of simultaneous weather shocks to a producer in industry i and region r and a producer
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in industry j and region s where i, r ̸= j, s is given by

d2 logY
dWrdWs

=
dλir

dWs

d log
(
Air(Wr)

)
dWr

+ λir

d2 log
(
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)
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−λirλjs(σ − 1)
d log
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Ajs(Ws)

)
dWs

d log
(
Air(Wr)

)
dWr

, if free labor reallocation

−λirλjs(1− 1
σ
)
d log

(
Ajs(Ws)

)
dWs

d log
(
Air(Wr)

)
dWr

, if no labor reallocation

(20)

The second-order term for the aggregate impact of simultaneous weather shocks is again

composed of two components. The first component, given by the first term on the right-

hand side of Equation (20), captures economic production non-linearities. When a producer

in industry i and region r experiences a weather shock that changes their productivity, it

affects their value-added share and the value-added share of each other producer. Thus, a

weather shock to a producer in industry i and region r will, in turn, affect the aggregate

impact of simultaneous shock to a different producer in industry j and region s. The second

component, given by the second term on the right-hand side of Equation (20), captures non-

linearities in the marginal effect of weather shocks. This latter component is zero because,

by definition, weather shocks are local to the producers.

I further break down the first term on the right-hand side of Equation (20), which captures

economic production non-linearities. This non-linearity is characterized by the value-added

shares of both producers, the elasticity of substitution, and the marginal effect of weather

shocks to both producers. When production is log-linear, σ = 1, this cross-term is zero

because value-added shares are constant. When goods are substitutes, σ > 1, this cross-

term is negative. A weather shock that positively affects the productivity of a producer in

industry i and region r causes substitution away from other producers in industries j across

regions s. This dampens the aggregate impact of weather shocks to those other producers.

When labor is free to reallocate, the aggregate impact of weather shocks to those other

producers is dampened even further. When goods are complements, σ < 1, this cross-

term is positive. A weather shock that positively affects the productivity of a producer in

industry i and region r amplifies the aggregate impact of weather shocks to other producers

in industries j across regions s. When labor is free to reallocate, the aggregate impact of

weather shocks to those other producers is amplified even further.

These second-order terms highlight the role of non-linearities in production and weather

shocks in generating non-linearities in aggregate impacts. But heterogeneity in the effect of

weather shocks across the economy is also critical to these non-linearities. To see this, let’s

compare the first term on the right-hand side of Proposition 5 and the first term on the

right-hand side of Proposition 6.
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Corollary 1. Heterogeneity and non-linearities in aggregate impacts. When all the

producers in an economy experience an identical change in productivity from weather shocks,

such that
d log

(
Air(Wr)

)
dWr

=
d log

(
Ajs(Ws)

)
dWs

∀i, j ∈ {1, ..., N} and ∀r, s ∈ {1, ..., R}, the sum of

the second-order aggregate impacts of weather shocks reduces to sum of non-linearities in the

marginal effects of the weather shocks.

From Corollary 1, non-linearities in aggregate impacts due to non-linearities in economic

production only exist when there is variation in the marginal effect of weather shocks on

producers’ productivity throughout the economy. These non-linearities, represented by the

first term on the right-hand side of Equations (19) and (20) come from changes in value-added

shares. When all producers in the economy experience an identical change in productivity,

value-added shares remain constant. So, without heterogeneity, these non-linearities vanish.

All that remains are non-linearities in the marginal effects of weather shocks.

Corollary 2. Heterogeneity and labor reallocation. When all the producers in an econ-

omy experience an identical change in productivity from weather shocks, such that
d log

(
Air(Wr)

)
dWr

=

d log
(
Ajs(Ws)

)
dWs

∀i, j ∈ {1, ..., N} and ∀r, s ∈ {1, ..., R}, the ability of labor to reallocate has no

effect on aggregate impacts.

Heterogeneity is similarly critical for the effect on labor reallocation on aggregate impacts

of weather shocks across the economy. When weather shocks have a homogeneous effect on

producers’ productivity throughout the economy, there is no reallocation of factor inputs.

Labor inputs remain constant.

Corollaries 1 and 2 show that heterogeneity in weather shocks at a local level can matter

for the aggregate impact of these weather shocks. Empirical studies that ignore this het-

erogeneity may over- or under-estimate the aggregate impacts of weather shocks or climate.

While this heterogeneity matters in theory, does it matter in practice? In the following

sections, I turn to an empirical setting to empirically constrain the economic importance of

accounting for variability in the local effect of weather shocks.

Combining the first-order and second-order terms, I characterize the aggregate impact of

micro-level weather shocks throughout an economy as,7

∆ logY =
∑
i,r

d logY
dWr

∆Wr +
∑
i,r

1

2

d2 logY
dW 2

r

∆W 2
r +

∑
i,r

∑
j,s̸=i,r

1

2

d2 logY
dWrdWs

∆Wr∆Ws (21)

7Here I use
∑
i,r

and
∑
j,s

as a short hands for the joint summations
N∑
i=1

R∑
r=1

and
N∑
j=1

R∑
s=1

, respectively.
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Equation (21) provides a tractable approach to linking the microeconomic impacts of

weather shocks in an economy and their aggregate macroeconomic impact. Specifically,

estimating this equation requires the following: a measure of the economic size of producers,

represented by their value-added share in the economy, a characterization of the response

of labor productivity to weather shocks, and data on the size of weather shocks. The first

and third can be observed and measured with available data. While the second cannot be

directly observed, it can be empirically estimated with econometric methods.

4 Empirical Context

Equipped with the theoretical findings of the previous section, I now turn to an empirical

setting in the United States. In this section, I describe the data and empirically estimate the

relationship between labor productivity and weather shocks at the finest resolution possible

with publicly available data following insights from the previous section. In the next section,

I apply the theoretical findings of the previous section to construct estimates of the aggregate

impacts of weather shocks across the US economy according to Equation (21). I use these

estimates to explore the economic importance of accounting for variability in weather and

non-linearities in economic production.

4.1 Data

Estimating the macroeconomic impact of micro-level weather shocks requires the following:

a measure of the economic size of producers, represented by their value-added share in the

economy, a characterization of the response of labor productivity to weather shocks, and

data on the size of weather shocks.

4.1.1 Economic Data

Economic data for my empirical analysis comes from publicly available data provided by

the Bureau of Economic Analysis (BEA). I gather economic data for 14 2-digit NAICS

industry classifications across all 3,080 counties in the contiguous United States from 2001

to 2017.8 The BEA censors select observations at this resolution to mitigate concerns about

identification and privacy. Censored observations are predominantly small county-industry

pairs, and the total economic size of censored observations comprises only around 2% of

8Data was retrieved from https://apps.bea.gov/regional/downloadzip.cfm. I drop the government sector
because it is not a profit-maximizing sector, and thus is inconsistent my theoretical model. There is
empirical evidence that weather and climate shocks, such as hurricanes, can exert budgetary pressure on
local governments, particularly in minority communities Jerch et al. (2020).
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aggregate GDP in any given year. Thus, dropping these censored observations will not

change the estimate of aggregate impacts by much. Also, data is likely censored on economic

size, e.g. value-added, so there is little concern for selection bias in empirical estimates of

the effect of weather shocks on labor productivity growth.

For the analysis, I measure the value-added share of industry-county pairs using data on

real GDP in chained 2012 US dollars. Figure 2(a) displays the largest industry classification

for each county in 2001, measured by value-added. This figure highlights the heterogeneity

in industrial composition across counties. There are no publicly available data on labor

productivity or labor productivity growth at the county-by-industry resolution. Thus, I

use publicly available data from the BEA to construct a measure of labor productivity

growth at this resolution. Details of how I construct this measure are in Appendix B. When

constructing this labor productivity growth measure, and in the analyses below, I assume an

elasticity of substitution of σ = 0.5. This assumption follows empirical evidence from Atalay

(2017) and Boehm et al. (2018). In Appendix C, I present empirical results for alternative

values for the elasticity of substitution. Appendix B also provides more descriptive statistics

for the economic data.

4.1.2 Weather Data

Following previous empirical studies, I capture weather using measures of surface temper-

ature and precipitation. I measure these using data from Schlenker (2020)9 and is based

on the PRISM climate dataset. The data consists of gridded minimum and maximum tem-

perature and cumulative precipitation at a 2.5 mile by 2.5 mile spatial resolution. The

gridded dataset is constructed by interpolating weather station observation data. Weather

station observation data often contain missing observations. These missing observations can

bias econometric estimates if there is a correlation between the reason for missing data,

such as financial constraints or political events, and the outcomes of interest (Auffhammer

et al., 2013). To mitigate concerns of bias from missing station data, the gridded dataset is

constructed using a constant set of stations over the time horizon.

To match the weather data with the economic data, I construct annual measures of

temperature and precipitation at the county level. I first calculate polynomials of daily tem-

perature and daily precipitation at the grid-cell level. Daily temperature is the simple mean

of daily maximum and daily minimum temperature, and daily precipitation is cumulative

precipitation. I calculate polynomials at the grid-cell level to avoid averaging out extremes.

These polynomials are then spatially aggregated to the county level by taking the population-

weighted mean across grid-cells within counties. Population weights are population density

9Data is publicly available at http://www.columbia.edu/ ws2162/links.html
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in 2000 using data from the Gridded Population of the World, v3 (Center for International

Earth Science Information Network, 2005). Finally, I sum the county level polynomials of

daily temperature and precipitation for each year.

(a) Largest industry by county. (b) Change in temperature.
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Figure 2: Descriptive Statistics. The largest industry for each county is defined as the
industry with the largest value-added share in the county. Change in average temperature
in Panel (b) is defined in the difference between annual average daily temperature in 2017
and annual average daily temperature in 2001. Average temperature in Panel (c) is defined
as annual average daily temperatures. Precipitation in Panel (d) is defined as cumulative
annual precipitation.

Panels (c) and (d) of Figure 2 display the distribution of annual average daily tem-

perature and annual precipitation observations across the sample time period and across

US counties. These are approximately normally distributed and highlight the variability of

weather across both space and time. Figure 2(b) displays the change in annual average

daily temperature for each county over the sample period. On average, temperature rises

by about 0.1◦C over the sample period, but Figure 2(b) again highlights the variation in
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temperature change across space. Appendix B provides additional descriptive statistics of

the weather data.

4.2 Empirical Estimate of Microeconomic Response Functions

To estimate the aggregate impact of micro-level weather shocks, I need data on the re-

lationship between weather shocks and labor productivity growth. Since this relationship

cannot be directly observed, I use panel data fixed effects methods to empirically estimate

the response function (Dell et al., 2014). Specifically, I consider the following estimating

equation,

∆ log(Aict) = fi(Tct) + gi(Pct) + αic + αst + ϵict (22)

where i denotes industry, c denotes county, s denotes state, and t denotes year. Thus,

∆ log(Aict) is the growth in labor productivity for industry i in county c in year t. We

explain this growth as a function of a vector of temperature measures Tct and a vector

precipitation measures Pct controlling for industry-by-county fixed effects αic and state-

by-year fixed effects αst. After controlling for these fixed effects, the identifying variation

comes from variations in temperature and precipitation over time within counties. I cluster

standard errors by state and industry to control for potential correlation in error structure.

The response functions fi(Tct) and gi(Pct) capture the relationship between labor produc-

tivity growth and temperature and precipitation. I denote these functions with the subscript

i because they may vary across industries. To date, there has been no evidence favoring a

specific functional form for this relationship, but there is considerable empirical evidence that

this relationship is non-linear, eg. Schlenker and Roberts (2009) and Burke et al. (2015).

Thus, I consider Tct as a third-order polynomial of daily average temperatures and Pct as a

second-order polynomial of daily precipitation, each summed annually. fi(Tct) and gi(Pct)

are then linear combinations of non-linear measures of temperature and precipitation. This

permits the estimation of a linear regression model.

I first estimate a pooled response function across industries. This constrains all industries

to have a uniform relationship between labor productivity and temperature and precipita-

tion. Figure 3 plots the estimated relationship between temperature and labor productivity

growth. Consistent with previous empirical estimates of the relationship between tempera-

ture and economic productivity or output, I find evidence of a non-linear inverted U-shaped

relationship. I find a peak growth temperature of around 15◦C, which is also consistent with

previous evidence. This inverted U-shaped relationship indicates that for industries in colder

counties, i.e. those with temperatures below 15◦C, labor productivity growth increases when
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temperatures rise. For industries in warmer counties, i.e. those with temperatures above

15◦C, labor productivity growth decreases when temperatures rise.
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Figure 3: Microeconomic Temperature Response Functions. Empirically estimated
marginal labor productivity growth-temperature response functions for pooled response and
industry-specific response. Marginal effects plotted relative to the peak growth temperature
in the pooled estimate, around 15◦C. Lines represent mean estimates and blue fill represents
90% confidence interval using clustered standard errors.

Previous empirical estimates at higher levels of aggregation, such Dell et al. (2012) and

Burke et al. (2015) at the country level, do not find evidence of a statistically significant
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effect of precipiation on economic outcomes. However, at a higher spatial resolution, I find

that precipitation has a statistically significant affect on labor productivity growth. This is

shown for the pooled response and for select industries in Figure 9 in Appendix C. Finding

a statistically significant effect of precipitation at a higher spatial resolution is consistent

with Damania et al. (2020). They show that spatial aggregation can wash out variation

in precipitation that is important for identification and masks the impact of precipitation

on economic growth. This provides another argument for conducting empirical analyses of

climate impacts at a higher level of resolution.

Next, I relax the constraint that all industries have a uniform relationship between pro-

ductivity growth and temperature and precipitation by allowing for distinct responses for

each industry classification. I do this by interacting an industry classification dummy vari-

able with the polynomials of temperature and precipitation. If the responses across industries

are truly uniform, I should recover a similar relationship for each industry, which should also

look like the pooled response function.

Figure 3 displays the estimated relationship between labor productivity growth and tem-

perature for each industry classification. It is clear that the response is not uniform, rather

there is substantial heterogeneity in response function across industries in both the shape

of the response and the magnitude of the response. Most industries share the commonly

documented inverted U-shape relationship but vary in the intensity of the marginal effect.

However, I find that the relationship takes a completely different shape for some industries.

For example, the relationship between temperature and growth for the Manufacturing and

Wholesale Trade sectors form a U-shape, rather than an inverted U-shape. It is not obvious

why the shapes take the different forms that they do. One could speculate, but a more

detailed analysis to explain these relationships is beyond the scope of this paper and is left

as an important area for future work.

5 Aggregate Impacts

I now have the data needed to estimate the aggregate economic impact of weather shocks

across the US economy according to Equation 21. To explore the economic importance of

the interaction of local weather variability and non-linearities in aggregation as exemplified

in Corollary 1, I first approximate aggregate impacts to a first-order and then consider

second-order terms.
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5.1 First-order Impacts

Proposition 4 says that a first-order approximation of the aggregate impact of weather shocks

is equal to the weighted sum of microeconomic impacts where the weights are the value-added

shares of producers. I accordingly aggregate local weather shock impacts across county-

industry pairs and sample years using the empirically estimated microeconomic response

functions from Section 4. Growth impacts are converted into level impacts by multiplying

by aggregate GDP in the previous period. This gives

∆GDPt = GDPt−1

N∑
i=1

R∑
c=1

λict
d logAic(Wc)

dWc

∆Wc (23)

I measure a discrete analog of the impact of climate changes on labor productivity growth

relative to 2001 using the estimates from Equation (22).

d logAic(Wc)

dWc

∆Wc = (fi(Tct) + gi(Pct))− (fi(Tc,2001) + gi(Pc,2001)) (24)

Thus, my estimates capture the impacts of changes in weather relative to 2001, not the total

level impacts of weather shocks.

−100

−50

0

50

2003 2005 2007 2009 2011 2013 2015 2017
Year

∆G
D

P
 (

B
ill

io
n 

U
S

$2
01

2)

Figure 4: First-order Estimate of Aggregate Impacts. First-order approximation of
the aggregate impacts of weather shocks across county-industry producers. Weather shocks
are defined as changes in temperature and precipitation from their 2001 levels.
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Figure (4) shows estimates of a first-order approximation of the macroeconomic impacts

for each year from 2003 to 2017. The aggregate impacts are predominately negative but vary

in sign and magnitude across the sample years. The largest absolute impact is an aggregate

loss of around 0.5% of GDP in 2011. While aggregate impacts are negative in most years, I

find that weather shocks increase aggregate output in the years 2012, 2014, and 2017. The

cumulative macroeconomic impact over the sample period is an aggregate loss of $350 billion.
I deconstruct these first-order macroeconomic impact estimates into their underlying con-

tributions across industries and space. Aggregate industry-level contributions are calculated

as the aggregate productivity impacts across counties within each industry weighted by the

value-added share of each county. Similarly, aggregate county-level contributions are calcu-

lated as the aggregate productivity impacts across industries within each county weighted by

the value-added share of each industry. Finally, county-by-industry contributions are simply

the value-added share weighted productivity impact for each respective county-industry pair.

Note, these contributions reflect how productivity shocks at each scale impact the aggregate

economy. They do not necessarily reflect the net outcome for the industry, county, or county-

industry pair. To estimate the net outcomes for each industry, county, or county-industry

pair, I would have to account for spillovers, as captured in Proposition 3.

Figures 5(a) and (b) display contributions to the macroeconomic impacts in each year

by industry and county, respectively. Counties are sorted by their frequency of statistically

significant contributions. Figure 5(c) displays the contributions of county-industry pairs to

aggregate impacts in the year 2012. I display estimates for 2012 because the estimated

aggregate impacts in this year are the closest to zero of all the sample years. I show the

results for other years in Appendix C. I calculate statistical significance of contributions to

aggregate economic growth at the 95% confidence level using the variance-covariance matrix

recovered from empirical estimates of the microeconomic response functions from Section 4.

Immediately clear is the considerable heterogeneity in contributions across both space and

industry. Within a given year, there are positive and negative contributions from different

counties and industries. And within a given county or industry, there is variation in their

contributions to aggregate impacts across years. The former is due to heterogeneity in both

weather shocks and response to weather shocks across industries and counties. The latter

is solely due to heterogeneity in weather shocks over time since response functions are held

constant.

The heterogeneity in contributions and the frequency of statistically significant contri-

butions grows with higher resolution. For example, consider impacts in the year 2012. I

estimate that the aggregate impact of weather shocks in 2012 is relatively close to $0. Yet,
Figure 5(c) shows that the microeconomic impacts are far from zero. The contributions
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from county-industries are highly varied, and many are statistically significant.

(a) Industry-level Contributions. (b) County-level Contributions.

(c) County-Industry-level Contributions in 2012.

Figure 5: Contributions to First-Order Estimate of Aggregate Impacts. Decom-
position of the underlying contributions to the first-order estimate of aggregate impacts of
weather shocks. Weather shocks are defined as changes in temperature and precipitation
variables relative to their 2001 levels. Darker shadings represent positive and negative con-
tributions that are statistically significant at a 95% confidence level.

There are two important implications from the underlying heterogeneity in the microeco-

nomic impacts of weather shocks and their contribution to aggregate impacts. First, aggre-

gating across this competing variation reduces the first-order aggregate impacts of weather

shocks. When weather shocks to some spur aggregate growth while shocks to others slow

aggregate growth, they, at least partially, negate the contributions of one another. This

washout effect is exemplified well in the estimates for 2012. Second, this heterogeneity in

microeconomic impacts could matter for aggregate impacts. Corollaries 1 and 2 show that

non-linearities in aggregate impacts depend on heterogeneity in the microeconomic impact of

local weather shocks. Thus, I next estimate the second-order aggregate impacts of weather

shocks to determine their economic importance.
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5.2 Second-order Impacts

I estimate the aggregate impact of weather shocks according to Equation 21, applying Propo-

sitions 5 and 6, which describe the second-order effect of idiosyncratic and correlated shocks,

respectively. From these propositions, I find that the ability of labor to reallocate across

industries and space can have an effect on aggregate impacts. I begin by assuming that

there is no labor reallocation. Below I explore relaxing that assumption.

Figure 6 displays the aggregate economic impact of microeconomic weather shocks esti-

mated up to a second-order assuming no labor reallocation. Like the first-order approxima-

tion, I find variations in the size of the aggregate impacts across the sample years. However,

unlike the first-order approximation, I find that the second-order aggregate impacts are con-

sistently negative across each sample year except 2017. The aggregate losses (gain) in each

year are larger (smaller) in the second-order approximation than in the first-order approxi-

mation. This result is consistent with the theoretical finding that complementarities dampen

positive shocks and amplify negative shocks, as illustrated in Figure 1.
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Figure 6: First-order and Second-order Estimates of Aggregate Impacts. Ap-
proximation of the aggregate impacts of weather shocks across county-industry producers
up to a first- and second-order. Weather shocks are defined as changes in temperature and
precipitation measures from their 2001 levels. For the second-order approximation, labor is
assumed to be constrained so there is no potential for reallocation.

Summing over the sample period, I find that the second-order approximation of aggre-

gate economic losses is around 33% larger than the first-order approximation. Accounting
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for non-linearities captured by the second-order terms is not just theoretically relevant, it

is economically important. Ignoring these non-linearities substationally underestimates the

aggregate economic losses. In a decomposition of the second-order terms, I find that the in-

crease in aggregate losses is predominantly driven by non-linearities in economic production

from Proposition 5 (Figure 11). The next largest contribution comes from non-linearities in

the marginal effect of weather shocks. Non-linearities from cross-terms captured by Propo-

sition 6 have little effect.

5.3 Effect of Labor Reallocation

From Corollary 2, the effect of labor reallocation on aggregate impacts depends on hetero-

geneity in microeconomic impacts of weather shocks. Here I estimate the potential effect

of labor reallocation on the aggregate impacts of weather shocks given the heterogeneity in

microeconomic impacts illustrated in Figure 5. I compare the cases of no labor reallocation

and free labor reallocation. While these are extreme cases, such that the true costs of labor

reallocation likely leave one somewhere between these two cases, this comparison provides

an upper-bound estimate of the possible effect of free labor reallocation across industries and

across space.

Figure 7 displays estimates of the change in aggregate impacts going from no labor

reallocation to free labor reallocation. The change is measured as the percent reduction in

the aggregate impacts of weather shocks for each year. The magnitude of the gains from free

labor reallocation varies considerably across years. For example, in 2003 the gains from free

labor reallocation are around 4% while in 2014 the gains are around 190%, sufficient to switch

a negative aggregate impact into a positive aggregate impact. This variation is in part due

to variation in the magnitude of the second-order effect terms from which labor reallocation

effects derive and in part due to differences in the heterogeneity of microeconomic impacts

across years. In 2017, the gain from labor reallocation is negative because allowing for labor

reallocation increases an already positive aggregate impact. Thus, the level effect is still

positive. Cumulatively across the sample period, allowing for free labor reallocation reduces

the negative aggregate impact of weather shocks by around 10%. This suggests, given the

inherent variability of weather shock impacts, that the ability of factors of production to

flexibly reallocate at low costs can be an important economic mechanism to adapt to climate

change.
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Figure 7: Effect of Labor Reallocation. Percent change in aggregate impacts for second-
order approximation with free labor reallocation versus with no labor reallocation. For years
2003 to 2016, a positive reduction reflects a reduction of the negative aggregate impact. In
2017, a negative reduction reflects an amplification of the positive aggregate impact.

6 Role of Micro-level Heterogeneity

In the previous section, I find empirical evidence supporting the economic importance of

the theoretical findings in Corollaries 1 and 2. Heterogeneity in weather shock impacts

across space and industries interacts with non-linearities in production to increase aggregate

economic losses by 33% over the sample period. And, given this heterogeneity, allowing for

labor reallocation can reduce these aggregate impacts by 10% over the sample period. In

this section, I examine these empirical findings more closely by exploring the importance of

different sources of heterogeneity. Specifically, I consider heterogeneity in industrial response

to weather shocks and heterogeneity in weather shocks.

6.1 Heterogeneity in Industrial Response

First, I consider heterogeneity in the industrial composition of the United States. Figure

2(a) provides suggestive evidence of the variation in industrial composition across the United

States. Further, from Figure 3, I find that different industries have different sensitivities to

weather shocks, both in magnitude and the shape of the relationship. I estimate the aggregate
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impacts of weather shocks according to Equation (21) using the industry-specific response

functions. Then I use the pooled response function and compare estimates.

Row 1 of Table 1 shows that accounting for heterogeneity in the industry-specific response

functions matters. Ignoring this source of heterogeneity by using a pooled response function

increases aggregate economic losses, both to a first-order and second-order approximation.

The second-order approximation increases less than the first-order approximation, which

indicates that the effect of non-linearities diminishes when heterogeneity is removed. This

is consistent with the theory in Corollary 1. Removing heterogeneity likewise substantially

reduces the potential gains from labor reallocation. This is consistent with the theory in

Corollary 2.

Table 1: Effect of Heterogeneity

Source of Heterogeneity ∆ FO Impact (%) ∆ FO+SO Impact (%) ∆ Gains from Labor Reallocation (pp)

Industry Response 67% 58% -8.5pp
Weather Distribution -41% -46% -6.8pp
Industry and Total Weather -68% -67% -9.8pp

6.2 Heterogeneity in Weather

Next, I consider heterogeneity in the distribution of weather, both temporally and spatially.

Figures 2b-d provide suggestive evidence of the variability of weather across both time and

space. I estimate the aggregate impacts of weather shocks according to Equation (21) using

the average temperature and precipitation across space for each year. Then I use the average

temperature and precipitation across sample years for each region. Together, temperature

and precipitation are constant within a year and constant across space. I compare this to

estimates with heterogeneity.

Row 2 of Table 1 shows that accounting for variability in weather also matters. Ignoring

the heterogeneity of local weather underestimates aggregate economic losses, both in a first-

order and second-order approximation. The first-order approximation of aggregate impacts

is reduced because averaging weather variables minimizes extremes that often drive microe-

conomic impacts. Further, averaging out variability in weather reduces the heterogeneity in

microeconomic impacts, so the second-order impacts are reduced even further. Removing

variability in weather across space and time likewise reduces the potential gains from labor

reallocation.
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6.3 All Weather and Industrial Response Heterogeneity

Finally, I simultaneously remove weather heterogeneity, both temporal and spatial, and

heterogeneity in industrial response. I average temperature and precipitation across space

and time and apply the pooled response functions. In this scenario, the microeconomic

impacts of weather shocks are equivalent across all county-industry pairs are identical by

definition. I have removed all heterogeneity.

Row 3 of Table 1 shows that the cumulative effect of ignoring all relevant heterogeneity.

This greatly decreases the aggregate economic losses, both a first-order and second-order

approximation. Removing spatial and temporal variation in the distribution of weather sets

daily temperatures around 15◦C, close to the peak of the pooled response function. As a

result, changes in temperature have a small marginal effect on productivity. Removing all

sources of heterogeneity also reduces the second-order impacts. Finally, gains from realloca-

tion are completely eliminated as no heterogeneity at the microeconomic level remains.

7 Conclusions

Quantifying the economic impacts of climate are critical to determining appropriate policy

to mitigate climate change. In this paper, I develop an economic theory of weather shock

impacts that reflects the reality that weather shocks are inherently local and variable and

that there will be variation in the response to weather shocks across industries and across

space. To formulate this, I develop a general equilibrium theoretical model where weather

shocks can only directly impact the productivity of local producers and that those direct

impacts can vary.

A key finding of the theoretical model is that variability in the microeconomic impacts

of weather shocks can have economic consequences. First, in the presence of production

networks or common labor markets, local weather shocks have indirect spillover effects

throughout the economy. Empirical estimates that try to identify the relationship between

economic outcomes and weather shocks must account for these spillovers or focus on eco-

nomic primitives, such as productivity, to avoid bias in their estimates. Second, when there

are non-linearities in production from complementarities, these non-linearities interact with

variability in microeconomic weather shock impacts with consequences for aggregate im-

pacts. These are overlooked in models with log-linear production technologies. Third, the

ability of labor to reallocate as a factor of production can moderate aggregate impacts when

there is variability in microeconomic weather shock impacts. This can be a useful adaptation

mechanism.
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I use an empirical setting of the United States to determine the economic importance of

the last two of these theoretical insights. I estimate the microeconomic impact of weather

shocks on labor productivity across 14 NAICS 2-digit industries across counties composing

the continental United States and aggregate them according to my economic theory. I find

that non-linearities raise the aggregate impacts of weather shocks by 33% and that labor

reallocation can reduce these aggregate impacts by 10%. Empirical estimates of the aggregate

impacts of weather shocks substantially underestimate these impacts if they do not account

for complementarities or ignore underlying variability in local weather and the relationship

between weather shocks and productivity.

The model developed in this paper provides flexible basis for future analyses of aggre-

gate climate impacts and to draw climate policy insights. Some possibilities for future work

building on the model developed in this paper include considering additional factors of pro-

duction beyond labor, expanding the empirical analysis beyond the United States, using

regional input-output networks to analyze spillovers in economic impacts and regional out-

comes, and developing a dynamic version of the model to construct projections of future

climate impacts.
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Appendices

A Proofs

Proof of Proposition 1.

Following the assumption of competition, prices are equal to the marginal cost of production.

This gives

p1−σ
ir =

γir
Air(Wr)1−σ

w1−σ +
N∑
j=1

R∑
s=1

ωjsirp
1−σ
js

Rearranging this equation by moving the second term on the right-hand side to the left-hand

side, I solve for a vector of prices in matrix form.

Starting with the production market clearing condition, yir = cir+
N∑
j=1

R∑
s=1

xir,js, I multiply

both sides of the equation by prices pσir. This gives

pσiryir = pσircir +
N∑
j=1

R∑
s=1

pσirxir,js

Substituting the equations for final and intermediate input demand from Equations (2) and

(5), I rearrange the equation and convert to matrix form to solve for a vector of sales.

For equilibrium wages, I first consider the case of full labor reallocation. Starting with

the labor market clearing condition L̄ =
N∑
i=1

R∑
r=1

Lir I substitute the conditional labor demand

equation from Equation 6. Rearranging, I solve for the equilibrium economy-wide wage rate.

Next, consider the case of no labor reallocation. Here wages are given as the marginal rev-

enue product of labor for each producer.

Proof of Proposition 2

Own Sales Effect.

Independent of assumptions about labor reallocation, the Own Sales Effect can be written
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as

d log(pσiryir)

dWr

=

d log

(
(Lα)irM

)
dWr

=
d log(M)

dWr

= λir

d log
(
Air(Wr)

)
dWr

The final step comes from applying the equivalence between aggregate income and aggregate

output and applying the proof of Proposition 4 below.

Own Wage Effect.

Consider free labor reallocation for which there is a single wage rate, w, for the economy.

d log(w)

dWr

=

d( 1
1−σ

) log

(
(Lα)γ∗(W)

)
dWr

= λir

d log
(
Air(Wr)

)
dWr

Alternatively when there is no labor reallocation,

d log(wir)

dWr

=

d 1
σ
log

(
γ∗
ir(Wr)L

−1
ir p

σ
iryir

)
dWr

=
σ − 1

σ
+ 0 +

λir

σ

Own Labor Effect.

Consider free labor reallocation.

d log(Lir)

dWr

=

d log

(
γ∗
ir(Wr)w

−σ
ir pσiryir

)
dWr

= (σ − 1)− σλir + λir

= (σ − 1)(1− λir)

Alternatively when there is no labor reallocation, the Own Labor Effect is by definition 0.

Proof of Proposition 3

Indirect Sales Effect.
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Independent of assumptions about labor reallocation, the Indirect Sales Effect can be written

as

d log(pσiryir)

dWr

=

d log

(
(Lα)irM

)
dWr

=
d log(M)

dWr

= λir

d log
(
Air(Wr)

)
dWr

The final step comes from applying the equivalence between aggregate income and aggregate

output and applying the proof of Proposition 4 below.

Indirect Wage Effect.

Consider free labor reallocation for which there is a single wage rate, w, for the economy.

d log(w)

dWr

=

d( 1
1−σ

) log

(
(Lα)γ∗(W)

)
dWr

= λir

d log
(
Air(Wr)

)
dWr

Alternatively when there is no labor reallocation,

d log(wjs)

dWr

=

d 1
σ
log

(
γ∗
js(Ws)L

−1
js p

σ
jsyjs

)
dWr

= 0 + 0 +
λir

σ

Indirect Labor Effect.

Consider free labor reallocation.

d log(Ljs)

dWr

=

d log

(
γ∗
js(Ws)w

−σ
js pσjsyjs

)
dWr

= −σλir + λir

= −λir(σ − 1)

Alternatively when there is no labor reallocation, the Own Labor Effect is by definition 0.

Proof of Proposition 4.
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Aggregate output of the economy is equal to the aggregate value added of all producers,

Y =
N∑
i=1

R∑
r=1

wirLir. This gives

d logY
dWr

=

d log

(
N∑
i=1

R∑
r=1

wirLir

)
dWr

For full labor reallocation this gives

d logY
dWr

=
d logw

dWr

+

d log
N∑
i=1

R∑
r=1

Lir

dWr

= λir

d log
(
Air(Wr)

)
dWr

+ 0

For no labor reallocation,

d logY
dWr

=
1

M

N∑
i=1

R∑
r=1

dwirLir

dWr

= λir

d log
(
Air(Wr)

)
dWr

Proof of Proposition 5.

Taking the derivative of Equation (18) with respect to a weather shock in region r gives

d2 logY
dW 2

r

=
d

dWr

(
λir

d log
(
Air(Wr)

)
dWr

)
=

dλir

dWr

d log
(
Air(Wr)

)
dWr

+ λir

d2 log
(
Air(Wr)

)
dW 2

r

I begin with the case of full labor reallocation. The derivative of value added share for

producer ir with respect to weather shock in region r is given as

dλir

dWr

=
1

L̄

dLir

dWr

= λir(1− λir)(σ − 1)
d log

(
Air(Wr)

)
dWr

Substituting this back in gives the solution.

Next, consider the case of no labor reallocation. The derivative of value added share for

38



producer ir with respect to weather shock in region r is given as

dλir

dWr

=
dwir

dWr

−
N∑
j=1

R∑
s=1

dwjs

dWr

= λir(1− λir)(1−
1

σ
)
d log

(
Air(Wr)

)
dWr

Substituting this back in gives the solution.

Proof of Proposition 6.

Taking the derivative of Equation (18) with respect to a weather shock in region s gives

d2 logY
dWrWs

=
d

dWs

(
λir

d log
(
Air(Wr)

)
dWr

)
=

dλir

dWs

d log
(
Air(Wr)

)
dWr

I begin with the case of full labor reallocation. The derivative of value added share for

producer ir with respect to weather shock in region s is given as

dλir

dWs

=
1

L̄

dLir

dWs

= −λirλjs(σ − 1)
d log

(
Ajs(Ws)

)
dWs

Substituting this back in gives the solution.

Next, consider the case of no labor reallocation. The derivative of value added share for

producer ir with respect to weather shock in region s is given as

dλir

dWs

=
dwir

dWs

−
N∑
l=1

R∑
t=1

dwlt

dWs

= −λirλjs(1−
1

σ
)
d log

(
Ajs(Ws)

)
dWs

Substituting this back in gives the solution.

Proof of Corollaries 1 and 2

I assume a common weather shock to all regions that has a homogenous affect on all pro-
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ducers. That is,
d log

(
Ajs(Ws)

)
dWs

=
d log

(
Ajs(Ws)

)
dWs

for all ∀i ∈ {1, ..., N}, r ∈ {1, ..., R} and

j ∈ {1, ..., N}, s ∈ {1, ..., R}.
Consider the first terms on the right-hand side of Equations (19) and (20). Noting that∑

js λjs = 1, aggregating the first term of the correlated shock over js ̸= ir under the

assumption of a homogenous productivity shock gives

∑
js̸=ir

−λirλjs(σ − 1)
d log

(
Ajs(Ws)

)
dWs

d log
(
Air(Wr)

)
dWr

=

− λir(1− λir)(σ − 1)

(
d log

(
Air(Wr)

)
dWr

)2

for full labor reallocation. For no labor reallocation, the result is

∑
js̸=ir

−λirλjs(1−
1

σ
)
d log

(
Ajs(Ws)

)
dWs

d log
(
Air(Wr)

)
dWr

=

− λir(1− λir)(1−
1

σ
)

(
d log

(
Air(Wr)

)
dWr

)2

Substituting this result into Equation (21), it is clear that the first terms of the second-order

impacts cancel out in the second-order expansion. This leaves the first-order impacts and

the second-order impact of non-linearities in the response of productivity to weather shocks

for a common shock with homogeneous microeconomic impacts.

B Data

B.1 Economic Data

Here I provide more information about data used in the analysis. The 2-digit NAICS industry

classifications are given in Table 2.
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Table 2: List of Industries

NAICS Code Industry Description

11 Agriculture, forestry, fishing, and hunting
21 Mining
22 Utilities
23 Construction
31-33 Manufacturing
42 Wholesale trade
44-45 Retail trade
48-49 Transportation and warehousing
51 Information
52-53 Finance, insurance, real estate, rental, and leasing
54-56 Professional and business services
61-62 Educational services, health care, and social assistance
71-72 Arts, entertainment, recreation, accommodation, and food services
81 Other services, except government
G Government

B.1.1 Labor Productivity Growth Measure

The BEA does produce a measure of labor productivity at the county-industry-level of resolu-

tion. Thus, I use data provided by the BEA to construct a novel spatially- and industrially-

resolute measure of labor productivity growth. Starting with the assumption of perfect

competition, which implies that labor is compensated its marginal product, setting wages

equal to the marginal revenue product of labor gives

wirt = pirt
∂yirt
∂Lirt

=
[
γ∗
irL

−1
ir p

σ
iryir

] 1
σ

Rearranging and solving for productivity gives

Airt(Wrt) = γ
1

1−σ

(
wσ

irtLirt

pσirtyirt

) σ
σ−1

Taking the difference with respect to the previous period of the log of this equation for

productivity gives the measure of growth in productivity.

∆ log(Airt) =
σ

σ − 1
∆ log

(
wirtLirt

pirtyirt

)
+∆ log

(pirtyirt
Lirt

)
−∆ log

(
pirt

)
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∆ log(Airt) =
σ

σ − 1
∆ log

(
wirtLirt

pirtyirt

)
+∆ log

(pirtyirt
Lirt

)
−∆ log

(
pirt

)
(25)

Thus, constructing a measure of labor productivity growth requires data on labor compen-

sation, gross output, labor input, prices, and the elasticity of substitution. Data on labor

compensation comes from BEA data on annual personal income. Data on labor input comes

from BEA data on total full-time and part-time employment data. Gross output and prices

are only available aggregated to the industry level. Thus, I assume gross output for each

county-industry pair is proportional to county-industry value-added, pirtyirt = prtyrt × VAirt

VArt
,

and that changes in county-industry prices are directly reflected by changes in aggregate

industry prices. Data on industry level output and prices come from BEA industry gross

output and price index data. I choose an elasticity of substitution of σ = 0.5 following

empirical evidence (Atalay, 2017; Boehm et al., 2018).

B.2 Weather Data

Here I provide more information about the economic and weather data used in the analysis

through some basic summary statistics.

Table 3: Summary Statistics

Panel A: Economic Mean Std. Dev. Min Max

Population 98,646.1 315,531.8 55 10,120,540
Value Added per capita ($US2012) 3,288.8 94,562.4 0 48,648,796
Growth Value Added per capita 0.00910 0.287 -7.898 9.359
Growth Labor Productivity 0.0109 0.346 -7.898 7.963

Panel B: Weather Mean Std. Dev. Min Max

Cum. Daily Temperature (◦C) 4,684.7 1,662.6 -69.30 9,263.2
Cum. Daily Temperature Sq. 101,053.8 36,844.9 18,074.5 242,821.8
Cum. Daily Temperature Cub. 2,136,609.3 1,111,300.0 -91,844.6 6,678,533.2
Cum. Daily Precipitation (mm) 1,009.6 405.8 20.38 4,149.0
Cum. Daily Precipitation Sq. 18,179.0 13,395.6 27.10 224,040.9

Unit of observation is a county-industry in a year. There are 3,080 counties, 14 industries, and 17 years,
totalling 785,400 observations.

Figure 8 displays additional information about the distribution of temperature and pre-

cipitation across counties. Panel (a) shows the distribution of average daily temperature

in 2001. Panel (b) shows the distribution of average daily precipitation in 2001. Panel

(c) shows the change in average daily precipitation over the sample period. These figures
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reinforce that there is heterogeneity in climate and weather shocks across the United States

when analyzed at a more resolute scale.

(a) (b)

(c) Average Temperature Distribution.

Figure 8: Additional Descriptive Statistics.

C Additional Empirical Results

In this section, I provide some additional results.

Figure 9 displays the marginal effect of precipitation on labor productivity growth for

the pooled estimate and by industry classification. Estimates and their respective 95%

confidence intervals are plotted relative to peak (minimum) growth precipitation.

Figure 10 displays the contributions to aggregate economic impacts up to a first-order

by county-industries for each year in the sample period.

Figure 11 displays the results of calculating the second-order aggregate impacts of microe-

conomic shocks in each year. Specifically, I break down the second-order impacts into their
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underlying components: the second-order idiosyncratic impact deriving from changes in the

value added shares, the second-order correlated impact deriving from changes in the value

added shares, and the second-order impact deriving from non-linearities in the responsiveness

of labor productivity growth the weather shocks.

Figure 12 displays the alternative results for the first-order and second-order estimates of

the aggregate impacts of weather shocks for elasticities of substitution (a) σ = 0.3 and (b)

σ = 0.9. The different elasticities are used in both the construction of labor productivity

growth, changing the estimating microeconomic response functions, and in the construction

of the second-order approximation of aggregate impacts. A lower elasticity of substitution

reduces the aggregate impacts while a higher elasticity increases the aggregate impacts.

This is due to a weaker (stronger) microeconomic response function with the lower (higher)

elasticity. While the quantitative values differ with elasticity assumption, the takeaways of

the paper are consistent. Accounting for second-order effects meaningfully increase aggregate

impacts while allowing for reallocation reduces aggregate impacts.
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Figure 9: Microeconomic precipitation response functions. Empirically estimated
marginal labor productivity growth-precipitation response function for pooled response and
by industry classification. Marginal effects plotted relative to peak growth precipitation for
pooled response, around 50cm. Lines represent mean estimates and blue fill represents 90%
confidence interval using clustered standard errors.
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Figure 10: County-industry contributions to first-order aggregate impacts by
year.
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Figure 11: Composition of the Second-Order Impact. SO Idiosyncratic reflects the
aggregation of the first term on the right-hand side of Equation (19). SO Correlated reflects
the aggregation of the first term on the right-hand side of Equation (20). SO Weather reflects
the aggregation of the second term on the right-hand side of Equation (19).
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(a) σ = 0.3
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(b) σ = 0.9

Figure 12: Aggregate Impact Estimates for Different Elasticities. Aggregate im-
pacts estimated up to a first-order and up to a second-order both with full reallocation and
no reallocation for elasticities of substitution (a) σ = 0.3 and (b) σ = 0.9. The different
elasticities are used in both the construction of labor productivity growth, changing the
estimating microeconomic response functions, and in the construction of the second-order
approximation of aggregate impacts. While the quantitative results vary from the results in
the text for σ = 0.5, the qualitative takeaways are the same.
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