A deep learning pipeline for segmentation of *Proteus mirabilis* colony patterns

Anjali Doshi*, 1, Marian Shaw*, 2, Ruxandra Tonea*, Rosalia Minyety, 1, Soonhee Moon, 1, Andrew Laine, 1, Jia Guo, 3-5, Tal Danino*, 1,4,5

1Department of Biomedical Engineering, 2Department of Psychiatry, 3Mortimer B. Zuckerman Mind Brain Behavior Institute, 4Herbert Irving Comprehensive Cancer Center, 5Data Science Institute; All affiliated to Columbia University, New York, NY USA

*Corresponding author: tal.danino@columbia.edu, jg3400@columbia.edu

Acknowledgements
This work was supported by an NSF CAREER Award (1847536), Blavatnik Fund for Innovations in Health (T.D.), and National Science Foundation Graduate Research Fellowship (A.D.).

References
2. Schaffer & Pearson, Microbial Spectr 2015, 3.5.10.

Background

- *Proteus mirabilis*, a bacterium commonly found in water and soil, can cause infections of the lungs, wounds, and urinary tract. In the USA, it accounts for ~44% of catheter-associated UTIs.
- A critical part of its virulence is its “swarming motility,” a highly coordinated movement propelled by flagella.
- *P. mirabilis* swarming is typically studied through colony development assays in which the bacterium forms a characteristic macroscopic bullseye pattern.

Problem: There is no computational state-of-the-art method for efficient, comprehensive, and scalable analysis of macroscopic *P. mirabilis* colonies.

Overview of Project

1. Dataset & Preprocessing
2a. Colony Segmentation
2b. Ring Boundary Segmentation
3. Measure Colony Features

Model Performance

<table>
<thead>
<tr>
<th>Model</th>
<th>Label Fusion Method</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>Dice</th>
<th>IoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG-11 Encoder</td>
<td>Single convolutional layer</td>
<td>0.8972</td>
<td>0.7054</td>
<td>0.6087</td>
<td>0.8527</td>
<td></td>
</tr>
<tr>
<td>VGG-11+ batchnorm</td>
<td>Single convolutional layer</td>
<td>0.8972</td>
<td>0.7054</td>
<td>0.6087</td>
<td>0.8527</td>
<td></td>
</tr>
<tr>
<td>ResNet18</td>
<td>Single convolutional layer</td>
<td>0.8972</td>
<td>0.7054</td>
<td>0.6087</td>
<td>0.8527</td>
<td></td>
</tr>
<tr>
<td>EfficientNet-B0</td>
<td>Single convolutional layer</td>
<td>0.8972</td>
<td>0.7054</td>
<td>0.6087</td>
<td>0.8527</td>
<td></td>
</tr>
</tbody>
</table>