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Abstract

Even if one can experiment on relevant factors, learning the causal structure of a dynamical
system can be quite difficult if the relevant measurement processes occur at a much slower
sampling rate than the “true” underlying dynamics. This problem is exacerbated if the
degree of mismatch is unknown. This paper gives a formal characterization of this learning
problem, and then provides two sets of results. First, we prove a set of theorems character-
izing how causal structures change under undersampling. Second, we develop an algorithm
for inferring aspects of the causal structure at the “true” timescale from the causal structure
learned from the undersampled data. Research on causal learning in dynamical contexts
has largely ignored the challenges of undersampling, but this paper provides a framework
and foundation for learning causal structure from this type of complex time series data.
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1. Causal Inference, Time Series, and Undersampling

When faced with a difficult causal learning challenge, one often turns to experimentation
or interventions as a way to reduce the complexity of the problem (e.g., by eliminating the
influence of unobserved common causes). This strategy is substantially more complicated,
however, when learning the causal structure of a dynamical system. In particular, the
“proper” experimental strategy is often to provide some exogenous shock to the dynamical
system, measure its evolution, and then apply a causal learning algorithm to the resulting
time series data, such as Demiralp and Hoover (2003); Moneta et al. (2011); Friedman et al.
(1999); Voortman et al. (2010). All such algorithms, however, assume that the “measure-
ment timescale” matches the “causal timescale.” That is, they assume that we measure
fast enough to capture the direct causal relations.1

In contrast, we focus in this paper on the quite common situation in which the mea-
surement timescale is slower than the causal timescale; that is, our data are undersampled
relative to the “true” speed of causal connections. To make the causal learning prob-

1. Algorithms that learn from independent samples from an equilibrium distribution (of a dynamical system)
essentially assume arbitrarily slow measurement timescales, and so are not applicable here.

c©2013 David Danks and Sergey Plis.
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lem even more realistic, we assume that the degree of undersampling is unknown. These
two assumptions—possibility of undersampling plus lack of knowledge about its extent—
characterize many application domains, including causal learning from fMRI or learning
climatological relations. Moreover, causal learning is truly hard under these conditions,
since undersampling can lead to true causal connections disappearing or changing (appar-
ent) direction while spurious causal connections appear at the measurement timescale.

This paper focuses on the theoretical aspects of causal learning given unknown under-
sampling. We first provide a precise formal characterization of the problem (Section 2). We
then provide theorems about the “forward” inference problem (Section 3): how does the
true causal structure change for different undersampling rates? We finish by using those
theorems to provide the first algorithm (in Section 4) for learning features of the true causal
structure given only the causal structure learned at the measurement timescale. The al-
gorithm is almost certainly not complete, but does demonstrate that the learning problem
is not hopeless: we can learn about the causal structure of a dynamical system even when
we have data undersampled at an unknown rate. The results reported here are part of a
larger research project, and so represent only “first steps” towards a full theory of causal
prediction and learning given undersampling. In particular, open questions remain about
(at least) learning given small datasets, weak causal connections, and small amounts of
undersampling. Nonetheless, this paper provides the framework for asking such questions.

2. Representing Temporal Causal Structures

Dynamical causal systems can be modeled using dynamic versions (Murphy, 2002; Eichler,
2006) of causal graphical models (Spirtes et al., 2001; Pearl, 1988; Lakshmikantham et al.,
2009); for convenience, we will refer to these as dynamic Bayesian networks or DBNs. Time
is modeled as proceeding in discrete steps.2 We assume that there are no isochronal causal
connections: that is, there are no direct causal relations between variables in the same
timestep. This assumption is relatively innocuous given that we do not assume that we
measure at, or even know, the precise causal timescale.

A DBN contains a graph G over random variables V at the current timestep t, as well
as nodes for V at each previous timestep in which there is a direct cause of the current
values of V (see Figure 1a for an example). The DBN also has a probability distribution
or density P (nV) over all of the nodes in G. G and P (nV) are connected through the
standard causal Markov3 and causal Faithfulness4 (or Stability or Minimality) assumptions.
We assume that the “true” causal structure is first-order Markov,5 and so the only direct
causes of variables at t are those at t− 1. In our setting, G is thus over 2V, and the only
permissible edges are V t−1

i → V t
j , where possibly i = j (i.e., a variable can cause its own

value in the next timestep).
Let {t0, t1, t2, . . . , tk, . . .} denote the timesteps at the causal timescale. Say that a data

sequence is (under)sampled at rate u if the measured timesteps are {t0, tu, . . . , tku, . . .} (and

2. Our focus throughout will thus be on difference equations. The results in this paper will be applicable
to systems governed by differential equations just to the extent that those differential equations can be
approximated sufficiently closely by a corresponding set of difference equations.

3. Variables are independent of their non-effects given their direct causes.
4. Variables that are independent conditional on some set are non-adjacent.
5. The Markov order is the largest k such that some Vi ∈ V at t− k is a direct cause of some Vj ∈ V at t.
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so the causal timescale is “sampled at rate 1”). Let G1 denote the true underlying causal
structure (i.e., the structure at the causal timescale). To determine the implied G at other
timescales, we first “unroll” G1 by adding instantiations of G1 at previous timesteps, where
Vt−2 bear the same causal relationships to Vt−1 that Vt−1 bear to Vt, and so forth. In this
unrolled (though still time-indexed by t, not absolute times) graph, all V at intermediate
timesteps are not measured, so we marginalize them out to yield a graph Gu.

There are rules for marginalizing out variables (Richardson and Spirtes, 2002), where
the result is an Acyclic D irected M ixed Graph (ADMG) (Richardson and Spirtes, 2002;
Richardson, 2003). In particular, V t−u

i → V t
j in Gu iff there is a directed path from V t−u

i

to V t
j in the unrolled G1, and V t

i ↔ V t
j in Gu iff there is a trek between V t

i and V t
j whose

paths have length k < u in the unrolled G1 (i.e., a common cause fewer than u timesteps
back is being marginalized out). It is straightforward to see that these bidirected edges are
the only isochronal edges in Gu, and if such an edge occurs in Gu, then it occurs in Gm for
all m > u. The result of “unrolling-and-marginalizing” Figure 1a is shown in Figure 1b. For
example, 1t−2 → 3t in G2 because unrolling G1 yields a graph in which 1t−2 → 2t−1 → 3t.
Similarly, 1t ↔ 2t in G2 because 1t ← 1t−1 → 2t in the unrolled G1.
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(b) DBN G2
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(d) G2 for (1b)

Figure 1: Undersampling example

Unrolling-and-marginalizing a DBN ADMG can be quite computationally complex and
unilluminating, so we instead use compressed graphs, which encode temporal information
in the edges, rather than the variables. Specifically, for arbitrary DBN graph H, H is its
compressed graph representation such that: (i) H is over non-time-indexed versions of V;
(ii) Vi → Vj in H iff V t−1

i → V t
j in H; and (iii) Vi ↔ Vj in H iff V t

i ↔ V t
j in H. Compressed

graphs can have cycles (Vi → Vj → Vi in H means V t−1
i → V t

j and V t−1
j → V t

i in H)

and even self-loops (V t−1
i → V t

i in H implies Vi → Vi in H). Note that there is clearly
a 1-1 mapping between DBN ADMGs and compressed graphs. The compressed graph
representations of G1 and G2 are shown in Figures 1c and 1d, respectively.

Instead of unrolling-and-marginalizing G1, we can determine Gu (and so Gu) by finding
directed sequences6 in G1. Specifically, Vi → Vj in Gu iff there is a directed sequence from
Vi to Vj of length u in G1. Similarly, Vi ↔ Vj in Gu iff there is a balanced trek7 of length
k < u between Vi and Vj in G1. Given that compressed graphs are computationally simpler
to study in the context of undersampling, we focus on G1 and Gu in the following sections.

6. A directed path in which nodes can be visited multiple times
7. In this context, a balanced trek of length k between Vi and Vj is a pair of directed sequences π1 : Vc →
. . .→ Vi and π2 : Vc → . . .→ Vj in G∗ such that length(π1) = length(π2) = k.
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3. “Forward” Inference

We first consider the impact of undersampling on the apparent causal structure at the
(possibly undersampled) measurement timescale: given G1 and some u, what is implied
about Gu? This section provides theorems (proofs in the Appendix) characterizing the
impact of undersampling, many of which depend on the notion of a strongly connected
component (SCC). An SCC in a compressed graph H is a maximal set of nodes S ⊆ V such
that: for every X,Y ∈ S there is a directed path from X to Y . SCCs always pick out cyclic
(sub)graphs, since there must be a directed path from X to Y and also from Y to X. The
one exception is that a singleton node is always a (perhaps non-maximal) SCC, even if it
does not have a self-loop. If G1 has no (non-singleton) SCCs (i.e., if the compressed graph
representation of G1 is a DAG), then undersampling destroys the directed edges:

Theorem 1 If G1 is a DAG (with no self-loops) and l is the length of the longest directed
path in G1, then ∀u > l, all edges of Gu (possibly none) are bidirected.

Next, suppose G1 contains nonsingleton SCCs. Any SCC is composed of a set of simple
loops: directed cycles in which no node is repeated. For example, the graph in Figure 1c
is a single SCC with two simple loops (the four-variable loop, and the self-loop at 1). Let
LS be the set of lengths of the simple loops in SCC S, and let gcd(LS) be the greatest
common divisor of those simple loop lengths. Interestingly, the gcd is the critical factor
in determining asymptotic (as undersampling increases) stability (Theorem 2 below), as
well as stable SCC membership regardless of undersampling (Theorem 3). Moreover, if
gcd(LS) = 1, then the structure converges (as u increases) to a graph we call a superclique
(Theorem 4).

Theorem 2 ∃m∀i, j > m[Gi & Gj are the same graph] iff gcd(LS) = 1 for SCC S ∈ G1

Theorem 3 S is an SCC in Gu for all u iff gcd(LS) = 1 for SCC S ∈ G1

Theorem 4 If gcd(LS) = 1 for SCC S ∈ G1, then ∃u such that, for all undersampling
rates k > u, S forms a superclique: each X,Y ∈ S are connected in Gk via ←, →, and ↔
(and so ∀X ∈ S, X has a self loop).

Note that the condition of gcd(LS) = 1 is quite weak, as it only requires that each
SCC either have at least one node with a self-loop (i.e., one variable that is a cause of its
own value in the next timestep), or be sufficiently “dense” with loops of different lengths.
Moreover, if there is a self-loop node, we can bound the time-to-convergence to a superclique

in terms of two quantities: for a given node X, define lenX→ = max
B∈S

[
min

σ:X→...→B
length(σ)

]
and len→X = max

A∈S

[
min

π:A→...→X
length(π)

]
. Theorem 5 implies that an SCC with a self-loop

can become a superclique even with relatively little undersampling.

Theorem 5 If ∃Q ∈ S with a self-loop in G1, then S is a superclique in GlenQ→+len→Q,
where (lenQ→ + len→Q) ≤ 2(|S| − 1) is a tight bound.
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4. Causal Search

The results in the previous section can be used as a basis for causal search: given Gu for
some unknown u, what features of the true underlying G1 can be inferred? There is clearly
a significant problem of underdetermination here. For example, the details of the proof of
Theorem 1 imply that any compressed graph DAG in which variables have at most one
child will, for sufficiently large n, be an empty graph after enough undersampling. So the
set of G1 consistent with Gu being an empty graph is incredibly large, given that we do not
know the actual u. At the same, the problem is not completely intractable, as we may be
able to infer partial information about the structure of G1.

Theorem 3 showed that the node-membership of an SCC does not change when we
undersample, regardless of the undersampling rate. There are polynomial-time algorithms
for finding the SCCs in a graph (Cormen et al., 2001), and so the first step in inferring G1
structure is to identify the SCCs in Gu. For some compressed graph H, we can construct the
“SCC-graph” HS. Each node Si ∈ HS corresponds to an SCC Si in H, and Si → Sj in HS

iff there exists at least one Xi ∈ Si and at least one Xj ∈ Sj such that Xi → Xj in H. HS

encodes the “SCC parent” relations: Si → Sj in HS iff some node in Si is a parent in H of
some node in Sj . HS provably has a useful structure (Theorem 6) whose ancestral relations
(though not necessarily the direct parent relations) are unchanged by undersampling when
gcd(LS) = 1 for all SCCs S (Corollary 7).

Theorem 6 For all H, HS is a DAG

Corollary 7 If gcd(LS) = 1 for all S ∈ G1, then ∀i, j[same ancestral relations in GSi & GSj ].

Theorem 4 showed that an SCC S with gcd(LS) = 1 becomes a superclique with enough
undersampling. This convergence destroys all information about the internal structure of
S. However, if S has not yet converged to a superclique, then we can sometimes extract
some information from Gu, such as the definite existence of a self-loop in G1 (Theorem 8).

Theorem 8 If gcd(LS) = 1 for SCC S ∈ G1 and X is the only self-loop node in S in Gu,
then X has a self-loop in G1.

There are currently no theorems demonstrating the full information set that can be ex-
tracted, but we can nonetheless assemble the pieces that we do have into Algorithm 1 that
extracts constraints on G1 from some given Gu.

5. Conclusion

This paper provides a formal foundation for causal learning given unknown undersampling,
and presents a preliminary algorithm for learning from such data. Rather than focusing
on the theory, one could instead approach the problem by trying to develop a score-based
procedure that searches more directly through 〈G, u〉 space to find possible structures at
the causal timescale. Plis and Danks (in prep) implement an MCMC search over this
space and show that the G1 structure can often be partly recovered, though there are
significant statistical challenges. We thus have multiple algorithms that can extract some
(though obviously not all) features of the “true” causal structure from undersampled time

5



Danks, Plis

Algorithm 1: Recovering definite features of G1
Input: undersampled ADMG Gu

1 begin construct GS
2 identify SCCs S1, . . . ,Sk in Gu;
3 VS ← {S1, . . . , Sk} & GS ← empty graph over VS;
4 forall the 〈Si,Sj〉 do
5 if ∃Xi ∈ Si, Xj ∈ Sj(Xi → Xj) then
6 Add Si → Sj to GS;

7 begin identify definite self-loops
8 foreach Si do
9 if ∃ unique X ∈ Si(X → X) then label X → X as definite in G1;

series data. The obvious gap in the present paper is the lack of an algorithm for learning
within-SCC structure when the undersampling rate is low enough that the SCC is not yet
a superclique. That problem is focus of ongoing research, but the results presented here
suggest that the overall problem should be soluble, despite its obvious complexity.
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Supplementary Information: Appendix A. Proofs of theorems

Multiple theorems below use the notion of a numerical semigroup: a set N ⊆ N such that:

• 0 ∈ N

• N \N is finite

• ∀x, y ∈ N, (x+ y) ∈ N

Numerical semigroups can always be defined by a basis set B = {x1, x2, . . . , xr}, where
n ∈ N iff n =

∑r
i=1 αixi for αi ∈ N. A well-known fact about numerical semigroups is:

Observation. N is a numerical semigroup iff gcd(B) = 1.
Note also that there is a number gN for each N (its so-called Frobenius number) such that
∀n > gN, n ∈ N. We can then provide the following Lemma:

Lemma 9 gcd(LS) = 1 iff ∃m∀n > m such that, for every A,B ∈ S, there is a directed
sequence π : A→ . . .→ B & length(π) = n.

Proof ⇒) Let L be the set of simple loops in S. For any A,B ∈ S, there is a directed
sequence σAB from A to B that passes through every simple loop at least once. By adding
complete loops in the middle of σAB, we can construct directed sequences from A to B
of length: length(σAB) +

∑
L∈L nLlength(L), where ni ∈ N. Since gcd(L) = 1, the set of

possible values for the sum forms a numerical semigroup, and so all l > gL (i.e., larger than
the Frobenius number for L) can be formed by some such sum. This implies that, for all
l > (gL + length(σAB)), there is a sequence of length l from A to B. The right-hand side
of the lemma thus holds when m = max

A,B∈S
(gL + length(σAB)).

⇐) Assume there is some m such that, for all A,B ∈ S, there are always length n > m
sequences from A to B. The length of any directed sequence from A to B can always
be expressed as

∑
length(δi) +

∑
L∈L nLlength(L), where the δi’s are directed paths (not

loops/sequences). Since S is finite, there are only finitely many directed paths and all have
finite length. Hence, the only way for the assumption to hold is for there to be some k such
that every l > k can be formed from

∑
L∈L nLlength(L). Therefore,

∑
L∈L nLlength(L)

must be a numerical semigroup, which implies gcd(L) = 1.

Theorem 1 If G1 is a DAG (with no self-loops) and l is the length of the longest directed
path in G1, then ∀u > l, all edges of Gu (possibly none) are bidirected.
Proof For any A,B ∈ V, A→ B ∈ Gu iff ∃π ∈ G1 : A→ . . .→ B and length(π) = u. By
assumption, u is greater than the longest directed path in G1, and so there can be no such
π. Hence, the only possible edges in Gu are bidirected ones.

Theorem 2 ∃m∀i, j > m[Gi & Gj are the same graph] iff gcd(LS) = 1 for SCC S ∈ G1
Proof ⇒) Prove the contrapositive: assume ∃S gcd(LS) 6= 1. By Lemma 9, this implies that
∃A,B ∈ S such that there is no m for which ∀n > m, ∃π : A→ . . .→ B & length(π) = n.
But that means that, for all u1 such that A→ B is in Gu1 , there is some u2 > u1 such that
A→ B is not in Gu2 , and vice versa. Hence, Gu does not stabilize as u→∞.

8
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⇐) Assume ∀S gcd(LS) = 1. The proof of Theorem 4 (below) shows that every S converges
to a superclique. Now consider A ∈ S1 and B ∈ S2. If A is an ancestor of B, then there is
a directed path π from A to B. By Lemma 9, there is some m such that there are directed
sequences from B to B for all lengths l > m, and so directed sequences from A to B for all
lengths l∗ > (length(π) +m), and so A→ B in all Gu for u > (length(π) +m). Alternately
(and not exclusively), suppose that A and B share an ancestor C. Similar reasoning shows
that there must some q such that there is a balanced trek between A and B with C as the
head, and with arms of length q. Thus, A↔ B in all Gu for u > q. Finally, suppose that A
and B share no common ancestor (and so neither is an ancestor of the other). In this case,
A and B will be non-adjacent in Gu for all u, since there are (by assumption) no directed
sequences or balanced treks between them. Hence, Gu eventually converges.

Theorem 3 S is an SCC in Gu for all u iff gcd(LS) = 1 for SCC S ∈ G1

Proof ⇒) Prove the contrapositive: assume gcd(LS) 6= 1. Any directed sequence σ from
A back to itself will be composed entirely of complete simple loops, and so length(σ) =
r × gcd(LS) for some r. Now consider some arbitrary A,B ∈ S such that A → B. For a
given u, there will be a path from A to B in Gu iff there is a directed sequence from A to
B of length ku (for integer k) in G1. Let u = gcd(LS). First, suppose A → B is the only
directed path from A to B in G1, so any sequence ν from A to B in G1 must be a sequence
from A to itself, followed by A → B. So, any such ν must have length(ν) = ru + 1 for
some r ≥ 0, and so there is no k such that length(ν) = ku since u > 1. Hence, there is
no path from A to B in Gu. Now suppose that there are other directed paths π1, . . . , πc
from A to B in G1. Let σ1, . . . , σd be all simple loops in S that involve A → B. Since
σj is a simple loop in S, length(σj) = rj × gcd(LS) for some rj . Define µij to be the
sequence from A to itself formed by πi followed by σj without A → B. By definition,
length(µij) = length(πi) + length(σj)− 1. Also, length(µij) = sij × gcd(LS) for some sij .
Therefore, length(πi) = si× gcd(LS) +1 for some si. So for any sequence ν from A to B in
G1 formed by a sequence from A to itself followed by one of the πi, length(ν) = ru+ 1 for
some r ≥ 0, and so there is no k such that length(ν) = ku. Hence, there is no path from
A to B in Gu. The node-membership of the SCC thus changes, since A,B ∈ S for G1, but
A,B /∈ S for Gu when u = gcd(LS).

⇐) Consider A,B ∈ S and some arbitrary u. By Lemma 9, ∃m∀n > m∀A,B ∈ S∃π :
A → . . . → B & length(π) = n. Let k be the smallest integer such that ku > m. By the
Lemma, there is a directed sequence σ from A to B in G1 with length(σ) = ku, so there is
a directed sequence from A to B in Gu of length k. Now consider A ∈ S and B /∈ S, and
suppose that they in the same SCC in Gu. In that case, there must be directed sequences
π1 : A → . . . → B and π2 : B → . . . → A in Gu. By definition of edges in Gu, that
means that there are directed sequences π∗1 : A → . . . → B and π∗2 : B → . . . → A in G1.
Thus, A and B were members of the same SCC in G1, contrary to assumption. Hence, the
membership of S does not change as u varies.

Theorem 4 If gcd(LS) = 1 for SCC S ∈ G1, then ∃u such that, for all undersampling rates
k > u, S forms a superclique: each X,Y ∈ S are connected in Gk via ←, →, and ↔ (and
so ∀X ∈ S, X has a self loop).

9
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Proof By Lemma 9, there is some m such that every pair of variables A,B is connected by
directed sequences of length n for all n > m. Let u = m+1. This implies that, for all k > u,
there is a directed sequence of length k from A to B, and so A→ B is part of Gk. Moreover,
for any third variable C ∈ S, there must be sequences with length ≤ m + 1 from C to A,
and from C to B. That is, there is a balanced trek with arm-length ≤ m + 1 between A
and B, and so A↔ B will be part of Gk for all k > u. Hence, S forms a superclique in Gk
for all k > u.

Theorem 5 If ∃Q ∈ S with a self-loop in G1, then S is a superclique in GlenQ→+len→Q,
where (lenQ→ + len→Q) ≤ 2(|S| − 1) is a tight bound.
Proof For convergence to a superclique, note that the definitions of lenQ→ and len→Q
imply: for any A,B ∈ S, there is a sequence π : A → . . . → Q → . . . → B with
length(π) ≤ (lenQ→ + len→Q). Thus, A → B in GlenQ→+len→Q (possibly by adding self-
loops of Q to the middle of π). Furthermore, all paths σ from Q to any A and B each have
length(σ) ≤ lenQ→. Therefore, there is a balanced (possibly by adding self-loops of Q to
one of the arms) trek of length ≤ lenQ→ < (lenQ→ + len→Q) between any A,B. Thus,
A ↔ B for all u ≥ (lenQ→ + len→Q). Hence, S in GlenQ→+len→Q is a superclique. For the
bound, note that, by definition of an SCC, there is a directed sequence from any X to any
Y . The shortest such sequence must be a directed path, and so lenQ→ and len→Q both
must be ≤ |S| − 1 since a directed path uses every node in S at most once. To see that
the bound is tight, let S be a single simple loop (plus the self-loop at Q). In this case,
len→Q = |S| − 1 when A is Q’s child and lenQ→ = |S| − 1 when B is Q’s parent.

Theorem 6 For all H, HS is a DAG
Proof Suppose HS is not a DAG for some H. Let π be a cyclic path in HS : Sπ(1) →
Sπ(2) → . . . → Sπ(1). By construction of HS, there must be, for all j < length(π),
Xo(j) ∈ Sπ(j), Xi(j+1) ∈ Sπ(j+1) such that Xo(j) → Xi(j+1) in H. Because each Sj is an
SCC in H, there is a within-SCC directed path between any two nodes in the SCC. By
joining these within-SCC paths with the between-SCC edges, we can construct a path π∗ in
H from any node in some Sπ(i) to any node in some other Sπ(j), perhaps by going “around
the cycle” through Sπ(1). But that implies that we have only one SCC that includes all
nodes from all Sπ(i), contrary to construction of HS.

Theorem 8 If gcd(LS) = 1 for SCC S ∈ G1 and X is the only self-loop node in S in Gu,
then X has a self-loop in G1.
Proof Suppose X does not have a self-loop in G1, and so u > 1. In that case, the self-loop
in Gu must be because of a directed sequence π = X → Y → . . . → X of length u in G1.
Moving the X → Y edge from being first in π to the end of π yields the directed sequence
π∗ = Y → . . . → X → Y . π∗ has length u in G1, so Y should also have a self-loop in Gu,
contrary to the assumption that X is the only self-loop in S.
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