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Killing cancer cells by cytotoxic T lymphocytes (CTL) and by natural killer (NK) cells is of vital importance.
Cancer cell proliferation and apoptosis depend on the intracellular Ca2+ concentration, and the expression
of numerous ion channels with the ability to control intracellular Ca2+ concentrations has been correlated
with cancer. A rise of intracellular Ca2+ concentrations is also required for efficient CTL and NK cell function
and thus for killing their targets, in this case cancer cells. Here, we review the data on Ca2+-dependent killing
of cancer cells by CTL and NK cells. In addition, we discuss emerging ideas and present a model how Ca2+

may be used by CTL and NK cells to optimize their cancer cell killing efficiency. This article is part of a Special
Issue entitled: 12th European Symposium on Calcium.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

To eliminate cancer cells from the human body is one of the most
important challenges for the immune system. Ca2+ plays a dual role
in this process considering its involvement in proliferation/activation
and apoptosis of both cancer and immune cells. Cytosolic Ca2+

signals are controlled by several mechanisms that can be grouped
in three main general categories: 1. Ca2+ import into the cytosol, 2.
Ca2+ export out of the cytosol, and 3. Ca2+ buffering in the cytosol.
Together, these mechanisms control cytosolic Ca2+ signals and there-
by regulate proliferation, activation and apoptosis. In general, tran-
sient small elevations (low to medium nM) of cytosolic Ca2+ will
increase cell proliferation whereas sustained substantial elevations
(high nM to μM) may induce apoptosis [1]. Thus, Ca2+ has the poten-
tial to modulate proliferation and apoptosis of cancer cells, and at the
same time, Ca2+ modulates proliferation, apoptosis and the effector
efficacy of immune cells.

One of the emerging hallmarks of cancer is how cancer evades im-
mune surveillance. The different aspects of immune evasion, for instance
immune-editing, are discussed in detail in many reviews including the
“Hallmarks of Cancer: The next generation” review by Hanahan and
Weinberg [2]; we will not discuss these important issues in this review
because no well-defined role for Ca2+ during immune evasion has
been reported yet. We will, however, discuss the kinetic aspect of killing
opean Symposium on Calcium.
ersität des Saarlandes, D-66421
49 6841 1626060.

rights reserved.
cancer cells by the immune system, because it ismost likely Ca2+ depen-
dent. Whereas the recognition of cancer cells by immune cells is proba-
bly not Ca2+ dependent, the effector functions of the immune cells,
characterized by the efficacy and the speed of cancer cell killing through
immune cells, greatly depend on Ca2+ [3]. Thus, immune evasion of
cancer cells may also occur in a “kinetic” manner, meaning that
the speed and efficacy of cancer cell killing through immune cells are
modulated inways that will slow the overall killing speed. These aspects
and their Ca2+ dependence will be discussed in this review.

2. Calcium channels

Ca2+ signaling in tumor cells and in T cells is strongly dependent
on the activity of Ca2+ channels. Highly selective Ca2+ channels
can be grouped into three main channel types: voltage-gated Ca2+

channels [4], TRPV5 and TRPV6 channels [5] and ORAI channels [6].
Voltage-gated Ca2+ channels have a major role in neuronal excitation
and muscle contraction, however some reports have been published
pointing towards potential involvement in cancer [7,8]. In the
immune system, a potential role of voltage gated Ca2+ channels is
controversially discussed [9,10]. TRPV5 and TRPV6 are the only highly
Ca2+ selective ion channels of the TRP channel family, they are
considered to be important for Ca2+ uptake in epithelial kidney and
intestinal tissues [11]. There are several reports indicating a role of
TRPV6 in cancer, in particular in prostate cancer [12,13]. TRPV5 and
TRPV6 have probably no significant role for immune cell function, at
least not in T cells because they are not consistently expressed [14].
ORAI channels are store-operated Ca2+ channels which form CRAC
channels (see details below). They have also been implicated in
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several types of cancer [15,16], but most importantly, CRAC/ORAI
channels form the major Ca2+ entry pathways in immune cells
[1,6]. Since the major focus of this review on how Ca2+ influences
the potential and efficacy of CTL and NK cells to kill cancer cells,
these channels need to be introduced in some detail.

The concept of store-operated Ca2+ entry was originally introduced
by Casteels, Droogmans andPutney [17,18]. CRAC channelswere discov-
ered already in 1992 in mast cells and T cells [19–21] but it took a long
time to finally unmask their molecular basis. In 2005, STIM was discov-
ered as the activator molecule of CRAC [22–24], and in 2006, ORAI was
found to form the main subunit of CRAC channels [25–27] and was
also established as the pore-forming unit [28,29]. In humans and other
vertebrates, two STIM homologues (STIM1, STIM2) and three ORAI
homologues (ORAI1, ORAI2, ORAI3) exist [6]. STIM1-activated ORAI1
channels are considered to form the major part of the channels respon-
sible for CRAC currents. CRAC channels and also theirmolecular counter-
part ORAI1 are store-dependent, highly Ca2+ selective Ca2+ inwardly
rectifying with a very low single channel conductance.

For the development of T, B, and NK cells, STIM1/ORAI1 activity
is not necessary, since their numbers appear almost normal in KO/
transgenic mice and deficient patients [25,30–35]. For regulatory T
cells (Tregs), developmental defects have been reported in mice
[32]. Whereas development of most immune cells types appears
normal, lack of STIM1/ORAI1 activity results in loss of T cell function
and a severe combined immunodeficiency in patients [25,33]. In
mouse T cells, similar phenotypes haven been reported [31,32]. In
addition, it has been shown that STIM1/ORAI1 activity-deficient
NK cells have a drastically reduced store-operated Ca2+ entry and
cannot kill target cells [36]. In conclusion, the STIM1/ORAI1 combi-
nation is very important for T and NK effector cell function, but not
required for their development.

3. Cancer and calcium

According to the first “hallmarks” review byHanahan andWeinberg
[37], cancer is promoted through six biological capabilities which
are “sustaining proliferative signaling, evading growth suppressors,
resisting cell death, enabling replicative immortality, inducing angio-
genesis, and activating invasion and metastasis”. These hallmarks are
linked to genomic instability and tissue inflammation. In the second
“hallmarks” review, the reprogramming of energy metabolism and the
evasion from the immune system were added to this list as emerging
hallmarks [2].

How does calcium influence cancer cells? Cytosolic Ca2+ concentra-
tions can be modulated directly by channels and transporters that
either import Ca2+ into the cytsol or export it from the cytosol. Import
is mainly mediated by ion channels and many Ca2+/cation channels
have been postulated to modulate cancer cell function. Of the three
types of highly selective Ca2+ channels, voltage-gated Ca2+ channels,
TRPV5/6 and ORAI channels, all of them have been implicated in cancer
as already state above [7,8,12,13,15,16,38]. The studies range from
correlations of Ca2+ channel expression in cancerogenous tissue
compared to normal tissue to more functional studies which show
correlations between ion channel expression/function and cellular
functions such as cell proliferation. Activity of Ca2+ channels will
mainly influence cytosolic Ca2+, which modulates many cellular func-
tions including proliferation and apoptosis [1]. Non-selective cation
channels like many of the other TRP channels besides TRPV5 and
TRPV6 have also been correlated with cancer growth [12]. K+ and Cl−

channels control the membrane potential and thereby the open
probability of the voltage-gated Ca2+ channels and the driving force
for all Ca2+/cation channels. It is thus not surprising that there is a
vast amount of literature pointing towards a role of mostly K+ but
also some Cl− channels for cancer growth [8,39]. Regarding K+ and
Cl− channels, the main hypothesis is that they regulate cytosolic Ca2+

through membrane potential changes. In addition, the activity of
Ca2+, K+, Cl− and cation channels may also control the concentration
and ion strength in the cytosol. For K+, Na+ or Cl−, concentration
changes are less prominent compared to for Ca2+ whose concentration
may change by orders of magnitude inside cells. Osmotic changes
through ion concentration changesmay also control cell volume regula-
tion. In addition, channels and transporters control cellular pH. All these
factors might affect cancer cell growth and function [8,39], however,
much work remains to be done to prove causality of ion channel and
Ca2+ signal modulation for cancer cell growth and function. Neverthe-
less, Ca2+ channels are already major prospective pharmacological
targets to manipulate cancer cell proliferation and apoptosis.

4. The immune response and calcium

When normal cells are transformed into cancerogenous cells, they
are usually attacked by the immune system. In the main part of this
review we will focus on the involvement of Ca2+ for a productive
and efficient immune response against cancer [1], which is dependent
on proliferation, maturation/activation and effector functions of
immune cells.

4.1. Proliferation and maturation of CTL and NK cells

Dendritic cells constantly scan the human body and phagocytose
foreign antigens. They process antigens and present them or parts
of them on their surface. After entering secondary lymph nodes,
dendritic cells present foreign antigens to T cells and matching
naïve T cells including cytotoxic T lymphocytes (CTL) are recognized;
they proliferate, maturate and gain effector status. They will then
leave the lymph nodes and circulate with the aim to find, in our
case, cancer cells. The concept of DC-T cell interaction in secondary
lymph nodes is quite well understood, however, in vivo 2-photon im-
aging during the last decade has added interesting new insights
[40,41]. In one of the first papers, Mempel et al. could for instance
identify three different phases of CD8+-DC interaction in lymph
nodes, one stable phase flanked by two transient phases [42].

Natural killer (NK) cells are enriched in sinusoidal regions of
the liver and in the red pulp of the spleen under resting condi-
tions [43]. During infection they proliferate and mature from a resting
to an effector state, which increases their responsiveness and killer
effectiveness. They also infiltrate lymphoid and non-lymphoid tissues
to kill targets. Whereas naïve CTL cannot kill because they do not
express perforin, resting NK cells express low levels of perforin
compared to more matured effector NK cells, but they can also kill
[43]. The local environment is probably quite important for priming
NK cells and recent data have shown that they continuously mature
further and are probably even capable of generating memory [44],
with the memory cells being less killing competent as effector NK
cells, similarly to the quite well established memory concept in the
T cell compartment [43].

Together, CTL and NK are well suited to attack cancer because they
can complement each other. For instance, if cancer cells down regulate
MHC I to escape the attack by CTL, this would favor recognition by NK
cells. Vice-versa, antigen-loaded MHC I expression inhibits NK cell
killing but is a prerequisite for CTL-dependent killing.

4.1.1. The calcium dependence of proliferation and maturation of CTL and
NK cells

Up to this point very little work has been attributed to the Ca2+

dependence and maturation of CTL and NK cells. Whereas the develop-
ment of T cells, including CD8+ and NK cells, does not seem to depend
much on STIM1/ORAI1-mediated Ca2+ entry [25,30–35], proliferation,
maturation and activation of T cells strongly depend on CRAC channel
activity, formed by STIM1-activated ORAI1 [45–49]. In T helper cells,
the Ca2+ dependence of proliferation is firmly established, and in addi-
tion the maturation of naïve to effector cells is quite Ca2+ dependent,
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considering for instance that Feske et al. have shown that about 2/3 of
activation or repression of gene expression in T cells is Ca2+ dependent
[46]. Thus the number of armed effector T cells critically depends
on Ca2+ influx through CRAC/ORAI channels, highlighting the great
importance of Ca2+ channels for an effective immune response against
cancer. Considering the presence of store-operated Ca2+ entry in CTL
and NK cells and the expression of STIM-activated CRAC/ORAI channels,
it is very likely that proliferation and maturation of CTL and NK is
similarly Ca2+ dependent as has been shown for T helper cells.
However, this hypothesis needs still testing.

4.2. Finding cancer cells

Once armed effector T cells leave the lymph node, they should find
or, in the ideal case, even be enriched in cancer tissue. Convective
transport in the blood stream will bring effector cells to all parts of
the human body, however, they have to infiltrate the endothelial
tissue of the blood vessels to reach cancer tissue. Not an easy task as
concluded by Constantin and Laudanna [50] “for a cell to stop its
motion under ‘frantic’ flow conditions, such as those encountered in
blood vessels”.

In case of inflammation, which is a condition that also requires
immune cell action, the enrichment of CTL and other immune cells
in tissues is quite well understood [51]. Immune cells interact with
endothelial cells, they are captured, they roll, are activated and arrested,
which is followed by strengthening adhesion between immune cells
and endothelial cells, and the immune cells finally migrate through
the endothelial layer in a paracellular or transcellular manner and can
thus be enriched in inflamed tissues. Capture and rolling of immune
cells are facilitated by slower blood flow in inflamed tissue due to
blood vessel relaxation and an increased expression of selectins on
endothelial cells in inflamed tissue which can interact with several sur-
face receptors on immune cells including P-selectin glycoprotein ligand,
E-selectin ligand 1 and CD44 (see [51] for details). Endothelial integrins
also influence immune cell rolling but in addition they are the key mol-
ecules to establishfirmadhesion between endothelial cells and immune
cells. Arrest and activation of immune cells, which are required for their
subsequent transmigration through the endothelial cell layer into the
tissue, is initiated by chemokines and chemoattractants [51,52]. The
importance of extracellular chemokines on the endothelial surface for
lymphocyte adhesion has been recently extended by Shulman et al.
[53] who found that T cells express integrins on their surface that can
bypass chemokine signals but are still arrested firmly on the endothelial
surface. Transendothelial migration of T cells did depend, however, on
intracellular chemokines stored in endothelial vesicles highlighting
once more their role for adhesion and transmigration.

Chemokines and chemoattractants activate G-protein-coupled
receptors in T cells, which modulate integrin affinity for its ligands
through signal cascades which are not completely understood but
do involve changes in cytosolic Ca2+ concentrations. The best studied
lymphocyte integrin is the α2β2 integrin LFA-1 (lymphocyte
function-associated antigen 1). LFA-1 is kept in an inactive state, the
bent state [54] on circulating lymphocytes. Its activation into the
extended state is achieved following receptor activation for instance
through chemokines and chemoattractants, so called “inside-out”
signaling because inside signals change the extracellular (“out”) LFA-1
conformation from the bent to extended state. Active integrins vice
versa can also signal to the inside, a mechanism called “outside-in”
signaling. In contrast to the bent state, the extended state has an inter-
mediate to high affinity for ICAM-1 on endothelial cells and itwill also fa-
cilitate the lateral membranemotility of LFA-1 into clusters [55]. LFA-1 is
also important for (the initiation of) integrin-dependent cell transmigra-
tion through the endothelial cells layer and integrin-dependent migra-
tion in tissues. In three dimensional tissue like most inflammative or
cancer environment, integrinmediatedmigration is probably less impor-
tant and immune cells use integrin-independent flowing and squeezing
amoeboid-like migration driven solely by actin-network expansion
[56] through actin-treadmilling controlled by a MEK-cofilin signaling
module, which does not operate in two-dimensional but only in three-
dimensional conditions [57].

In inflamed tissue, chemokines and chemoattractants probably help
to enrich immune cells including CTL and NK cells, but in case of cancer,
it appears more likely that immune cells may reach cancerogenous
tissue just through random migration. Enrichment of immune cells in
cancerogenous tissue could be achieved by a mechanism where cancer
works as an anchor, meaning that immune cells do not easily leave
cancer tissue once they invaded it because of their many interactions
with it.

4.2.1. The calcium dependence of finding cancer cells
There are several ways that Ca2+ may contribute to the efficiency

of finding cancer cells, for example during immune cell migration/
chemotaxis and adherence to the target cells as well as during
tumor cell recognition. First of all, the integrin LFA-1 and Ca2+ can
interact in different ways:

1. Ley et al. [51] have combined the current knowledge into a putative
model of LFA-1 activation: Inside-out signaling through G-protein
coupled receptors induces the activation of the PLC signaling cascade
with its two arms, generation of DAG and an increase of the cytosolic
Ca2+ concentration through Ca2+ release from stores and subse-
quent Ca2+ influx through STIM-gated CRAC/ORAI Ca2+ channels.
DAG, Ca2+ and Ca2+-calmodulin together activate GTPases which
directly or through intermediates act on LFA-1. By modulation of
Ca2+ signals, immune cells could thus modify LFA-1 activation,
which in turn would influence immune cell arrest and migration
and thereby the number of immune cells in cancer tissue.

2. In addition, LFA-1 contains a Ca2+ coordination site in its short
disulfide-bonded genu loop which is preserved during activation
from the bent to the extended state [54]. Whether this coordination
site ismodulated in anyway is presently unknown. Since extracellular
Ca2+ under most conditions should be quite constant, onewould not
predict that this coordination site plays a modulatory role in LFA-1
activation. However, in case external Ca2+ concentrations change in
cancer tissue (see below), LFA-1 function could be changed through
this mechanism.

3. Outside-in signaling through LFA-1 contributes to Ca2+ signaling.
It activates Ca2+ entry in T cells [58]. Interestingly, chemokine
activation of LFA-1 recruits the MTOC and mitochondria to the
immune synapse [59], where mitochondria control the activity of
CRAC/ORAI Ca2+ channels in T cells [60,61]. This mechanism
could also be relevant at the contact point between endothelial
cells and T cells and would in this case influence cytosolic Ca2+

signals in T cells. This may be highly relevant for T cell arrest and
transmigration through the endothelial layer. Sustained Ca2+

signals are correlated with T cell arrest during positive selection
[62] and it is reasonable to assume that high Ca2+ signals are
also relevant for T cell arrest at the endothelial cell layer.

Cytosolic Ca2+ signals are alsowell known to influence cellmigration
in many cell types including immune cells. There is a large body of
evidence that many Ca2+ permeable ion channels are relevant for cell
migration. Small, partly local cytosolic Ca2+ signals are usually needed
for optimal cell migration [63]. Thus, by influencing ion channel expres-
sion or localization, cells could modulate their migration behavior and
speed, and thismay in turn influence the efficiency of the immune attack
against cancer.

4.3. Immune synapse formation and killing

After successful migration to the cancer tissue and infiltration of
the tissue, which depends largely on tumor antigens, CTL and NK
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cells interact with cancer cells. A major problem is of course to recog-
nize cancer cells as targets that need to be eliminated, because cancer
cells try to escape detection by several mechanisms including surface
receptor regulation including adhesion receptors, MHC or Fas. We do
not want to discuss these very important issues here because nothing
is to our knowledge known about a potential Ca2+ dependence of
these mechanisms. Thus, we assume that either CTL or NK cell can
recognize particular cancer cells. That means, they will form an
immune synapse with the cancer cells with the goal to kill them.
The two most important killing mechanisms are the release of lytic
granules filled with perforin, which can perforate membranes, and
granzymes, which have proteolytic activity, at the IS and the activa-
tion of Fas–FasLigand receptors, also called death receptors [64].
These two mechanisms can probably work in parallel, however, little
quantitative data is available.

In a first approximation, release of lytic granules in CTL and NK cells
appears not to be that different from vesicle release in other eukaryotic
cell types [65–67]. While certain molecular details are probably differ-
ent between CTL/NK and neurons/chromaffin cells (the latter are
often used as amodel of an electrically excitable cell to study secretion),
the molecular toolbox appears to be quite similar, a clear indication
for similarity of the actual release event between immune cells and
neurons. Considering the very different functions of the cells, there are
phenotypic differences:

1. The kinetics are different. Neurons respond on a millisecond time
scale [68], chromaffin cells usually at on a second time scale [69,70],
whereas CTL and NK cells work most usually on a minute time scale
[71–73].

2. A neuronal synapse is mostly stationary, which means that vesicles
can be accumulated and even be pre-docked at the same subcellular
localization within the synapse to facilitate a fast and reliable synap-
tic transmission. In chromaffin cells, itmay not always be that impor-
tant where exactly vesicles are released. In CTL/NK cells, it is very
important that lytic granules are release at the immune synapse,
but the location of the immune synapse is not predefined and de-
pends on the cell-cell contact area. Thus, lytic granules have to be
transported to the immune synapse on demand.

3. How foolproof should vesicle release or lytic granule release from
CTL or NK cells be compared to other eukaryotic cells to secure
proper killing of the respective targets?

Next to the perforin/granzyme dependent target killing through the
release of lytic granules, CTL can also kill in parallel by activating Fas
receptors on target cells through Fas ligand (FasL) binding. Fas is a
member of the tumor necrosis factor (TNF) receptor family, which all
contain death domains and trigger apoptosis through the activation of
caspases including caspase 3, either in a mitochondrial-dependent
or— independentway. Fas-dependent apoptosis of target cells is some-
what slower than lytic granule-dependent killing and believed not to be
Ca2+ dependent [64,74] which is why it will not be considered in more
detail in this review.

4.3.1. The calcium dependence of immune synapse formation and killing
Contact between killer cells and cancer cells is achieved 1) through

surface receptors like T cell receptors of CTL, which specifically interact
with antigen-presenting MHC on cancer cells and 2) through adhesion
molecules like the integrin LFA-1 on T cells with its respective adhesion
receptor counterparts on cancer cells (Fig. 1A). An IS is usually formed if
TCR binds to the MHC-antigen receptor of the respective cancer cell
with high enough affinity. In contrast, NK cells will bind with high
enough affinity to the targets and are able to kill them ifmore activating
rather than inactivating receptors are present on their surface and if
they are more efficiently activated by target surface receptors than the
inhibitory ones.

IS formation in T cells is characterized by TCR and LFA-1 accumulation
at the contact point between killer cell and target cell as well as by actin
cytoskeleton rearrangement towards the IS [64], the latter of which is
not shown in Fig. 1A for simplicity. The microtubule organization center
(MTOC), Golgi apparatus, mitochondria and lytic granules also polarize
to the IS. Ca2+ influx is not necessary for IS formation as indicated by
actin accumulation in the complete absence of extracellular Ca2+, how-
ever, T cell polarization is not complete under these conditions because
mitochondria are not relocalized to the IS if Ca2+ entry through ORAI
channels is completely blocked [75]. This is not surprising because
motor-based transport of mitochondria requires Ca2+ elevations which
cannot be maintained by the transient Ca2+ release from internal stores
but requires Ca2+ influx across the membrane. Thus, certain functional
implications of IS formation require Ca2+ entry, however a (less func-
tional) IS may be formed without the need of any Ca2+ influx.

A potential role for Ca2+ in target cell contact has been described for
thymocytes [62]. The rise of intracellular Ca2+ through Ca2+ oscilla-
tions was necessary and sufficient to immobilize thymocytes as if
Ca2+ provided a STOP signal during positive selection. Thus Ca2+

could have a function to determine the length of IS formation; whereas
high Ca2+ immobilizes CTL and NK cells, lowering Ca2+ againmay pro-
vide a signal to break the symmetry of the IS, which is considered to be
the signal to restrict IS duration. Thus, Ca2+may play a role to control IS
duration and enforce kinetic synapses (also called kinapses), meaning
that cells are mobile during IS formation [64]. Kinapses would of course
be themost efficientway for CTL to kill target cells if contact time is suf-
ficient to secure lytic granule exocytosis. This is an interesting, but as of
yet not experimentally tested, role for Ca2+ influx in CTL function.

By analyzing ORAI1-defcient NK cells from a patient, Maul-Pavicic
et al. [36] observed that, while store-operated Ca2+ entry was deficient
(see below), NK-activating and inhibiting receptor expression was
mostly normal, perforin expression was normal, cytotoxic granule
polarization was not impaired, and inside-out signaling for LFA-1 acti-
vation was normal. This indicates quite normal NK-target cell “contact
signaling” in the absence of large Ca2+ rises, similarly to CTL. Therefore,
we conclude that Ca2+ is not required to make the initial contact be-
tween CTL and NK cells, it is however required for downstream signal-
ing following contact formation.

In case of CTL, TCR stimulation induces Ca2+ store depletion and
Ca2+ influx (Fig. 1A). Zweifach clearly demonstrated that this influx is
dependent on store depletion and that it resembles the hallmarks of
CRAC channels found in T helper cells and mast cells [76]. This Ca2+

entry is required for target cell lysis by CTL [3,77]. Following the discov-
ery of STIM and ORAI in 2005 and 2006, it was shown that CTL and NK
cells express STIM1 and ORAI1 and that STIM1/ORAI1 dependent Ca2+

entry is present in CTL and NK cells [31,35,36,78]. Very importantly,
Maul-Pavicic et al. [36] showed that the cytotoxicity of NK cells and
their target killing potential greatly depend on STIM1/ORAI1 dependent
Ca2+ entry.

To discuss the Ca2+ dependence of target cell killing in detail it is
necessary to review the actual killing process. We focus on the lytic
granule-based killing because it is certainly Ca2+ dependent, whereas
Fas–FasL dependent killing is probably not at all Ca2+ dependent
[64,74]. Following IS formation, lytic granules have to be transported
to the IS to release perforin and granzymes at the IS to kill target cells.
Transport of lytic granules to the IS has received great attention dur-
ing the last couple of years. Griffiths and colleagues have put forward
a model, in which lytic granule transport to the IS is mediated by
MTOC docking at the IS [73,79,80]. While MTOC docking at the IS is
not necessary for lytic granule exocytosis [81], the MTOC–IS interac-
tion model is attractive because it could secure directed and efficient
lytic granule release at, and only at, the IS. However, two recent
papers have challenged the MTOC–IS docking model. Our lab has
shown that Vti1b-dependent vesicle tethering between lytic granules
and TCR-containing vesicles is required for docking of lytic granules
at the IS but that the MTOC is still 0.5 μM away from the IS [72].
Furthermore, Kurwska et al. have presented compelling evidence that
kinesin-1 (in a complex with Slp3 and Rab27a) is required for the
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terminal transport of lytic granules to the IS, a process that appears to
exclude MTOC-IS docking [82,83]. We illustrate both models and a
hybrid of both models in Fig. 1B. In the hypothetical hybrid model,
tethered LG-TCR vesicles are transported in a dynein-dependent way
towards the MTOC and in a kinesin-1-dependent way from the MTOC
to the IS. In this model, the MTOC is polarized towards the IS as has
been reported by many labs including ours but not as close as reported
by Griffiths and colleagues.

Once transported and accumulated at the IS, lytic granules have to
fuse with the plasma membrane to release perforin and granzymes at
the IS to kill the target cell but not innocent bystander cells. The
molecular mechanism of exocytosis in CTL is only partially understood.
Most of themolecular players have been identified frompatients with a
dysfunction in CTL and/or NK-mediated killing which can result in
familial or acquired hemophagocytic lymphohistiocytosis (FHL or HL)
[43,65,66,84–86]. Next to perforin, which is mutated in FHL2 [86],
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Obviously, CTL and NK cells are not the best-studied membrane
and vesicle fusion systems. In many other eukaryotic cells, fusion
has been studied in much more detail [67] and many of the molecular
players have been identified and detailed mechanisms haven been
proposed. Südhof and Rothman [67] have recently summarized mem-
brane fusion as follows: SNARE proteins act as force generators, with
t-SNAREs on the target membrane and v-SNARES on the vesicles, SM
(Sec1/Munc18-like) proteins are shaped like clasps and control the
fusiogenic action while regulators like complexin and synaptotagmin,
the latter of which is regarded as one of the Ca2+ sensors, control
the timing of exocytosis. Before vesicles can fuse with the plasma
membrane they are docked and primed by docking and priming
factors like Munc18 and Munc13 [91,92].
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ntry and lytic granule release. TCR stimulation through a well-known signaling cascade
ding induces STIM1multimerization and in the ideal case twelve STIM1molecules activate
trolled by closebymitochondria, which control Ca2+ dependent ORAI1 inactivation. Lytic
lytic granules at the IS. Our lab has shown that Vti1b-dependent vesicle tethering between
ing) [72]. Kinesin-1 (in a complexwith Slp3 and Rab27a) is required for the terminal trans-
e illustrate both models and a hybrid of both models in Hypothetic hybrid. In this model,
n a kinesin-1-dependent way from the MTOC to the IS.
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Comparing the SNARE andMunc proteins involved in lytic granule re-
lease from CTL or NK cells to the proteins described in the well-studied
eukaryotes [65], it appears reasonable to assume that molecular mecha-
nisms are similar in CTL/NK cells and other eukaryotic cell types. Consid-
ering that CTL have on average only about 18 perforin-containing lytic
granules in the resting state [72], that CTL may only release one or a
few lytic granules per target cell killing, and that timing with a precision
of seconds or even milli-seconds may not be required at the IS, some
differences between the molecular mechanisms in CTL and NK cells
compared to other eukaryotic cells are however expected.

Which of the above-mentioned processes in CTL or NK are Ca2+ de-
pendent? At present nothing is known about a potential Ca2+

dependence of vesicle transport to the IS. The transport of other
organelles to the IS is however Ca2+ dependent. Mitochondrial polariza-
tion to the IS is Ca2+ dependent [75]. The molecular mechanism of
Ca2+-dependent motor-assisted transport of mitochondria along
microtubules has been unmasked by Wang and Schwarz [93]. They
showed that the EFhands of themitochondrial Ca2+-bindingRho-GTPase
Miromediates the Ca2+dependent arrest ofmitochondrialmotility. Ca2+

binding permits Miro to directly interact with the motor domain of
kinesin-1 which prevents the motor-microtubule interaction and subse-
quently arrests mitochondria. Considering the dynein and kinesin-1 de-
pendent transport of lytic granules along microtubules [82] (compare
also Fig. 1B), the Rho GTPase Miro may modify lytic granule transport
the same way as mitochondrial transport to the IS. If true, lytic granule
accumulation at the IS could be modulated by the internal Ca2+

concentration.
Lytic granule fusion is the other target for Ca2+ control. While the

Ca2+ dependence of lytic granule fusion is undisputed in CTL and NK
cells [3,36,77], the exact mechanisms and their Ca2+ dependence
have to be elucidated (compare [65] for a detailed and critical discus-
sion). Here, we discuss a model that illustrates the importance of
Ca2+ influx through ORAI channels for CTL or NK cell killing. Fig. 2A
illustrates the normal ORAI function in killing. TCR stimulation,
through a well-known signaling cascade involving ZAP-70, Lck, LAT,
PLCγ and IP3, induces Ca2+ store depletion (compare Fig. 1A). Ca2+

de-binding induces STIM1 multimerization and in the ideal case
twelve STIM1 molecules activate six ORAI1 subunits, which are
assumed to form one functional channel [100]. Ca2+ entry through
ORAI1 channels at the IS is heavily controlled by closeby mitochon-
dria [94,95], which modulate Ca2+ dependent feedback inhibition of
ORAI1. If ORAI2 and ORAI3 also accumulate at the IS and are
controlled by mitochondria has not been investigated yet. Normal
(modest) entry of Ca2+ through ORAI channels induces the fusion
of a few (in this case two) lytic granules per target cell in a
SNARE-dependent manner similar to other eukaryotic cells [65–67].
Considering the average number of 18 lytic granules per CTL [72]
(only 6 are shown for simplicity in Fig. 2A), one CTL could serially
kill up to 9 target cells (3 are shown in Fig. 2A) without refueling
their lytic granule pool (Fig. 2A). If ORAI-dependent Ca2+ influx is
now dramatically decreased, Ca2+ dependent lytic granule exocytosis
would be impaired. It has been recently shown by Maul-Pavicic et al.
[36] that the absence of ORAI in primary human NK cells from a
patient leads to reduced Ca2+ signals and decreased lytic granule
exocytosis. This is in a way a “trivial” case: No functional ORAI1 —

no Ca2+ entry (Fig. 2B). Interestingly, CTL could also use the
STIM1-ORAI1 protein ratio to modulate exocytosis. It has been
shown that one ORAI1 channel (with its six subunits [100]) needs
twelve STIM1 molecules to carry the maximum CRAC current
Fig. 2. The role of theCa2+ influxmagnitude throughORAI channels for efficient target cell killin
of lytic granules is released upon target cell engagement, assuring proper serial killing of severa
the STIM1 to ORAI1 expression ratio or by dysfunctional ORAI1 channels, no lytic granules are re
Ca2+ influx is too large, lytic granule release could be increasedwith the enhancedCa2+ entry. T
cells could be killed until new lytic granules are being produced.
[96,97]. By reducing STIM1 expression, Ca2+ entry decreases, but in-
terestingly also by increasing ORAI1 expression, Ca2+ entry decreases
almost to not detectable levels because too many ORAI1 channels
compete for the insufficient number of STIM1 and no ORAI1 channel
obtains the optimum of twelve STIM1 molecules. Thus, by shifting
the STIM1 to ORAI1 expression ratio, Ca2+ influx can be greatly de-
creased resulting in decreased lytic granule exocytosis. CTL could
also delocalize their mitochondria away from the IS, thereby reducing
Ca2+ entry [61,94]. All these maneuvers, by decreasing local Ca2+ at
the IS, would decrease lytic granule release and inhibit cancer cell
killing (Fig. 2B). Using the reverse maneuvers, Ca2+ influx could be
maximized. For instance, by optimizing the STIM1-ORAI1 ratio, CTL
or NK cells may significantly increase their Ca2+ entry, and this
could result in an increased lytic granule release. This may result in
lytic granule depletion with the result that only the first or first few
target cells could be killed (Fig. 2C). Thus Ca2+ influx in CTL or NK
cells should be adjusted to the need of the immune response against
cancer to secure efficient serial target cell killing.

5. Conclusions and perspective

Several steps during the killing of cancer cells by CTL and NK cells
are Ca2+ dependent. While it is reasonable to assume the Ca2+

dependence of finding cancer cells, lytic granule transport, and IS
duration considering the combination of several published reports
and the approximation form other T cell subtypes or other organelles,
these concepts need to be rigorously tested in the future. The Ca2+

dependence of lytic granule exocytosis has been clearly demonstrated
but needs to be analyzed in more quantitative detail. In this regard
it is of particular interest to define the Ca2+ channels responsible
for Ca2+ influx at the IS in CTL (in NK, ORAI1 is clearly very important
for lytic granule exocytosis), but also to define the different STIM-
ORAI ratios not only for STIM1 and ORAI1. This could be an
interesting mechanism to modulate the killing efficiency of CTL and
NK cells. The immune system would hopefully try to optimize this
ratio, while cancer may try to de-optimize it. Another very important
aspect of understanding the role of Ca2+ to efficiently kill cancer cells
is the quantification of external Ca2+ in cancerogenous tissue. At the
moment it is assumed that the free external Ca2+ concentration is
close to the free serum Ca2+, which is around 1.2 mM, but nobody
appears to know if this is really true. Fluctuations from this
value may greatly influence cancer cell killing by CTL and NK and
CRAC channels are well-suited to modulate killing because the KD
for Ca2+ permeation is in this range [98,99]. This means that small
variations in external Ca2+ could significantly alter Ca2+ signals
and Ca2+ dependent target cell killing. Controlling external Ca2+

could thus greatly influence tumor growth but also CTL and NK cell
killing efficiency and this should be tested in the future.

Abbreviations
APC antigen-presenting cell
[Ca2+]i intracellular Ca2+ concentration
CRAC channel Ca2+ release-activated Ca2+ channel
ER endoplasmic reticulum
CTL cytotoxic T cells
IS immune synapse
LFA-1 lymphocyte function-associated antigen 1
NFAT nuclear factor of activated T-cells
TCR T cell receptor
g. (A) Balanced vesicle release.When theCa2+ entry is optimized, the appropriate number
l target cells. (B) No vesicle release. When Ca2+ influx is impaired, for example by shifting
leased, resulting in dysfunctional target cell cytotoxicity. (C) Unbalanced vesicle release. If
hismay result in lytic granule depletionwith the result that only the first orfirst few target
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