Thinking outside the box:
A lemur’s take on hominin craniodental evolution

Cerling et al. (1) and Lee-Thorp (2) presented formidable evidence against nut consumption by the so-called “Nutcracker Man,” robust australopith Paranthropus boisei. Unusually high δ¹³C isotope values bear testimony, instead, to a diet rich in C₄ resources (e.g., grasses, sedges). Such isotope values are rivaled, among anthropoid primates, only by those of the extinct gelada baboon, Theropithecus oswaldi. There is, however, another primate with similar carbon isotope values, a fossil lemur from Madagascar, Hadropithecus stenognathus (Fig. 1). When, in 1970, Jolly advanced his gelada analog for P. boisei, he erected a similar model for Hadropithecus (3). Indeed, the craniodental convergences of H. stenognathus to P. boisei (4, 5) are stronger than those of gelada baboons.

In many ways, the history of research on Hadropithecus has paralleled that on P. boisei, with some researchers defending a hard-object diet (mainly C₃ plant resources) and others defending an interpretation closer to Jolly’s (mainly C₄ plant resources, including grass, leaves, and grains) (5). Just as recent analyses of δ¹³C values of P. boisei have largely vindicated Jolly’s original interpretation (1, 2), recent analyses of δ¹³C in Hadropithecus (now including 9 individuals from 4 sites in Southern and Southwestern Madagascar and spanning a temporal range from well before to after human arrival) have drawn similar conclusions (4, 5).

Lee-Thorp (2) suggested that the primary resource for P. boisei may have been Cyperus papyrus. We suspect that other resources were more central to the diet of Hadropithecus, and these will be explored elsewhere. However, there are important ways in which the diets of Paranthropus and Hadropithecus likely converged. Both probably consumed large quantities of “low-quality” foods (i.e., foods that were relatively high in structural carbohydrates and poor in nutrients and required heavy repetitive trituration). Such conclusions may have important implications for the evolution of the craniodental features that these species share.

Laurie R. Godfrey,*¹ Brooke E. Crowley,¹ and Elizabeth R. Dumont

Departments of *Anthropology and ¹Biology, University of Massachusetts, Amherst, MA 01003; and ²Departments of Geology and Anthropology, University of Cincinnati, Cincinnati, OH 45221


Author contributions: L.R.G., B.E.C., and E.R.D. performed research; B.E.C. analyzed data; and L.R.G. and B.E.C. wrote the paper. The authors declare no conflict of interest.

¹To whom correspondence should be addressed. E-mail: lgodfrey@anthro.umass.edu.

Fig. 1. Box and whisker plots of δ¹³C values (in ‰) for fossil hominin enamel, fossil cercopithecoid enamel, and subfossil lemur bone collagen. Sample sizes are shown in parentheses. Lemur collagen δ¹³C values were converted to their enamel equivalents by adding 5.6‰, a value derived from the mean apparent enrichment between collagen and carbonate for a broad spectrum of primates. Unpublished lemur data were collected by B.E.C.; other data were compiled from the literature.
Reply to Godfrey et al.: Outside the box

We thank Godfrey et al. (1) for their comments comparing the possible diet of *Hadropithecus* with that of *Paranthropus boisei* (2, 3). We wrote: “Indeed, the only known haplorrhine primate with a similar carbon isotope composition is the extinct grass-eating baboon *Theropithecus oswaldi,*” which explicitly excluded *Hadropithecus* and other Malagasy strepsirrhine primates from the comparison as they are only very distantly related to modern apes and humans. Molecular and morphological approaches indicate that the strepsirrhine-haplorrhine divergence occurred before the Eocene (4, 5).

Although certain morphological convergences between the taxa may exist, it is far from certain that this implies similar diets. For instance, we noted that despite the craniodental similarities of closely related *P. boisei* and *Paranthropus robustus,* there is growing evidence from microwear and stable isotopes that their diets diverged. As for *Hadropithecus,* it is possible that its moderately high δ¹³C values reflect consumption of CAM rather than C₄ plants (which we suggest dominated *P. boisei* diets), because the former are highly abundant in the unique spiny forests of Madagascar (6). *Hadropithecus,* *P. boisei,* and *T. oswaldi* may well have consumed dissimilar foods despite some similarities in their δ¹³C values. Further refinement of the estimates of diets of these and all fossil primates will be a challenge but will provide further constraints on our understanding of primate evolution through time. In the meantime, we prefer to eschew inferring diet for one extinct species from the inferred but unknown diet of another fossil taxon, especially one that is very distantly related and inhabited a very different environment.

*Thure E. Cerling*¹,⁴, Emma Mbua*, Francis M. Kirera*, Fredrick K. Manthi*, Frederick E. Grine*, Meave G. Leakey*, Fredrick K. Manthi*, Kevin T. Uno*, and Julia Lee-Thorp

¹Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112-0111; ²National Museums of Kenya, Nairobi, Kenya; ³Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364; ⁴Turkana Basin Institute, Nairobi, Kenya; ⁵Department of Anthropology, University of Colorado, Boulder, CO 80309-0233; and ⁶Research Laboratory for Archaeology, University of Oxford, Oxford OX1 3QY, United Kingdom


Author contributions: T.E.C. designed research; T.E.C., E.M., F.M.K., F.E.G., M.G.L., M.S., K.T.U., and J.L.-T. performed research; T.E.C. analyzed data; and T.E.C., F.E.G., M.S., and J.L.-T. wrote the paper.

The authors declare no conflict of interest.

¹To whom correspondence should be addressed. E-mail: thure.cerling@utah.edu.