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Abstract

We examine the identification of firm-product markups in multi-product firms using

production-side data. Identifying within-firm markup differences relies on identifying

the marginal rates of transformation across goods. Since marginal rates of transfor-

mation are generally functions of (i) the degree of joint production and (ii) the mag-

nitude of within-firm productivity differences, we explore whether markup estimates

are sensitive to misspecification in these factors. Monte Carlo exercises indicate that

misspecification of within-firm productivity differences is particularly likely to generate

bias. However, a weighted average of firm-product level markups (the “firm markup”)

can be identified without information on these factors, and nests the firm markup of

De Loecker and Warzynski (2012). The firm markup can be estimated using standard

empirical methods. Standard parametric restrictions on the marginal rates of trans-

formation across goods often deliver implausible estimates of plant-product markups.

Firm markups, which do not require these restrictions, are more well behaved. We also

discuss the welfare properties of the firm markup.
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British Columbia-Sauder, University of Florida, University of Toronto, the Canadian Economics
Association Meetings (2021), EARIE (2022), and EIIT (2022), IIOC (2023) and NAPW (2023) for
helpful feedback. Any remaining errors are our own.



1 Introduction

In an extremely influential paper, De Loecker and Warzynski (2012) build on Hall (1986)

to develop an approach for estimating firm-level markups. This “production-side” approach

is valuable because it does not require a researcher to estimate demand nor impose mar-

ket conduct assumptions, as is common elsewhere in applied industrial organization (e.g.

Bresnahan 1989, Berry et al. 1995). While most exercises using De Loecker and Warzyn-

ski (2012) provide estimates of markups at the firm or plant level, textbook treatments of

market power emphasize market power at the product level. While this distinction makes no

difference for single-product firms, multi-product firms account for a majority of economic

activity in many countries.1

Given the importance of multi-product production in modern economies, this paper aims

to answer two key questions. First, what features of the production technology does an

econometrician need to identify to estimate firm-product markups in multi-product firms?

Second, how might we interpret firm-level markups estimated for a multi-product producer

using the De Loecker and Warzynski (2012) methodology? This second question is im-

portant, as a recent literature asking whether market power has increased relies crucially

on this production side approach to estimating markups (De Loecker and Eeckhout, 2018;

De Loecker et al., 2020).

To help us answer both questions, we first consider the problem of identifying firm-

product-level markups when output data is available at the firm-product level but input

data is only available at the firm-level. We refer to such data as standard production data.2

De Loecker et al. (2016) provide a popular solution to this problem based on two key re-

strictions. First, they require production to be non-joint, meaning that each multi-product

producer allocates all of their inputs in a mutually exclusive and exhaustive way across their

product-line-specific production functions. Second, they require that there are no within-firm

productivity differences, such that a firm is equally productive at producing all products.

We consider identification of product-level markups in a setting that allows for joint or

non-joint production, as well as within-firm productivity heterogeneity. We characterize each

firm’s technology through an output distance function (e.g. Caves et al. 1982). This ap-

proach allows us to represent non-joint technologies, as well as joint production technologies

that incorporate economies of scope, a potentially important rationale for multi-product pro-

1For example, Bernard et al. (2011) document that 12% of U.S. firms in 2000 that exported more than
five products to more than five destinations accounted for more than 90% of export value, and multi-product
firms produce roughly two-thirds of aggregate output in our data for India that we discuss below.

2While the data used in this paper is reported at the plant-level, we use the terms firms and plants
interchangeably in the paper unless otherwise stated.
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duction (Baumol et al. 1982). Because within-firm productivity dispersion can be difficult

to define in settings involving joint production, we consider technologies that allow for het-

erogeneity in marginal rates of transformation; a natural metric for productivity differences

in multi-product firms.

We show that identification of product-level markups using standard production data

requires that the researcher know the extent of joint production, as well as the degree of

heterogeneity in marginal rates of transformation across firms (“MRT heterogeneity”). We

use Monte Carlo simulations to show that abstracting from joint production and (espe-

cially) MRT heterogeneity can lead to noticeable differences in estimated markups. Unfor-

tunately, past research in this area has shown that identification of MRT heterogeneity may

require that researchers know how firms compete with one another, which already disciplines

product-level markups within the firm.3

This motivates the second part of our paper which derives an alternate firm-level markup

that does not require the researcher to know the magnitude of MRT heterogeneity or joint

production. This object is a weighted average of firm-product markups within the firm,

with weights equivalent to product-level cost shares, where costs are allocated to products

by considering how much costs would rise (locally) when increasing one output, relative to

increasing all outputs by the same proportion. This object is welfare relevant, in that it can

be interpreted as a firm-level output wedge which scales down the production of each product

within the firm uniformly, decreasing overall welfare relative to what a social planner would

choose. Therefore, our firm-markup is a symptom of across-firm misallocation as in Edmond

et al. (2015, 2022).

Empirically, the firm-markup is recovered by the De Loecker and Warzynski (2012) for-

mula under reasonable restrictions on the technology. This is important for two reasons.

First, our definition of the firm-markup, which is based on a general representation of a firm’s

technology, provides a coherent lens to interpret the De Loecker and Warzynski (2012) firm

markup formula. Second, by building a model of multi-product producers to rationalize the

De Loecker and Warzynski (2012) markup when quantity data is available, we address recent

criticisms by Bond et al. (2021) that if production technologies are estimated with revenue,

then the approach is unlikely to recover the firm’s markup. In particular, we show that the

procedure developed in De Loecker et al. (2016), which first selects the subsample of single-

product firms to estimate a product-level production function, can be used to identify the

firm-markup even if there is joint production and within-firm productivity heterogeneity.4

3See Valmari (2016), Gong and Sickles (2021), Orr (2022). These papers only considered non-joint
production settings where MRT heterogeneity ends up being analogous to identifying within-firm productivity
dispersion.

4We also show that their selection correction can be extended to settings with joint-production as well.
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This is important as this approach allows researchers to use quantity data to estimate the rel-

evant technology parameters, while avoiding the complications generated by multi-product

firms in estimation. We also show that a cost share estimator (Syverson 2004, Foster et

al. 2008, Backus 2020, Raval 2023) can be used to recover the firm markup. Importantly,

this approach can be used even when quantity data is not available, and the estimator can

be applied to all firms in the sample, including multi-product producers.5 Consistent with

past work in this area (e.g. De Loecker and Syverson 2021), these two approaches rely on

non-overlapping restrictions to the specification of a firm’s technology and environment.

We close by using Indian Annual Survey of Industries (ASI) data provided by the Indian

Ministry of Statistics to compare product-level markups, estimated under various assump-

tions on MRT heterogeneity and joint production, to plant-level markups. We document

that restricting MRT heterogeneity tends to generate a large mass of estimated markups

where P
MC

= 0. We call this a zeros puzzle. We show that this puzzle can only partly

be resolved by relying on a productivity ladders model following Mayer et al. (2014) that

allows for within-firm productivity differences. We also show that the puzzle can be almost

completely resolved by relying on revenue shares to allocate inputs across product lines.

However, since revenue share input allocation rules impose constant within-firm markups as

in Orr (2022), these two results suggest that further work quantifying the degree of MRT

heterogeneity is needed to fully pin down reasonable estimates of product-level markups in

multi-product plants.

We then compare these results to our plant markups. We find that plant markups are

generally quite well behaved, and do not suffer from the zeros puzzle. We also find that

relying on cost share estimator, or an estimator based on single product plants with a

selection correction, yield remarkably similar estimates of the distribution of plant-markups.

Contribution to the Literature

First and foremost, our paper contributes to the vast and growing literature on estimating

markups using production data. The paper’s core contributions are to two separate strands

of this literature. First, we build on past work by De Loecker et al. (2016), Grieco et al.

(2016), and Dhyne et al. (2022) on how to approach estimation of markups using production-

side data when firms produce many products. On the theoretical front, we propose and study

a class of technologies that nest both single- and multi-product production, which allows us

5This also allows our approach to deal with critiques raised by Flynn et al. (2019), Doraszelski and
Jaumandreu (2019), and Bond et al. (2021) concerning the internal consistency of proxy-variable approach
to production function estimation in the presence of market power, and also allows us to construct estimators
that can deal with the issues documented in Raval (2022, 2023).
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to explore what features of a firm’s technology can be identified by a (selected) sample of

single-product firms. This allows us to extend the identification results in De Loecker et

al. (2016) to settings with joint production. Our identification results for the firm-markup

also extends insights in De Loecker and Warzynski (2012) on the interpretation of firm

markups. In particular, they note that when firms sell products to many markets, their firm-

level markup can be interpreted as an input expenditure share weighted average of market

specific markups. We provide a generalization of this result to joint production settings,

where input allocations may not be well defined. This generalization relies on the insight

that one can obtain product-level cost shares by considering the ratio of local cost increases

for increasing a given output, relative to the local cost increase of increasing all outputs by

the same proportion. We further show that this firm-level object is welfare relevant, and can

be used to quantify the degree of across-firm misallocation, taking within-firm misallocation

as given. Finally, our Monte Carlo exercises, as well as out empirical results, illustrate that

accounting for MRT heterogeneity in multi-product firms may be of first-order importance

for identifying product-level markups.

We also contribute to a second strand of the literature on production-side markups, fo-

cused on clarifying the data requirements and assumptions necessary to properly identify

markups. Bond et al. (2021) point out that standard approaches based on estimating rev-

enue production functions, rather than quantity production functions, are unlikely to identify

markups. In response, Kasahara and Sugita (2020), Kirov and Traina (2021) have proposed

alternative methods that will still identify the markup in settings where only revenue is

observed, although they restrict attention to single-product firms. De Ridder et al. (2022)

also consider a single-product firm environment, and argue that even though revenue pro-

duction functions generate bias, the recovered markup may still be strongly correlated with

true markups. Our paper avoids the Bond et al. (2021) critique by embracing the fact that

production-side markups will be correctly estimated as long as one can estimate the relevant

quantity elasticities. This data is becoming increasingly available (e.g. Foster et al. 2008,

Baldwin and Gu 2009, De Loecker et al. 2016, Blum et al. 2018, De Roux et al. 2021, Orr

2022, Dhyne et al. 2023), and the techniques developed in this paper provide a useful guide

for how to obtain these relevant elasticities in practice. We do this by addressing a specific

data challenge generated by quantity data — the inability to allocate inputs to product lines

— and provide multiple ways to recover firm markups in this setting.

This paper contributes to the literature on specifying multi-product production tech-

nologies. We provide what we believe to be a novel articulation, building on insights in

Samuelson (1966) and Hall (1973), of how different specifications of a firm’s production pos-

sibility set can capture joint or non-joint production. We also provide a representation of a
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firm’s technology through it’s output distance function that is dual to the CES cost function

for multi-product firms studied by Baumol et al. (1982), and estimated in other applied

studies (e.g. Johnes 1997). We derive this representation of a firm’s technology through an

input allocation problem, where firms can use their inputs to produce private, rival inter-

mediates, as well as public, non-rival intermediates, that contribute to the production of all

products simultaneously.6 This particular specification of a firm’s technology ends up having

a similar structure to the class of production models considered in Eslava et al. (2023) and

De Roux et al. (2021), except that we rely on an entirely production-side focused derivation

of the technology, with no reference to consumer preferences. We believe that this particular

specification of a firm’s technology will be useful to further applied work, as it provides a

convenient way to nest both joint and non-joint production, as well as parameterize the

degree of scope economies within a firm.7

The paper is structured as follows. Section 2 describes how we use output distance func-

tions to parameterize a firm’s technology. Section 3 derives expressions for plant-product

markups using output distance functions, highlighting the key features of a production tech-

nology that needs to be known by a researcher to identify these markups. Section 4 presents

our firm-level object and offers welfare based interpretations. Section 5 provides techniques

for identifying the firm-level markup. Section 6 discusses our data and econometric imple-

mentation. Section 7 presents results. Section 8 concludes.

2 Production Technologies

We first introduce notation and what is known to the econometrician. Firms are indexed

i = 1, .., N , products j = 1, ..., J , and inputs s = 1, ..., S. We assume that the econometrician

observes what we call standard production data that includes a 1 × J vector of output

quantities Yi ≡ (Y 1
i , Y

2
i , ...Y

J
i ) ∈ RJ

≥0 and revenues Ri ≡ (R1
i , R

2
i , ...R

J
i ) ∈ RJ

≥0, as well

as a 1 × S vector of input quantities Xi ≡ (X1i, X2i, ...XSi) ∈ RS
≥0 and expenditures Ei ≡

(E1i, E2i, ...ESi) ∈ RS
≥0. Superscripts j refer to different outputs, and subscripts (s, i) index

inputs s and firms i. We assume that standard production data only contain information on

firm-level aggregate inputs and not how inputs are allocated across product lines j.

We define a firm’s technology as its production possibility set, Pi, where the firm is only

6This problem has a similar structure to the models of scale and scope considered in Ding (2022) and
Argente et al. (2020); our key distinction is that we load spillovers across product lines through non-rival
inputs that directly affect production, rather than knowledge or ideas which affect production through
changes in productivity.

7See concurrent work by Khmelnitskaya et al. (2023) on identifying scope economies in the beer industry
using the class of technologies proposed in this paper.
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capable of producing with output and input vectors (Yi,Xi) ∈ Pi.8 A firm’s production

possibilities frontier summarizes the maximal quantities of output that may be obtained

for a given vector of inputs. As in Caves et al. (1982), we characterize a firm’s production

possibility frontier using an output distance function that maps all possible non-negative

output and input vectors (Yi,Xi) to a non-negative scalar δ:

Definition 1 A firm’s output distance function, Di (Yi,Xi) : RJ+S
≥0, 6=0 → R+, solves:

Di (Yi,Xi) ≡ min
δ
δ s.t.

(
Yi

δ
,Xi

)
∈ Pi. (1)

The solution to this problem tells us by what (minimum) factor a firm must scale an

output vector Yi such that it can produce Yi

δ
with Xi. If Di (Yi,Xi) > 1, the firm cannot

produce Yi with Xi; if Di (Yi,Xi) < 1, the firm can produce a vector of outputs which is

strictly larger than Yi with Xi. This leads to the following definition:

Definition 2 A firm’s production possibility frontier, PFi ⊂ Pi, is the set of all (Yi,Xi)

satisfying

Di (Yi,Xi) = 1. (2)

For the rest of the paper, we make the following assumption on the shape of the output

distance function, Di(Yi,Xi):

Assumption 1 Di(Yi,Xi) is continuous, twice-differentiable, and quasi-convex.

We now define several properties of a firm’s technology that are relevant for results

that follow: heterogeneity in marginal rates of transformation, joint production, and nesting

single-product production. We then use these properties to characterize whether there is joint

or non-joint production based on the shape of the output distance function.

2.1 Heterogeneous Marginal Rates of Transformation

Large firms tend to produce multiple products with the firm’s core product often defined

as the product that is produced with the highest level of productivity or that which generates

the highest revenue (Eckel and Neary 2010, Mayer et al. 2014, Orr 2022). It is reasonable

to examine technologies that allow the core product to vary across firms. We consider

broad classes of technologies —including joint production technologies where the notion of

product-line specific productivity can be difficult to define. To this end, we capture the idea

8We assume Pi always includes (0,Xi) so that a firm can always produce nothing, and that production
possibility sets satisfy a no free lunch property, such that for Yi > 0, (Yi,0) /∈ Pi.
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of core products varying across firms by considering technologies where the marginal rates

of transformation (MRT) for various products can vary across firms.

Marginal rates of transformation can be obtained from a firm’s output distance function

by totally differentiating a firm’s output distance function at Di (Yi,Xi) = 1 for an arbi-

trarily small change in the output of good j and k, holding the output of all other goods

fixed:
∂Di (Yi,Xi)

∂Y j
i

dY j
i +

∂Di (Yi,Xi)

∂Y k
i

dY k
i = 0. (3)

The marginal rate of transformation, which we represent as ∆kj
i (Yi,Xi), is defined as

the marginal change in good k needed to increase good j by one unit:

∆kj
i (Yi,Xi) ≡

dY k
i

dY j
i

= −
∂Di(Yi,Xi)

∂Y ji
∂Di(Yi,Xi)

∂Y ki

. (4)

We define a model as having heterogeneous marginal rates of transformation — or MRT

heterogeneity for short — if ∆kj
i (Yi,Xi) is indexed by i:

Definition 3 A production model allows for MRT heterogeneity, if for any (Yi,Xi),

∆kj
i (Yi,Xi) can take on any value in R+ and can differ across i.

The simplest version of a production model allowing for MRT heterogeneity is a firm-level

Ricardian model where labor Li is the only factor of production, there is no joint production,

and there are constant returns to scale. In this case, the output distance function takes the

form Di (Yi,Xi) =

Y 1
i
A1
i

+
Y 2
i
A2
i

Li
, and ∆12

i = −A2
i

A1
i
, where Aji are product-line Hicks specific TFP

shifters. Here (A1
i , A

2
i ) acts a vector of unobserved heterogeneity at the firm-level.

2.2 Joint Production

Joint production can occur when there are public (i.e. shared) inputs that affect the

output of all product lines simultaneously. Examples include shared managerial inputs, ma-

chines that produce multiple outputs at once, or production processes involving by-products,

such as how the refining of sugar generates molasses.

Non-joint production is a setting where production takes place through a series of product-

line specific production functions, Y j
i = F j

i (Xj
i ), where Xj

i is a vector of input quantities

allocated to product j, and
∑

j Xj
i = Xi. Since the inputs are allocated across product

lines in a mutually exclusive and exhaustive manner in non-joint production settings, we can

define the input share of input s into production line j as Sjsi ≡
Xj
si∑

kX
k
si

, with Sji representing

the 1× S vector of input shares Sjsi.
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We define non-joint and joint production following Hall (1973) as:

Definition 4 A technology is non-joint if there exists a set of functions {F j
i (.)}j such

that for all (Yi,Xi) ∈ PFi there exist input shares {Sji}j such that Y j
i = F j

i (Sji ◦ Xi) and∑
j Sji = 1. Otherwise the technology involves joint production.

In general, whether a particular technology involves joint or non-joint production will

depend on the shape of a firm’s production possibility frontier (Samuelson 1966, Hall 1973).

Section 2.4 formalizes this by characterizing how the shape of a firm’s output distance func-

tion reveals whether production is joint or non-joint. We first describe the remaining features

a firm’s technology that we rely on for our results.

2.3 Nesting Single-Product Firms

We focus on production possibility frontiers that allow firms to choose to only produce

a single product line j because we are interested in what features of a firm’s technology can

be estimated from single-product firms as in De Loecker et al. (2016). To start, we define

the concept of nesting single-product production as follows:

Definition 5 A technology nests single-product production if for any Xi and j, the set

PFi contains
(
Yj
i ,Xi

)
where Yj

i is a 1× J vector of outputs where Y j
i ≥ 0 for j, and Y k

i = 0

∀k 6= j.

This definition formalizes the idea that a multi-product firm using Xi can choose to

produce only a single product. This requires that Di

(
Yj
i ,Xi

)
be well defined for all Yj

i .

This rules out translog distance functions of the form considered in Caves et al. (1982).9 A

sufficient condition for a technology to nest single-product production is that Di

(
Yj
i ,Xi

)
=

Y ji
F ji (Xi)

. In this case, the production possibility frontier is characterized by a standard pro-

duction function:

Di

(
Yj
i ,Xi

)
=

Y j
i

F j
i (Xi)

= 1 =⇒ Y j
i = F j

i (Xi) .

2.4 A Theorem on Joint vs Non-Joint Production Under Seper-

ability

When specifying technologies using production possibility frontiers, it is common for

researchers to rely on separable functional forms that possess well defined output and input

aggregators (Mundlak 1963, Grieco and McDevitt 2017, Grieco et al. 2018, Maican and Orth

9Such functional forms imply that firms must produce positive quantities of every product, which rules
out shutting down particular product lines.
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2021, Dhyne et al. 2022). While separable transformation functions have useful properties

for the purpose of estimation, Hall (1973) emphasizes that separable functional forms can

easily imply joint production. In this subsection, we build on his result to show exactly

when separability implies joint, or non-joint, production. For this purpose, we rely on the

following definition of separability:

Definition 6 An output distance function is separable if it can be written as:

Di (Yi,Xi) =
Gi(Yi)

Fi(Xi)
. (5)

Theorem 1 (below) builds on Hall (1973) to establish a simple functional form test on

a firm’s output distance function to establish whether a firm’s technology involves joint or

non-joint production. For this to hold, we require two further restrictions on the space of

feasible distance functions:

Assumption 2 Di (Yi,Xi) is separable, with Fi (Xi) continuous, differentiable, strictly in-

creasing in all arguments, quasi-concave, and homogeneous of degree φi > 0.

Assumption 3 Di

(
Yj
i ,Xi

)
=

Y ji
AjiFi(Xi)

for all Yj
i > 0.

Assumption 2 imposes separability of the output distance function and establishes stan-

dard regularity conditions on Fi (Xi). The most important of these assumptions is that

Fi (Xi) be homogeneous degree φi > 0. Assumption 3 simply requires that firms can choose

to produce a single product using a standard production function, while still respecting the

separability assumption.10 These two assumptions make characterizing non-joint production

straightforward.

Theorem 1 Suppose Assumptions 2 and 3 hold. Then a firm’s technology is non-joint if

and only if:

Di(Yi,Xi) =

(∑
j

(
Y ji
Aji

) 1
φi

)φi
Fi(Xi)

. (6)

Proof. See Appendix A.

An important implication of Theorem 1 is that if the firm’s technology is separable and

nests single product production, then the firm’s technology involves joint production if the

output aggregator, Gi (Yi) 6=
(∑

j

(
Y ji
Aji

) 1
φi

)φi
. As a result, assuming non-joint production

implies specific restrictions on the shape of firm’s output distance function.

10Notice that Di

(
Yj
i ,Xi

)
=

Y ji
AjiF

j
i (Xi)

would violate separability, since the input aggregator would have

different functional forms for Di

(
Yj
i ,Xi

)
and Di

(
Yk
i ,Xi

)
, k 6= j, which would make Fi() depend on Yi.
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3 Firm-Product Markups

We now use our output distance function approach to derive what objects must be ob-

served to identify firm-product markups. We also show how past approaches have dealt with

the relevant identification issues. We do this to spell out the restrictions that have been

made in the past, and to compare these restrictions to those made here.

The identification of markups using the production-side approach of De Loecker and

Warzynski (2012) requires three key assumptions: i) cost-minimization, ii) the existence of

at least one static input in production where the cost-minimizing firms are price takers, and

iii) knowledge of some features of each firm’s technology. We first present a more precise

representation of these three assumptions, and show how they generate a mapping from

standard production data (Yi,Ri,Xi,Ei) to unobserved markups, similar to Grieco et al.

(2018) and Dhyne et al. (2022).

We partition the set of inputs into two subvectors, Xi = (Mi,Ki). Mi represents a

vector of static inputs, and Ki denotes the vector of dynamic inputs. The set M of static

inputs is the set of inputs purchased each period at exogenous prices Wsi. The set K of

dynamic inputs may be accumulated over time through a dynamic investment process. We

assume that there is at least one static input used by all firms in a given industry (e.g.

materials), and assume that each firm’s conditional cost function Ci(Yi,Ki,Wi) is given by

the following minimization problem:11

Ci(Yi,Ki,Wi) = min
Mi

∑
Msi∈M

WsiMsi s.t. Di(Yi,Xi) = 1. (7)

The first-order condition for any static input Msi ∈M is given by:

Wsi + λi
∂Di(Yi,Xi)

∂Msi

= 0 (8)

where λi is the relevant Lagrangian multiplier. The Envelope Theorem implies that condi-

tional marginal costs MCj
i ≡

∂Ci(Yi,Ki,Wi)

∂Y ji
can be written as:

MCj
i = λi

∂Di(Yi,Xi)

∂Y j
i

. (9)

11Costs related to the accumulation of dynamic inputs will, in general, show up in a firm’s profit function.
Since the quantity of dynamic inputs are being conditioned on in the conditional cost minimization problem,
the exact structure of these costs can be ignored when solving for the conditional cost function.
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Combining equations (8) and (9) yields

1

MCj
i

= −
∂Di(Yi,Xi)

∂Msi

∂Di(Yi,Xi)

∂Y ji

1

Wsi

, (10)

and the firm-product markup µji ≡
P ji
MCji

is obtained by multiplying equation (10) by P j
i :

µji = −
∂Di(Yi,Xi)

∂Msi

∂Di(Yi,Xi)

∂Y ji

P j
i

Wsi

= −
∂ lnDi(Yi,Xi)

∂ lnMsi

∂ lnDi(Yi,Xi)

∂ lnY ji

Rj
i

Esi
(11)

where the second equality uses the fact that P j
i Y

j
i = Rj

i , and XsiWsi = Esi.

Equation (11) extends the De Loecker and Warzynski (2012) firm markup formula to the

firm-product level for a (potentially) multi-product firm. If the firm produces a single product

so thatYi = Yj
i , their formula holds as long as the relevant output distance function satisfies

Assumption 2, in which case ∂ lnDi(Yi,Xi)

∂ lnY ji
= 1 and ∂ lnDi(Yi,Xi)

∂ lnMsi
= −∂ lnFi(Xi)

∂ lnMsi
≡ −θsi (Xi), so

µji = θsi (Xi)
Rji
Esi

. With a single-product firm, the researcher only needs to estimate a single

elasticity, θsi (Xi). Equation (11) extends the De Loecker and Warzynski (2012) result by

showing that product-level markups at multi-product firms can be recovered from standard

production data if the researcher can estimate ∂ lnDi(Yi,Xi)
∂ lnMsi

and ∂ lnDi(Yi,Xi)

∂ lnY ji
. We now highlight

identification challenges that a econometrician faces when tackling this problem.

3.1 Identification Challenges

We use equation (11) to illustrate what needs to be known to identify the ratio of markups

across product lines µji/µ
k
i :

µji
µki

=

∂ lnDi(Yi,Xi)

∂ lnY ki
∂ lnDi(Yi,Xi)

∂ lnY ji

Rj
i

Rk
i

=

∂Di(Yi,Xi)

∂Y ki
∂Di(Yi,Xi)

∂Y ji

P j
i

P k
i

= −∆kj
i (Yi,Xi)

P j
i

P k
i

. (12)

The final equality in this expression tells us that it is crucial to identify the marginal

rate of transformation across goods when recovering within-firm markup differences. In par-

ticular, conditional on output prices, markup ratios are completely determined by marginal

rates of transformation. Unfortunately, equation (12) also implies that MRT heterogeneity

can generate a serious underidentification problem because equation (12) only provides a

single equation to identify two unknowns; relative markups, µji/µ
k
i , and the marginal rate of

transformation between goods k and j. In short, relative output prices within a firm can be

rationalized in two different ways: differences in market power, or differences in technologies.

11



To see this more clearly, consider the following parameterization of a firm’s output dis-

tance function, which we derive in Appendix B based on a model of rival and non-rival

intermediates as in Baumol et al. (1982):12

Di (Yi,Xi) =

(∑
j

(
Y ji
Aji

) 1
φβ

)φβ
F (Xi)

, (13)

where F (Xi) is an arbitrary homogenous of degree φ > 0 function and β ∈ (0, 1] is the

share of rival intermediates in total costs such that 1− β is the share of non-rival, or public,

intermediates. Applying Theorem 1 to equation (13), the technology is non-joint if and only

if β = 1; otherwise, the technology involves joint production. The Aji terms function as

product-line specific Hicks-neutral productivity shifters. By including these terms, we allow

for MRT heterogeneity since ∆kj
i (Yi,Xi) = −

(
Y ji
Y ki

) 1−φβ
φβ
(
Aki
Aji

) 1
φβ

depends on i, conditional

on Yi and Xi.

Evaluating equation (12) using the technology in equation (13) delivers:

µji
µki

=

(
Y j
i

Y k
i

) 1−φβ
φβ (

Aki
Aji

) 1
φβ P j

i

P k
i

. (14)

There are two (i, j, k) specific unknowns in this expression:
µji
µki

and
Aki
Aji

. De Loecker et al.

(2016) deal with this under-identification problem by assuming Aji = Aki ∀j, k, in which case

we obtain
µji
µki

=
(
Y ji
Y ki

) 1−φβ
φβ P ji

Pki
. This allows the researcher to identify product-level markups

because markup-ratios rationalize the observed prices and quantities. However, if Aji 6= Aki ,

this can potentially generate a mismeasurement problem.

Valmari (2016), Gong and Sickles (2021), Orr (2022) offer another path. They first model

demand and price setting behavior and recover markups µji/µ
k
i . This then allows them to

use equation (14) to recover Aki /A
j
i .

13 However, such an approach requires the researcher to

take a stand on a particular demand system and pricing setting behavior, which is precisely

what the production-side approach wishes to avoid.

Equation (14) also points to another identification problem: researchers must address

whether there is joint, or non-joint production before they can identify product-level markups.

12Note that this representation of a firm’s production possibility frontier is similar to that used in Eslava et
al. (2023) and De Roux et al. (2021), with the important difference that φ, β, and Aji are purely technology,
rather than preference, parameters.

13These papers only consider non-joint production in which case β = 1. φ can then be recovered by
estimating a firm-product specific production function.
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Even if Aji = Ai ∀j such that
µji
µki

=
(
Y ji
Y ki

) 1−φβ
φβ P ji

Pki
, a researcher must still know the values of

β and φ to identify product-level markup ratios. De Loecker et al. (2016) address this by

assuming that production is non-joint (β = 1), in which case β = 1, and φ can identified by

estimating returns to scale for single-product firms.14

The severity of the potential identification and mismeasurement problems associated

with the problems and potential solutions above depends crucially on how the magnitude

with which MRT heterogeneity and joint production manifest in the data. We explore

this further in the next subsection, where we use simple Monte-Carlo simulations to ask how

biased the estimated plant-product markups might be if the researcher’s model ignores MRT

heterogeneity or joint production when they are present.

3.2 Monte Carlo Evidence

We base our Monte Carlo evidence around the output distance function in equation (13),

which allows us parameterize MRT heterogeneity with Aji/A
k
i differences, and the importance

of joint production with β; the share of non-rival intermediates in production. We present

two Monte Carlo exercises to highlight how erroneous assumptions of no MRT heterogeneity

and non-joint production quantitatively affect estimated markups. In the first exercise, we

switch off joint production but keep within-firm productivity dispersion in the true model.

We compare markups from the true model to one derived under the incorrect assumption

of there being no within-firm productivity dispersion. In the second exercise, we switch off

within-firm productivity dispersion but keep joint production in the true model. We then

compare the true markups to those derived under the incorrect assumption of production

being non-joint. In both settings, we assume that there are demand shocks both within and

across firms.15 We now discuss these two exercises in detail.

There are 1000 firms i, and 10 possible products j, a random subset of 5 of which each

firm produces. Consumers spend a constant share of their income 1/J in each industry j.

Labor is the only factor of production and is paid an exogenous wage w. We assume constant

returns to scale in all industries for all firms such that φ = 1, and F (Xi) = Li where Li

is the total amount of labor used by the firm. This allows us to derive true markups using

14Recall that F (Xi) in equation (13) is an arbitrary homogenous of degree φ > 0 function. In Appendix
B, we show that this function also governs the product-line specific production technologies, and therefore
can also be interpreted as the production function for single-product firms, with φ > 0 governing overall
returns to scale.

15We do this so that there is within-firm dispersion in output even when there is no within-firm productivity
dispersion.
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Figure 1: Monte Carlo

(A) Within-Firm TFP Heterogeneity (B) Joint Production

Notes: Each triangle in panel (A) presents the correlation of true markups from equation (16) and markups
assuming no within-firm productivity heterogeneity from equation (17). The horizontal axis shows the ratio
of within- to across-firm productivity heterogeneity for that correlation. There is no joint production in this
panel. Each triangle is a separate correlation coefficient. Each triangle in panel (B) presents the correlation
of true markups from equation (18) and markups assuming no within-firm productivity heterogeneity from
equation (19). The horizontal axis shows the cost share of public inputs 1 − β. Each triangle is a separate
correlation coefficient. There is no within-firm productivity heterogeneity in this panel.

equation (11) and the parameterization in equation (13):

µji =

∑
k

(
Y ki
Aki

) 1
β

(
Y ji
Aji

) 1
β

Rj
i

wLi
. (15)

Preferences of a representative consumer are given by U =
∏

j (Cj)
αj

where Cj =
∑

i∈Ωj
(cjiν

j
i )

σj−1

σj ,

νji is a demand shock, cji is consumption of a variety of product j produced by firm i and

Ωj is the set of firms i that produce varieties of product j. We assume that the number of

firms in each industry is sufficiently large that markups are constant within each industry

and equal to the standard CES formula: µji = σj

σj−1
.16 Elasticities of substitution for the J

industries σj run from 1.1 to 10.1 in even increments. Appendix C describes the setting in

more detail.

For the first exercise, we impose no joint production (β = 1) in which case equation (15)

16It is easy to confirm that this will also equal the estimated markup using equation (15).
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becomes

µji =

∑
k

(
Y ki
Aki

)
(
Y ji
Aji

) Rj
i

wLi
. (16)

If one (falsely) assumes that there is no within-firm productivity heterogeneity (Aji = Ai),

this expression becomes

µ̂ji =

∑
k Y

k
i

Y j
i

Rj
i

wLi
. (17)

We now explore whether and how quickly markups derived from equations (16) and (17)

diverge from one another as we allow for increasing amounts of within-firm productivity

dispersion. If there is no within-firm productivity dispersion, and one correlates markups

obtained from equations (16) and (17), the correlation is one because the assumption of

Aji = Ai is accurate. This is the first point on the far upper left of the panel (A) of Figure 1.

We then increase the within-firm variance of (log) productivity draws relative to the

across-firm variance of (log) productivity draws as we move along the horizontal axis with

the vertical axis reflecting the correlation between measures obtained between equations

(16) and (17). When the variance of within-firm draws is small (10% of the across firm

variance) relative to the across-firm variance, the assumption of no within-firm productivity

heterogeneity is innocuous as reflected by a high correlation of 0.98. However, this changes

quickly. When the ratio of the within- to across-firm variance is 0.3, the correlation falls to

0.22. We interpret this as evidence that markup estimation is sensitive to the precise degree

of within-firm MRT heterogeneity.

In the second exercise (panel B), instead of steadily increasing the within-firm variance

of productivity draws, we steadily increase the cost share of joint inputs (1−β) and compare

true markups with markups obtained under the false assumption that production is non-

joint. We assume there is no within-firm productivity dispersion in this second exercise.

More formally, true markups in this case are given by

µji =

∑
k

(
Y k
i

) 1
β(

Y j
i

) 1
β

Rj
i

wLi
. (18)

where β ∈ (0, 1]. If one falsely assumes non-joint production, then one will believe that the

following would accurately measure markups

µ̂ji =

∑
k Y

k
i

Y j
i

Rj
i

wLi
. (19)
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Analogous to panel (A) of Figure 1, panel (B) of Figure 1 presents the relevant correlations.

When 1 − β = 0, the share of joint inputs is zero, and there is no difference between

restricted firm-product markups (from equation 19) and the true markups (from equation

18). Again, this is the dot at one in the upper left corner of panel (B). However, unlike

with productivity dispersion, we find that the increasing presence of joint production (β ↓)
does not materially affect one’s ability to recover markups: the correlations remain well

above 0.99 for cost shares of public inputs (1-β) up to 0.95. Appendix C shows plots of the

variance of estimated markups instead of their correlation with true markups. As one might

expect, the variance of estimates increases dramatically near the same parameter values

when the correlation coefficients diminish. As a whole, these results suggest that within-firm

productivity heterogeneity is more of the threat to identification of firm-product markups

than is joint production.

4 Identification of Firm Markups

We now develop our firm markup and show that its identification does not require an

econometrician to know whether or not there is joint production, nor the magnitude of

MRT heterogeneity. Our object is a weighted average of firm-product markups and can be

identified using only information on total firm revenues, expenditure on a static input, and a

set of output distance function elasticities that can be estimated using techniques that have

already been established in the literature subject to minor restrictions.

We obtain our object by multiplying the expression for a firm-product markup (equation

11) by

∂ lnDi(Yi,Xi)

∂ lnY
j
i∑

k∈Yi
∂ lnDi(Yi,Xi)

∂ lnY k
i

, and then summing over all j ∈ Yi, where Yi is the set of all j such

that Y j
i > 0. This yields

µi ≡
∑
j∈Yi

ρjiµ
j
i where ρji ≡

∂ lnDi(Yi,Xi)

∂ lnY ji∑
k∈Yi

∂ lnDi(Yi,Xi)

∂ lnY ki

. (20)

Equation (20) shows that the firm markup defined here is simply a weighted average of firm-

product level markups, µji , where the weights ρji sum to 1 by construction. These weights

depend on the shape of a firm’s output distance function, as well as equilibrium choices of

product-level outputs and prices.
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Slight manipulation of equation (20) delivers

µi = −
∂ lnDi(Yi,Xi)

∂ lnMis∑
k∈Yi

∂ lnDi(Yi,Xi)

∂ lnY ki

Ri

Esi
(21)

where Ri ≡
∑

j R
j
i . This expression shows that an econometrician can identify µi using total

firm revenue Ri, expenditure on a static input Esi, and output distance function elasticities
∂ lnDi(Yi,Xi)

∂ lnMis
and

∑
k∈Yi

∂ lnDi(Yi,Xi)

∂ lnY ki
. Section 5 shows that these elasticities can be estimated

using standard production data under minor restrictions. Importantly, estimation of these

elasticities does not require a researcher rule out MRT heterogeneity or to take a stand on

whether there is joint production.

Before we show how to estimate these elasticities, we first discuss interpretation of our

firm-level markup. First, we provide an interpretation of the weights. Second, we show that

the firm markup can be interpreted as the markup of a composite good produced by the firm

in a world where consumers have general preferences over these firm-level composite outputs

and the output distance function is separable. Third, we show that the firm markup is a

meaningful object for a social planner who wants to eliminate across-firm misallocation but

who takes within-firm misallocation as given.

4.1 Interpreting the Weights ρji

The weight ρji defined in equation (20) can be interpreted as the share of the percentage

change in firm total cost when scaling up all products that can be attributed to scaling up

product j. This makes it analogous to a cost share. To see this start by multiplying and

dividing equation (21) by ∂Di(Yi,Xi)
∂Msi

1
Wsi

:

ρji =

∂Di(Yi,Xi)

∂Y ji
∂Di(Yi,Xi)

∂Msi

1
Wsi

Y j
i

/∑
k∈Yi

∂Di(Yi,Xi)

∂Y ki
∂Di(Yi,Xi)

∂Msi

1
Wsi

Y k
i =

MCj
i Y

j
i∑

k∈YiMCk
i Y

k
i

=

∂Ci(Yi,Ki,Wi)

∂Y ji
Y j
i∑

k∈Yi
∂Ci(Yi,Ki,Wi)

∂Y ki
Y k
i

where the second equality uses the definition of firm-product marginal costMCj
i = ∂Ci(Yi,Ki,Wi)

∂Y ji
defined in equation (10) derived from the firm’s cost minimization problem. This can be

rewritten as:

ρji =

∂ lnCi(Yi,Ki,Wi)

∂ lnY ji∑
k∈Yi

∂ lnCi(Yi,Ki,Wi)

∂ lnY ki

. (22)
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The numerator in equation (22) is the elasticity of the firm’s cost function with respect to

output j. While the denominator is simply the sum of the cost elasticities for all outputs

within the firm, it is also equivalent to the elasticity of the cost function with respect to the

scale of the firm. The denominator is the percentage change in the cost of the firm when it

scales up all outputs by one percent.17 The weight ρji therefore represents how costly it is to

increase the output of product j within a multi-product firm.

The firm-level markup (equation 21) is therefore a weighted average of firm-product level

markups where the weights correspond to the share of the product in total cost elasticity of

the firm. This is analogous to the aggregate markup defined in Edmond et al. (2022), where

single-product firm-level markups are weighted by the firm’s cost share in the aggregate cost

of production. Under their assumption of a common cost elasticity across firms, a firm’s

relative cost elasticity with respect to the cost elasticity of scaling up the entire economy is

simply equal to the firm’s cost share in total production. Our result generalizes the idea of

a cost share to joint production settings where input shares are not well defined, due to the

non-existence of product-line specific production technologies (i.e. joint production).

4.2 Single-Product Firm Equivalence Result

The firm markup acts as a firm-level wedge that scales down uniformly the production

of all products within a firm. In order to develop this intuition, we examine a version of

our model that is isomorphic to the single-product firm model of Edmond et al. (2022).

They consider a world populated with single-product firms producing a product over which

consumers have preferences. We first impose restrictions on consumer preferences and firms’

technologies under which our multi-product firm model aggregates to their single-product

firm model. We show that our aggregate firm-level markup is equivalent to their single-

product firm markup under these restrictions.

Suppose that consumer preferences are given by U({Y j
i }j,i) = U({Yi}i) where the func-

tion Yi = Yi({Y j
i }j) is homogenous of degree 1 and Yi(.) aggregates all products produced

by a firm i. We refer to this as the firm’s composite good. Further, under the assumption of

separability, a firm’s output distance function can be written as Di(Yi,Xi) = Gi(Yi)/Fi(Xi).

If Gi(.) is homogenous of degree one, we can collapse our multi-product firm to look like a

17To see this, start from the cost minimization problem defined in equation (7), and scale up the output
vector by a factor λ. The cost elasticity with respect to the scale of the firm is given by the elasticity of the
scaled cost function with respect to λ evaluated at λ = 1:

∂ lnC(λYi,Ki,Wi)

∂λ

∣∣∣∣
λ=1

=
∑
k∈Yi

∂ lnC(Yi,Ki,Wi)

∂Y ki
Y ki =

∑
k∈Yi

∂ lnCi(Yi,Ki,Wi)

∂ lnY ki
.
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single-product firm that produces the composite good Yi. Assuming that firms operate on

their production possibilities frontier, we can show the following:

Yi(Yi) =
Yi(Yi)

Gi(Yi)
Fi(Xi) =⇒ (23a)

Yi(Yi) = Ai(λi)Fi(Xi) where Ai(λi) ≡
Yi(λi)
Gi(λi)

(23b)

and λi = (
Y 1
i

Y ri
,
Y 2
i

Y ri
, ...) is the vector of firm outputs Y j

i relative to some reference product

within the firm Y r
i > 0.18

Equations (23) relate any vector of firm outputs Yi to a consumption aggregator Yi(Yi).

This relationship depends on two separate components of firm production: i) within-firm

output allocations, which are captured by the relative output ratios λi, and ii) firm scale,

which is determined by its aggregate input use Xi.

The production technology given in Edmond et al. (2022) is Yi = AiFi(Xi) where Ai is a

single-product-firm Hicks neutral productivity term that is independent of firm output. In

our setting, firm productivity, Ai is determined by the within-firm output allocations, λi.

To link the two, we consider the case where within-firm output allocations are fixed such

that relative output levels λi are taken at some initial reference level, λ0
i .

19 This makes

Ai(λ0
i ) = A0

i invariant to the scale of the firm. The firm production function can then be

written as:

Yi = A0
iFi(Xi). (24)

In this environment, the De Loecker and Warzynski (2012) formula for the markup of

the single-product firm defined in equation (24), µSPi , with total revenue Ri and expenditure

Esi on some static input Xsi is then given by:

µSPi = θsi
Ri

Esi
=
∂ ln (A0

iFi(Xi))

∂ ln (Xsi)

Ri

Esi
= −

∂ ln(Di(Yi,Xi))
∂ ln(Xis)∑

k∈Yi
∂ ln(Di(Yi,Xi))

∂ ln(Y ki )

Ri

Esi
= µi

where the final equality follows from applying equation (21) to a separable output distance

function. This implies that–in this setting–the markup of a single-product firm producing

Yi is equivalent to the weighted average of firm-product markups defined in equation (21).

In this sense, our firm markup, µi, can be interpreted as the markup on a composite good

18We make use of the homogeneity of functions Yi(·) and Gi(·) in going from the first to the second line
of equations (23).

19More formally, we assume that firms only produce output vectors such that {Yi : λi = x× λ0
i , x ∈ R+}
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produced by its single-product counterpart.

4.3 Firm Markups and Across-Firm Misallocation

We now ask what the social planner’s allocation looks like in this economy by multi-

product firms under the conditions set out in section 4.2. From Edmond et al. (2015, 2022),

we know that the social planner would allocate inputs across all of the single-product pro-

ducers so as to equalize markups, i.e. µi = µ ∀ i, so as to eliminate misallocation of resources

across firms. This leads to the well-known result that variation in markups across firms is a

symptom of misallocation.20

This result holds only if Ai is invariant to firm scale; otherwise, our model is not iso-

morphic to the single-product firm setting of Edmond et al. (2015, 2022). This requires that

we hold within-firm output allocations fixed, i.e. λi remains unchanged when we consider

counterfactual changes to firm scale through Xi. We interpret this setting as one in which

a social planner targets across-firm misallocation, taking within-firm output allocations as

given. In this setting, we can then interpret our firm markup as equivalent to that in Edmond

et al. (2015, 2022) and, therefore, as a summary statistic for the extent of across firm misal-

location, even though our generalization allowed for multi-product firms with heterogeneous

MRT and joint production.

We now extend the same result after relaxing the restrictions placed on consumer prefer-

ences and firm technology in the previous subsection. Suppose instead that the representative

consumer has preferences over all products produced in the economy U({Y j
i }), and firm’s

technology is characterized by the output distance function Di(Yi,Xi). A social planner

who wants to eliminate across-firm misallocation taking within-firm output allocations as

constant solves the following problem:

max
{Yi}i

U ({Yiλi}) s.t. Di(Yi,λi,Xi) ≤ 1 and
∑
i

Xsi ≤ Xs ∀ i, s (25)

where λi is the vector of relative output levels within the firm, and Yi is the scale of the firm.

The problem outlined in equation (25) states that the social planner chooses the scale of the

firm, Yi, by allocating resources across firms while keeping the ratio of outputs within each

firm unchanged. The first order conditions from this problem gives the following condition

20If one extends this setting to have an endogenous supply of resources in the economy (e.g. by assuming
labour is costly for a representative consumer as in Edmond et al. 2022), then you can further show that
markups should all be equalized to 1.
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that has to be met in order to eliminate across-firm misallocation:21

−
∂ lnDi(Yi,Xi)

∂ lnXsi∑
k∈Yi

∂ lnDi(Yi,Xi)

∂ lnY ki

∑
k∈Yi

∂U({Yi})
∂Y ki

Y k
i

Xsi

= γs ∀ i

where γs is the shadow price of the input Xsi. The left-hand-side of the above equation in

the decentralized equilibrium is proportional to the product of the price of input Xsi that

the firm faces and the firm markup, wsiµi (see Appendix D). Under the assumption that all

firms face the same input prices, firms markups must be equalized, i.e. µi = µ ∀ i for an

efficient allocation of resources to hold. Therefore, the constrained social planner would like

to allocate inputs across firms such that firm markups are equalized. The firm markup can

then be interpreted as a output wedge that decreases firm scale so that variation in the firm

markup provides evidence of across firm misallocation, even under more general utility and

production structures.

5 Estimating Firm Markups

Following De Loecker and Syverson (2021), we now discuss how two econometric tech-

niques standard in the literature can be used to estimate the relevant output distance function

elasticities needed to identify the firm markup given in equation (21). First, we can follow

De Loecker et al. (2016) and use a sample of single-product firms to estimate an output

elasticity for a multi-product firm that counterfactually chooses to be single-product. As

long as the output distance function is separable, this single elasticity is sufficient to recover

the firm markup. Second, we can use a cost-share estimator applied to the full sample of

multi-product firms following Syverson (2004), Foster et al. (2008), Backus (2020), and Raval

(2022).22 We refer to these as techniques 1 and 2, respectively.

5.1 Technique 1: Relying on Single-Product Firms for Estimation

De Loecker et al. (2016) use single-product firms to estimate product-level output elas-

ticities with non-joint production. While identification of firm-product markups in their

context depends critically on MRT heterogeneity (see figure 1), an almost identical estima-

tion approach can be used to identify the firm markup while not making any assumptions

21See derivation in Appendix D.
22See the excellent discussion in De Loecker and Syverson (2021) for more details of the merits of these

two approaches.
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about MRT heterogeneity even if there is joint production.23

Our extension requires two key restrictions. First, as previously discussed, each firm’s

technology must nest the possibility of a well-defined single-product production function (As-

sumption 3). This means that a firm uses the single-product production function whenever

it chooses to produce a single product. This allows us to tie output elasticities of single-

product firms to those of multi-product firms and does not preclude the possibility of joint

production for multi-product firms whenever Yi 6= Yj
i (Theorem 1). The second restriction

is a set of restrictions on the firm’s output distance function:

Assumption 4 Di (Yi,Xi) is separable, Gi (Yi) is homogeneous of degree 1, and Fi (Xi) =

Fg(i) (Xi) for some mapping for firms i to industries, g.

Combining Assumptions 3 and 4, the shape of the production function only differs at the

industry level for single product firms.24 This is a standard restriction imposed by nearly the

entirety of the literature on production function estimation because estimation of production

function parameters requires some sort of averaging across a set of firms operating in the

same industry g.25

Assumption 4 does not restrict firms from having varying degrees of returns to scale,

and does not require that single-product production be homogeneous of degree φ > 0. The

output aggregator Gi (Yi) for for multi-product firms must be homogeneous of degree 1

but can otherwise vary flexibly across firms. This flexibility is key to allowing for MRT

heterogeneity as well as joint/non-joint production.26

Assumptions 3 and 4 combined also imply that the firm markup can be recovered using

an estimate of a single-product firm’s output elasticity for a static input Ms. This is a key

result in this paper which we now state and prove as a proposition:

Proposition 1 Suppose Assumptions 3 and 4 hold. Then,

µi = θsg(i) (Xi)

∑
j R

j
i

Esi
(26)

where θsg(i) (Xi) ≡
∂ lnFg(i)(Xi)

∂ lnMsi
is the output elasticity for static input s in firms that choose

23This is because our approach sidesteps the need to solve an input allocation problem as in De Loecker
et al. (2016).

24By “shape” we exclude TFP heterogeneity which we naturally allow to vary across firms and products.
25See for example Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg et al. (2015), Gandhi

et al. (2020).
26For example, equation (13) provides an example of an output distance function consistent with Assump-

tion 4. As we previously demonstrated, this class of technology allows for MRT heterogeneity, as well as
joint or non-joint production. Since we are allowed to index the output aggregator, Gi, with i, we can allow
for even greater flexibility than the output distance function in equation (13).
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to produce a single product, i.e. if Yi = Yj
i , then all cost minimizing firms operate using the

single-product production technology Y j
i = AjiFg(i) (Xi).

Proof. See Appendix E.

The right-hand side of equation (26) is identical to the standard De Loecker and Warzyn-

ski (2012) markup formula, with the caveat that θsg(i) (Xi) for multi-product firms is under-

stood as the output elasticity for the firm if it counterfactually chose to be a single product

producer. This shows that the De Loecker et al. (2016) estimation approach–using single

product firms to estimate this output elasticity–can in principal be used to identify the firm

markup.

An important concern is that firms may self-select into whether they are single product

or multi-product producers depending on their productivity differences, potentially leading

to selection bias. De Loecker et al. (2016) show that it is possible to correct for this bias in

their setting. In Appendix Q, we show that their approach can be extended to environments

that involve joint production and MRT heterogeneity based on a core competence model as

in Eckel and Neary (2010), Mayer et al. (2014) and Arkolakis et al. (2021). However, one

should not disregard that a key disadvantage to relying on single-product firms for estimation

of the relevant elasticities in (21) is that there may be biases introduced by modelling the

selection into single-product status incorrectly. This partially motivates Technique 2.

5.2 Technique 2: Cost Shares

This approach does not rely on using single-product firms as a counterfactual for multi-

product firms and therefore is not subject to concerns about selection bias in estimation. This

technique develops a cost-share approach to identify the unknown elasticities in equation (21)

following Syverson (2004), Foster et al. (2008), Backus (2020), and Raval (2022). However,

the validity of this approach requires restrictions not needed for Technique 1: i) static

first-order conditions must hold for all inputs on average, and ii) each firm’s (separable)

input aggregator must be constant returns to scale Cobb-Douglas varying by industry. We

formalize these as Assumptions 5 and 6 below:

Assumption 5 For any input s, each firm’s static cost minimizing first-order condition,

expressed in terms of total expenditure on each input,27 holds on average:

E (WsiXsi) = −E
(
λi
∂Di (Yi,Xi)

∂Xsi

Xsi

)
. (27)

27i.e, each input’s first order condition is multiplied by Xsi, so the right hand side of equation (8) is
expressed in terms of expenditures, rather than quantities.
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Assumption 5 requires that firms adjust their inputs consistent with cost minimization

on average. This may accommodate adjustment costs in capital (for example), which may

prevent equation (8) from holding exactly each period or for each firm, even though a firm

facing no adjustment costs will make equation (8) hold since current period costs would be

lower for the firm if they set total capital costs to λi
∂Di(Yi,Xi)

∂Xsi
Xsi.

Assumption 6 Di (Yi,Xi) is separable, with Fi (Xi) = Πs (Xsi)
βs,g(i), where

∑
s βs,g(i) = 1,

for some mapping of firms to industries g(i).

Assumption 6 requires the output aggreagtor of the distance function to simplify to a

standard constant returns to scale Cobb-Douglas production function whenever firms only

produce a single product j. Since single-product production functions are industry specific,

industry is a property of a firm, rather than a firm-product pair.28 Together, Assumptions

5 and 6 lead to the following result:

Proposition 2 Suppose Assumptions 5 and 6 hold. Then as long as at least one purely

static input, Xsi, exists and firms minimize their conditional costs as in equation (7), then:

µi =
E (WsiMsi|g = g(i))

E (
∑

s′Ws′iXs′i|g = g(i))

Ri

Esi
. (28)

Proof. See Appendix G.

A consistent estimate of E(WsiMsi|g=g(i))
E(
∑
s′ Ws′iXs′i|g=g(i))

is then easily constructed using industry by

industry aggregate cost shares, as in Syverson (2004), Foster et al. (2008), Backus (2020)

and Raval (2022).

5.3 Comparing Techniques 1 and 2

While Technique 1 relies on single-product firms to estimate the relevant elasticities for

identifying markups, Technique 2 uses observable cost shares and does not require that we

condition on single-product firms. Therefore Proposition 2 from Technique 2 provides a

useful alternative to Proposition 1 in Technique 1 for obtaining firm markups. However,

Technique 2 relies on functional form restrictions not needed in Technique 1, most notably

the requirement that output distance function be separable with a constant returns to scale

Cobb-Douglas input aggregator.

28This restriction can be relaxed is one is comfortable assuming that all inputs are fully static, so that
equation (8) holds firm-by-firm for all inputs. In Appendix F we show that if: i) the output distance function
satisfies constant returns to scale, and ii) all inputs are fully static; then we can identify the firm markup using
the ratio of revenues to costs. Importantly, this result allows for non-separable output distance functions,
which can capture situations where firms operate non-joint production technologies that have different factor
intensities (Hall 1973).
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Because of this, Technique 1 and 2 require non-overlapping restrictions on a firm’s tech-

nology and economic environment. While Technique 1 allows for rich models of dynamic

input use and varying returns to scale, Technique 2 requires constant returns to scale Cobb-

Douglas technologies, and that static first-order conditions hold across firms on average.

This latter requirement limits dynamics. Technique 2 directly uses multi-product firms in

its estimation, and does not require disciplining how firms choose their output sets as in

Technique 1. Therefore determining which one is proper is difficult and case-specific. We

therefore pursue both strategies in our estimation.

6 Data and Implementation

This section first briefly describes our data. We then describe how we operationalize the

estimation of our output elasticities following the two techniques described above. Finally,

we discuss how to estimate plant-product markups for comparison to our plant-level objects.

6.1 Data

We implement our methodology using the Indian Annual Survey of Industries (ASI) data

set for the years 2001-2008. The ASI is a panel data set of manufacturing establishments

with 10 or more permanent employees that use electricity, and of establishments 20 or more

employees that do not use electricity. Large plants are always included and therefore ASI is

a census of these firms. In addition, ASI contains a 5% random sample of small plants.29 An

observation is a plant-product-year triad. Each plant i reports a single 2-digit NIC industry

g(i) in which it operates. We take g(i) to correspond to a particular production technology

as in De Loecker et al. (2016).30 Each plant reports up to ten products that it produces,

with each entry corresponding to a single j in our framework.31

The primary appeal of the ASI is its inclusion of detailed product-line data, including

revenues (measured in rupees) and physical outputs. Product-level output is the physical

quantity of the good manufactured by the plant in a given year.32 We observe capital,

29The cutoff for a plant to be considered “large” is based on the number of permanent employees, with
the exact threshold varying from state to state.

30Besides major revisions in 1999 and 2009, the NIC system underwent a minor revision in 2005 from
ISIC-3 to ISIC-3.1. While identical at the 2-digit level, ISIC-3.1 revised some 4-digit industry codes. In
order to have a consistent set of industry codes, we drop plant-years from our pre-2005 data with a 4-digit
industry code that does not have an exact match in the revised NIC. This results in the loss of about 11,000
plant-product-years.

31Associated with each product entry is a 5-digit ASICC code. Note that some plants report more than
one entry for a given 5-digit ASICC code, in which case we treat each entry as a separate product.

32Each product level quantity is associated with a 5-digit product code as well as a particular unit of

25



Table 1: Summary statistics

Plant-product outcome Mean Std. dev. Min. Max.

Log Revenue: ln(Rj
it) 15.926 2.681 1.386 27.557

Log Quantity Produced: ln(Qj
it) 0 2.482 -14.28 15.631

Plant-product-years: 355,624

Plant outcome Mean Std. dev. Min. Max.

Log Plant Revenue: ln(Rit) 17.051 2.235 6.774 27.603
Log Plant Capital: ln(Kit) 9.809 2.257 -6.697 19.813
Log Plant Labour: ln(Lit) 9.455 1.566 1.792 16.512
Log Plant Materials: ln(Mit) 11.328 1.959 2.313 20.816
Log Plant Wage: ln(Wit) 4.912 .622 0 11.832
Average products per plant-year: 1.77
Plant-years: 200,886
Distinct plants: 96,047

Notes: See main text and Appendix H for more detail on variable definitions. Log quantities demeaned
within 5-digit product code.

labor, and intermediates input expenditures at the plant level, not the plant-product level.

The plant capital stock is constructed using the perpetual inventory method as described in

Appendix H. Labor input is in person-days. Person-days and the wage bill are plant totals

for all employees including supervisors and managers. Intermediate inputs are the sum of

expenditure on domestic and foreign goods. We deflate capital and intermediates using the

Indian Wholesale Price Index (WPI) for all manufacturing industries although we offer a

further input price correction described in section 6.2.33 See Appendix H for more details.

Table 1 presents summary statistics. Our data comprise 355,624 plant-product-years,

and 200,866 plant-years. The average number of products per plant-year is less than 2

suggesting the prominence of single-product plants. We now discuss how we use the plant

data to estimate physical output elasticities and firm-level markups. We perform estimation

using plants, not firms.34

measure (e.g. kilograms, number of, etc...). We demean these quantities within product code when presenting
summary statistics for quantities.

33This follows De Loecker et al. (2016). For the years of our dataset, the WPI records price indices for
some 2-digit NIC industries but not others. We opt to use the WPI for all manufacturing industries to
deflate expenditures for all plants in our data.

34Since our data is plant (not firm) level, from now on we primarily let i index plants, rather than firms.
We will compare our plant-product markups to those estimated in De Loecker et al. (2016). The latter
are firm-product markups, and are estimated using the Prowess data set covering the years 1989-2003. See
De Loecker et al. (2016) for more details on the Prowess sample frame.
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6.2 Plant Markups

As discussed in Section 5, we consider two techniques to recover plant markups: the

estimation of the production function for single product plants using a control function

approach, as well as a cost-share estimator.

Estimation of the production function for single product plants requires specifying a

functional form. We rely on a translog specification of the production function which imposes

the constraint that the production function is globally homogenous of degree φ > 0:35

yjit = βLlit + βKkit + βMmit + βLK
(
litkit − 0.5

(
l2it + k2

it

))
+ βLM

(
litmit − 0.5

(
l2it +m2

it

))
+ βKM

(
kitmit − 0.5

(
k2
it +m2

it

))
+ ajit (29)

where lower case variables denote natural logs, and global returns to scale are given by

φ = βL + βK + βM . In our baseline specification based on Technique 1, we focus on results

where a single translog is estimated for the entire Indian economy, although we also report

results where we allow production function parameters to vary by two-digit industry in

Appendixes N and O.

We follow De Loecker et al. (2016) closely by implementing both a selection correction

for single-product firms, and a control function approach to deal with the endogeneity of

inputs.36 To deal with measurement error in capital, our baseline results identify the coeffi-

cient on capital using lagged investment, as recommended by Collard-Wexler and De Loecker

(2021). One minor point of departure is how we deal with input price bias. Since we observe

plant-specific wages, we use this information directly to correct for input price bias in a way

that does not require that the input price control function be estimated simultaneously with

production function parameters- see Appendix I for more details. 37

After having estimated each firm’s (potentially counterfactual) single-product production

function, we then construct plant markups. Under the assumptions underlying Propositions

1 and 2, we assume that materials is a static input (s = M), and write:

35See De Ridder et al. (2022) and Orr and Tabari (2022) for similar specifications of the translog with the
added restriction that φ = 1.

36We also consider dynamic panel based approaches to estimation in Appendixes J, N, and O to verify that
our results are not driven by some of the concerns articulated by Bond et al. (2021) concerning proxy-variable
approaches.

37To recover input allocations for multi-product firms, we will need the input price control function to
recover output-specific input prices. However, since we observe wages at the plant level, we can obtain
more precise estimates of the relationship between input prices and quality by directly regressing observed
wages for single-product producers onto prices and market shares to obtain the relevant input price function.
As a result, we can obtain the input price control function outside of the production function estimation
algorithm. See Appendix I for more details.
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µit = θMg(i) (Xit)

∑
j R

j
it

EMit

(30)

where θMg(i) is either the output elasticity for single product firms in industry g (as in

Proposition 1) or the industry cost share for materials (as in Proposition 2).38

The key decision that needs to be made to implement the cost-share estimator (Technique

2) is how to allocate plants to industries, where the input aggregator Fg(i)(.) is assumed to

have the same Cobb-Douglas form for all plants i belonging to industry g.39 We consider two

mappings of plants to industries g(i). First, we simply take a plant’s stated two-digit NIC

code as their industry. Second, we follow Raval (2023) and for each two-digit NIC code, we

split plants into five different quintiles, based on the ratio of labour to material expenditures,

and treat each two-digit code × quintile as a separate “industry” g. Raval (2023) proposes

this approach to account for unobserved factor-specific productivity differences across firms,

and documents that this method alleviates some of the issues with the production-side

approach to markup estimation described in Raval (2022). For each mapping of plants to

industries, we then construct output elasticities using the industry-specific cost shares.

6.3 Plant-Product Markups

For comparison to our plant markups, we also estimate plant-product markups adhering

as closely to De Loecker et al. (2016) which relies on a system of equations to solve for

the unobserved input allocations.40 The most basic variant of this approach imposes non-

joint production and that Aji = Ai ∀j. In this case unobserved input allocations ρjit can be

obtained by solving the following system of equations for each plant-year (i, t):∑
j∈Yi

ρjit = 1, (31)

and

Y j
it = AitF

(
ρjit

Eit

Ŵ j
it

)
∀j (32)

38We always restrict our sample to plant-years where the estimated θMg(i) (Xit) is strictly positive. While
this is always true for our baseline sample, we occasionally obtain θMg(i) (Xit) < 0 for some industries and
plants when we consider alternative production function estimators in the Appendices. We drop those plants
whenever this happens.

39Although another important decision is how to obtain the rental rate of capital for each plant. For this
purpose, we largely follow Raval (2022)— see Appendix H.

40We calculate plant-product markups instead of simply using the measures from the replication files to
De Loecker et al. (2016) (which uses the Prowess data set) so that we can compare ASI-based plant markups
to ASI-based plant-product markups.
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where Ŵ j
it denotes the product line specific input-price control function.41 The system of

equations defined by equations (31) and (32) provide J + 1 equations to obtain down J + 1

unknowns; the J expenditure shares ρjit and Ait. De Loecker et al. (2016) solve this system

of equations numerically.42

Since the translog specification of the production function is homogeneous of degree φ,

(31) and (32) provide a simple closed form expression for the input shares:43

ρjit =

(
Y j
it

) 1
φ Ŵ j

it∑
k

(
Y k
it

) 1
φ Ŵ k

it

. (33)

Since production is non-joint in De Loecker et al. (2016), our estimates of ρjit are sufficient

to recover estimates of product-level markups, which using the standard De Loecker and

Warzynski (2012) formula adapted to multi-product firms as in De Loecker et al. (2016):

µjit = θMg(i)

(
ρjit

Eit

Ŵ j
it

)
Rj
i

ρjitEMi

= θMg(i) (Eit)
Rj
i

ρjitEMi

(34)

where the second equality uses the fact that θs = ∂F (X)
∂Xs

Xs
F (X)

is homogeneous of degree 0 in

X if the production function is homogeneous of degree φ > 0.

We also consider specifications where ρjit is given by the within-plant revenue share of

product j, Rj
i/
∑

j R
j
i . This specification is of interest for two reasons; first, allocating

inputs based on on revenue shares is common in the literature (Foster et al. 2008, Atalay

2014, Collard-Wexler and De Loecker 2015, Blum et al. 2018). Second, this input allocation

rule rationalizes within-plant heterogeneity entirely through heterogeneity in marginal rates

of transformation, rather than markup differences. Orr (2022) shows that revenue shares

reflect within-plant productivity differences as long as production functions are identical

and homogeneous of degree φ > 0, and there is no within-firm markup dispersion. As a

result, this allocation rule effectively imposes a constant within-plant markup, µjit = µit,

to allow for flexible Ajit differences, rather than imposing constant within firm productivity,

41We obtain the input price control function outside of the production function estimation routine by
regressing plant wages on various observables, such as prices and market shares, for single-product firms.
See Appendix I for more details. If the input-price control function is correctly specified and estimated,
Xj
it = Eit

Ŵ j
it

.

42De Loecker et al. (2016) rely on predicted output, Φ̂jit, from a variant of their first stage estimating
equation to generate (32), rather than output directly. We rely on output in our baseline specification since

it is more tightly linked to our theory, but also consider whether using Φ̂jit or Y jit makes any difference for
the recovered product-level markups as a robustness check.

43See Appendix K for derivation.
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Ajit = Ait to identify flexible product-level markup differences µjit.
44

7 Results

We now examine plant-product markups using methods popular in the literature, and

then compare them to the plant markups that are the focus of this paper.

Section 7.1 starts by showing that common estimators of plant-product markups deliver

a large mass of markups close to zero. This implies nearly infinite marginal costs or zero

prices. We show that such markups are nearly always found at multi-product firms suggesting

potential misspecification of within-plant across-product input allocation rules. We then

present data-driven exercises suggesting that omission of MRT heterogeneity may be behind

this issue consistent with the Monte Carlo results of 3.2.45

Section 7.2 displays our plant-level markups where output elasticities are derived using

Techniques 1 and 2 as discussed in section 5. Using both techniques, our plant-level markups

display much tighter dispersion than those presented in section 7.1 even without trimming

outliers. Further, we do not see a mass of markups at zero.

7.1 Product-level Markups and a Zeros Puzzle

7.1.1 Documenting the Problem of Outlier Markups

Figure 2 presents histograms of markups at the firm/plant-product level under the as-

sumption that production is non-joint with no MRT heterogeneity (equations 33 and 34).

Panel (A) uses the control function estimation approach as described in section 6.3 applied

to our plant-level ASI data. Panel (B) plots firm-product markups obtained directly from

De Loecker et al. (2016) replication files.46

Both panels display a large mass of markups near zero, another above 1, and a long right

tail. While the second peak is expected, the mass of estimates near zero is striking, and can

only be rationalized by very high marginal costs, or prices of almost zero. Since this is the

multiplicative markup, µ ≡ P
MC

, perfect competition corresponds to µ = 1. Therefore, µ = 0

44To see this, substitute ρjit =
Rjit∑
k R

k
it

into equation (34) to obtain µjit = θMg(i) (Eit)
∑
k R

k
i

EMi
, which is

constant across j.
45These are data-driven in that they use actual data as opposed to the Monte Carlo simulations of section

3.2.
46Both sets of markups are for Indian producers. However, panel (A) uses the ASI and therefore only

considers plant-product levels markups for the years 2002 to 2008, while panel (B) uses Prowess data to
construct firm-product level markups for the years 1989 to 2003. In both figures we truncate the distribution
at 5 to focus on the lowest set of markups we estimate.
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Figure 2: Product-level Markups: All Plant-products

(A) ASI Data (B) Prowess Data

Notes: This figure displays histograms of firm/plant-product markups. Panel (A) presents plant-product
markups calculated according to equations (33) and (34) using the ASI data. Panel (B) shows firm-product
markups taken from replication files for De Loecker et al. (2016) that uses the Prowess data. We trim
markups ≥ 5 for scale.

is unexpected in standard profit maximizing models of firm behavior and likely reflects some

degree of model misspecification.

We quantify this possible misspecification by comparing the ratio of the number of esti-

mated product-level markups that are close to zero (µjit < 0.5), to the number of markups

above 0.5 but below 5.47 We refer to the latter set as reasonable markups and to this ratio

as the zeros outlier ratio. We can also use this metric to examine the long right tail in

estimated markups.48 We quantify the importance of the right tail by calculating the ratio

of the number of markups greater than 5 to the number of reasonable markups.49 We refer

to this latter ratio as the tail outlier ratio.

To explore whether model misspecification is a plausible culprit, we systematically vary

the assumptions used to estimate markups with the goal of pinning down the precise mech-

anisms that are generating these results. As a benchmark, the two far-left vertical bars in

Figure 3 display the zeros outlier ratio and the tail outlier ratio (respectively) for the firm-

47While one might take µjit ≥ 1 to be “reasonable”, i) product-level markups can be less than 1 with
complementary goods, and ii) when the correct model is perfect competition and there is some (classical)
measurement error in revenues or expenditures, we may find estimated markups distributed above and below
1.

48While not directly plotted in Figure 2, estimated markups here have a fairly fat, right tail, with the 95th
percentile of product level markups being 57.83, and the 99th percentile involving a markup of 546.

49We compare our outlier counts to the reasonable markup counts rather than simply examining propor-
tions of markups of each type so that one outlier ratio becoming more likely does not mechanically decrease
the severity of the other outlier ratio.
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product markups from Figure 2, panel (A). The number of zero markup estimates is about

20% the number of reasonable markups estimates. Combined with the right tail outliers

(slightly less than 20%), the sample of total outlier markups is roughly 40% the size of rea-

sonable markup sample. The problem gets worse if we focus only on markups estimated at

multi-product plants as seen in the second set of bars (“MP only”). Zero markup observa-

tions are over 40% of the size of the reasonable markups sample, and accounting for right tail

markups generates a total outlier sample 70% the size of the sample reasonable markups,

suggesting that to 40% of the plant-product markups are outliers (0.7/(0.7 + 1) = 0.41).

This suggests that mispecification of the input allocation rule may be partly responsible for

the large number of markups with undesirable properties.

The next three sets of bars (“No Wj”,“Phi”, “Unit Adj ”) show that adjusting the in-

put allocation rule by i) removing the input price controls function, ii) purging output of

measurement error, and iii) carrying out additional units adjustments do not substantively

change these results. Appendix L describes these changes in detail. In the final two bars,

we allocate inputs by revenue shares. This rule is interesting because it allows for MRT

heterogeneity as in Orr (2022) but rules out within-plant markup differences. This sim-

ple allocation rule almost completely resolves our zero markup puzzle; the number of zero

markup observations is only 2% the size of the reasonable sample and tail outliers are only

0.05%. Figure 4, panel (A) plots the histogram of product-level markups for our baseline

multi-product sample, and compares it to panel (B) which shows the revenue share multi-

product markup sample. Comparing panel B to panel A, both types of outliers become far

less common.

While allocating inputs based on revenue shares almost completely solves the zero markup

puzzle, it is unsatisfying because this requires that we abstract from within-plant markup

differences, defeating the point of estimating product-level markups. However, this sug-

gests that establishing ways to allow for MRT heterogeneity that do not restrict within-firm

markups may be fruitful.

7.1.2 Do Parameterized Productivity Ladders Help?

Can parameterized models allowing for MRT heterogeneity help in eliminating the mass

of markups at zero? If the answer is “yes”, then these fixes may allow researchers to use

input allocation rules for existing models with minor changes. While we find that such

parametrizations may help, results are too sensitive to provide conclusive support for whether

productivity ladders can eliminate the outlier problems.

To see this, consider a simple parameterized input allocation rule that allows for MRT
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Figure 3: Plant-Product Markup Outlier Ratios Across Methods

Notes: The above bar chart plots two outlier ratios for different models of product-level markups. Letting
Z denote the set of product-level markups where µ ≤ 0.5, T denote the set of product-level markups where
µ ≥ 5, R denote product-level markups between 0.5 and 5, and |.| denote the number of elements in a given

set, the Zeros outlier ratio is defined as |Z||R| and the Tail outlier ratio is defined as |T||R| . Baseline refers to the

product-level markups in Panel A of Figure 2. MP Only only considers the subset of markups produced by

multi-product plants. No Wj removes the input price control function adjustment Ŵ j
it in equation (33). Phi

uses predicted output Φ̂jit in place of realized output Y jit in equaiton (33). Units Adj uses the modified input

allocation rule ρjit =

[(
Y jit
A
j

) 1
φ

Ŵ j
it

]
/

[∑
k

(
Y kit
A
k

) 1
φ

Ŵ k
it

]
, where A

j
is average TFPQ obtained from single

product-firms by 5 digit product code j. Rev Sh uses revenue shares to allocate inputs in equation (34). All
models except for Baseline look only at markups generated by multi-product plants. See Appendix L for
further details.

heterogeneity (see Appendix K for derivation):

ρjit =

(
Y jit
Ajit

) 1
φ

Ŵ j
it∑

k

(
Y kit
Akit

) 1
φ
Ŵ k
it

. (35)

If the econometrician knows {Ajit}j, then they can derive the allocation rules necessary

for estimating firm-product markups. However, {Ajit}j is generally unknown making this

unfeasible without further restrictions. To provide such structure, we consider a variant of

the Mayer et al. (2014) model of within-firm heterogeneity based on core competencies. Each

firm faces a productivity ladder over all potential products j, with j = 0 indexing a “core”

product that has the highest productivity within the firm. We assume that for all j 6= 0
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Figure 4: Plant-Product Markups: Multi-Product-Plant-Product

(A) Baseline (B) Revenue Share Allocations

Notes: The above two panels display a histogram of product level markups, for the subsample of multi-
product plants. Panel (A) shows our baseline plant-product level markups calculated according to equations
(33) and (34). Panel (B) product-level markups where we use within-plant revenue shares to allocate inputs.
We trim markups ≥ 5 for scale.

Aji = A0
i × (δ)j (36)

where δ ∈ (0, 1) is a free parameter that implies greater within-plant productivity dispersion

as δ → 0.50 We consider two different rankings.51 First, we assume that the product with

the highest revenue is the firm’s core product, j = 0, their second highest revenue product is

j = 1, and so on. Alternately, we assume that a firm’s lowest revenue product is the firm’s

core product, j = 1 is their second lowest revenue product, and so on. While this second

case may seem perverse, previous work including Jaumandreu and Yin (2016), Forlani et

al. (2016), Atkin et al. (2017), and Orr (2022) documents that TFPQ can be negatively

correlated with demand shifters (e.g. quality), and that these demand shifters often explain

revenues better than productivity differences (Hottman et al. 2016, Eslava et al. 2023). In

short, it may be that the lowest revenue products within a firm are the highest Ajit values.52

Figure 5 plots the zero and tail outlier ratios for various assumed values of 1/δ under

these two cases of rankings. Panel A assumes that top revenue products are j = 0 and panel

B assumes that bottom revenue products are j = 0. As 1/δ increases, MRT heterogeneity

50With slight abuse of notation, j here indexes a plant-specific ranking of product-specific TFPQ.
51Unfortunately, we have no way of knowing what each plant’s TFPQ ranking across products without

first disciplining the input shares across product lines. We also report results based on quantity rankings in
Appendix M. These results turn out to be similar qualitatively, although we find that revenue rankings we
report in the main text perform better quantitatively in terms of solving the zeros puzzle.

52In this case, these are low value “cheap goods”.
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Figure 5: Product-level Markup Outlier Ratios with Productivity Ladders

(A) Core Product - Highest Revenue (B) Core Product - Lowest Revenue

Notes: This figure reports outlier ratios for different models of product-level markups as a function of within
firm productivity dispersion, parameterized by 1/δ. Letting Z denote the set of product-level markups where
µ ≤ 0.5, T denote the set of product-level markups where µ ≥ 5, R denote product-level markups between 0.5
and 5, and |.| denote the number of elements in a given set, the Zeros outlier ratio (represented by circles) is

defined as |Z||R| , while the Tail outlier ratio (represented by triangles) is defined as |T||R| . Product-level markups

calculated using equation (34) with ρjit =

[(
Y jit
(δ)j

) 1
φ

Ŵ j
it

]
/

[∑
k

(
Y kit
(δ)k

) 1
φ

Ŵ k
it

]
. Panel (A) orders products j

within a plant from highest to lowest revenue, with j = 0 having the highest revenue, j = 1 having the
second highest revenue, and so on. Panel (B) orders products within a plant from lowest to highest revenue,
with j = 0 denoting the lowest revenue product, j = 1 denoting the second lowest revenue product, and so
on.

also increases as the steps along the productivity ladder become larger. The lines with

triangles represent the tail outlier ratio while the lines with circles represent zeros outlier

ratios. Assuming that products with small revenue shares have the highest productivity

within the firm as in panel B helps reduce the share of zero ratio but increases the number

of tail outlier ratios, diminishing its usefulness. When 1/δ = 10, the number of outliers

actually exceeds the number of reasonable markups.53 Assuming that high revenue products

have the highest productivity as in panel A makes both outlier ratios worse.

Figure 6 plots the plant-product markup distribution for 1/δ = 20 for the case where the

top-revenue product is a plant’s core product (panel A), as well as the case where a firm’s

bottom revenue product is their core product (panel B). Again, when we treat high revenue

products as having the highest TFPQ, the zero markups puzzle becomes much worse. If we

assume low-revenue products have the highest TFPQ, the zero markups puzzle diminishes

greatly but this proposed solution (again) generates a thicker right tail in markups consistent

with continued model misspecification.

53More precisely, the ratio of the sum of zero and tail outliers to reasonable outliers is greater than 1.
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Figure 6: Product-level Markups with Productivity Ladders

(A) Core product - Highest Revenue (B) Core product - Lowest Revenue

Notes: The above two panels display a histogram of product-level markups for the subsample of multi-product

plants. Both panels calculate markups using equation (34) and ρjit =

[(
Y jit
(δ)j

) 1
φ

Ŵ j
it

]
/

[∑
k

(
Y kit
(δ)k

) 1
φ

Ŵ k
it

]
to

calculate input shares, where δ = 0.05. Panel (A) orders products within a plant from highest to lowest
revenue, with j = 0 having the highest revenue, j = 1 having the second highest revenue, and so on. Panel
(B) orders products within a plant from lowest to highest revenue, with j = 0 denoting the lowest revenue
product, j = 1 denoting the second lowest revenue product, and so on. We trim markups ≥ 5 for scale.

MRT heterogeneity is limited in two important ways in the above exercises. First, in these

exercises, within-plant heterogeneity takes on a very specific parametric form that rules out

other forms of heterogeneity (see equation 36). Second, we force TFPQ to rise and fall

across products within a firm using the coarse indicator of product performance. However,

revenue is not a sufficient statistic for within-firm productivity dispersion as documented by

Orr (2022).54 Knowledge of the form of competition and within-firm markup dispersion is

necessary to extract the required information from quantity and revenue data. The fact that

this approach provides only a partial solution to the zero markup puzzle suggests that this

simple model of productivity ladders is not sufficient to capture the true variation in the

underlying data. However, this does suggest that allowing for more flexible patterns of MRT

heterogeneity may be key to pinning down a reasonable estimate of product-level markups.55

54See also Appendix M for similar result where quantity rankings are used in place of revenue rankings.
55In Appendix O we consider two further sources of potential misspecification; assuming non-joint produc-

tion when production may be joint, and misspecification of the production technology. We find that these
cannot help resolve the zeros puzzle.
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Figure 7: Baseline Plant-level Markups

Notes: The above histogram displays plant-level level markups according to equation (30) based on our
baseline production function estimation routine described in the main text (technique 1). We trim markups
≥ 5 for scale.

7.2 Plant Markups

Figure 7 displays a histogram of plant markups using technique 1: a control function

estimator with a selection correction. Appendix N presents the estimated elasticities. Plant

markups are well behaved, with a mean of around 1.5 without trimming outliers. Zero and

right-tail outliers are now quite rate rare; the ratio of zero to reasonable markup estimates

is 0.03, while the tail outlier ratio below 0.01.

Figures 8 and 9 compare outlier ratios and the distribution of plant markups using

Technique 1 (the control function estimator for single-product firms) with two variants of

Technique 2 (the cost-share approach): i) a simple cost-share approach where the production

function parameters differ by two-digit NIC code; ii) the cost-share approach advocated in

Raval (2023) which allows cost-share parameters to vary by labour-to-materials cost quintiles

within each two-digit NIC code. Figure 8 reports outlier ratios for each method and Figure

9 reports average markups without any trimming with 90-10 percentiles. We also report the

outlier ratios for our baseline plant-product markups in the first column of Figure 8 for scale.

Figures 8 and 9 show that results using Technique 1 and the first version of Technique 2

are similar. Outlier ratios appear to be almost identical (Figure 8) and the average markup

only differs by 0.02 (Figure 9). It is also reassuring to see that the 90-10 ratios are remarkably

similar across these two approaches, differing by less than 0.04 (Figure 9). For researchers

unsure as to which approach to use in their own work— a cost share or an estimator based
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Figure 8: Markup Outlier Ratios Across Methods

Notes: The above bar chart plots two outlier ratios for different models of product and plant-level markups.
Letting Z denote the set of product-level markups where µ ≤ 0.5, T denote the set of product-level markups
where µ ≥ 5, R denote product-level markups between 0.5 and 5, and |.| denote the number of elements in a

given set, the Zeros outlier ratio is defined as |Z||R| and the Tail outlier ratio is defined as |T||R| . Plant-Product

refers to the product-level markups from panel (A) of Figure 2. Baseline refers to the plant-level markups
in Figure 7. Cost Share (NIC2) obtains plant-level markups after estimating the materials output elasticity
using industry level cost shares for each two-digit NIC industry code. Cost Share (NIC2*L/M Quintiles)
obtains plant-level markups using a seperate cost-share estimator for each labour-to-materials quintile ×
two-digit NIC industry.

on single-product firms — it is useful to know that both approaches find consistent evidence

for some degree of across-plant misallocation due to market power.56

The more flexible cost-share approach recommended by Raval (2023) to deal with factor

augmenting productivity differences implies slightly lower markups on average. In particular,

once we allow the Cobb-Douglas parameters to vary by labour-to-materials quintiles within

each industry, the average markup falls from 1.5 to 1.34. Similarly, dispersion in markups also

falls using this approach, with the 90th to 10th percentile difference falling to around 0.80,

which is about 25% smaller than the baseline dispersion. These differences are important

56However, it is worth emphasizing that our baseline approach using single-product firms estimates a
single set of production-function parameters for the entire Indian economy, while the cost-share approach
estimates a separate Cobb-Douglas technology by two-digit NIC code. Note, however, that since the translog
specification allows output elasticities to vary across all plants (since output elasticities are functions of input
use), while this cost-share approach forces all output elasticities to be identical for all firms in the same 2-
digit NIC code, it’s not clear which approach should be regarded as “more” flexible. In Appendix P, we also
report results for single-product firm translog production functions for a subset of India’s largest industries,
but find that occasionally our approach leads to some unreasonable (e.g. negative) output elasticities for
many plants (See Appendix N), and as a result there are more zero and outlier issues, which we believe are
driven by insufficient sample size concerns.
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Figure 9: Plant-level Markup Dispersion Across Methods

Notes: The above plots the mean plant-level markup, as well as the 90th to 10th percentile of markups, for
four different ways of measuring plant-level markups. Baseline refers to the plant-level markups in Figure 7
(technique 1). Cost Share (NIC2) obtains plant-level markups after estimating the materials output elasticity
using industry level cost shares for each two-digit NIC industry code (technique 2i). Cost Share (NIC2*L/M
Quintiles) obtains plant-level markups using a separate cost-share estimator for each labour-to-materials
quintile × two-digit NIC industry (technique 2ii).

and potentially point to the importance of allowing for factor-specific productivity differences

as noted by Raval (2022, 2023). On the other hand, note that all methods clearly imply

sizeable differences in plant markups across plants, which indicates that output market power

is responsible for some degree of misallocation in the Indian economy.

8 Conclusion

In this paper, we considered two important problems. First, we asked how to identify

plant-product markups using standard production data. We found that disciplining the

magnitude of MRT heterogeneity is of first-order importance, while determining whether

production was joint or non-joint was less empirically relevant. We see further work on new

and novels ways deal with MRT heterogeneity as a very valuable path for future research.

In particular, in this paper we only considered some simple, stylized approaches to deal with

this problem, but expect that further progress can be made beyond our modest first-pass at

this problem.

Another key problem we tackled in this paper was how to interpret the firm markups

uncovered by the De Loecker and Warzynski (2012) approach. We showed that the firm
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markup can be interpreted as a cost-weighted average of firm-product markups under fairly

general conditions, and that this object is a welfare relevant statistic that can help uncover

the magnitude of across-firm misallocation due to market power. We also showed that a

number of popular estimators, including the cost-share approach, as well as a control function

approach developed in De Loecker et al. (2016), can be applied to uncover this object, even

in joint production settings. Empirically, we found that both cost-share and control function

approaches generated similar plant markup estimates in the Indian manufacturing sector,

although we also found that adjusting for factor-specific productivity differences can lead to

lower markups levels as well as dispersion. We hope these identification results shall prove

useful for uncovering market power in other settings.
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Appendix

A Proof of Theorem 1

The Proof of Theorem 1 relies on the following intermediate results:

Lemma 1 Suppose a firm operates a non-joint technology with product-line production func-

tions Y j
i = AjiFi(S

j
i ◦ Xi), where Fi (Xi) continuous, differentiable, strictly increasing in

all arguments, quasi-concave, and homogeneous of degree φi > 0. Then the firm’s output

distance function is given by:

DNJ
i (Yi,Xi;Fi(.), {Aji}j) =

(∑
j

(
Y ji
Aji

) 1
φ

)φ
Fi(Xi)

(37)

Proof. Given the proposed product-line production functions, the firm’s output distance

function will satisfy:

DNJ
i (Yi,Xi;Fi(.), {Aji}j) ≡ min

δ,{Sji}j
δ

s.t.:
Y j

δ
= AjiFi

(
Sji ◦Xi

)
∀j∑

j

Sjni = 1, ∀n

(38)

The Lagrangian for the optimization problem in (38) is given by:

Li = δ +
∑
j

λji

(
Y j

δ
− AjiFi

(
Sji ◦Xi

))
+
∑
n

µni

(∑
j

Sjni − 1

)
(39)

Since Fi(.) is quasi-concave, any solution Γi ≡
(
{Sji}j, δ, {λ

j
i}j, {µni}n

)
to (38) will satisfy

the following first order conditions:

FOCSjni
(Γi) ≡ −λjiA

j
i

∂Fi
∂Xi

(
Sji ◦Xi

)
Xi + µni = 0 ∀(j, n) (40)

FOCδ (Γi) ≡ 1−
∑
j

λji
Y j
i

δ2
= 0 (41)

FOCλji
(Γi) ≡

Y j

δ
− AjiFi

(
Sji ◦Xi

)
= 0 ∀j (42)

FOCµni (Γi) ≡
∑
j

Sjni − 1 = 0 ∀n (43)
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It is easily verified that the following Γ∗i ≡
(
{Sj∗i }j, δ∗, {λ

j∗
i }j, {µ∗ni}n

)
satisfies equations

(40) through (43), and therefore solves (38):

Sj∗ni =

(
Y ji
Aji

) 1
φ

∑
k

(
Y ki
Aki

) 1
φ

(44)

δ∗ =

(∑
j

(
Y ji
Aji

) 1
φ

)φ
Fi(Xi)

(45)

λj∗i =

∑
j

(
Y j
i

AjiF (Xi)

) 1
φ

2φ
(
Y ji
Aji

) 1
φ

∑
k

(
Y ki
Aki

) 1
φ

1

Y j
i

(46)

µ∗ni =
∂F (Xi)

∂Xi

Xi

F (Xi)

∑
j

(
Y j
i

AjiF (Xi)

) 1
φ

φ

(47)

It immediately follows that DNJ
i (Yi,Xi;Fi(.), {Aji}j) =

∑
j

(
Y
j
i

A
j
i

) 1
φ

φ
Fi(Xi)

by equation (45).

Lemma 2 Suppose Assumptions 1 and 2 hold. If there exists F̃ j
i (.) such that for all (Yi,Xi) ∈

PFi there exist input shares {Sji}j such that Y j
i = F̃ j

i (Sji ◦Xi), the only F̃ j
i (.) satisfying this

condition are F̃ j
i (.) = AjiFi(.), where Fi(.) is defined in Assumptions 1 and 2; otherwise, no

such F̃ j
i (.) exist.

Proof. We establish this by contradiction. In particular, suppose not, so that there exists

F̃ j
i (.) such that for all (Yi,Xi) ∈ PFi there exist input shares {Sji}j such that Y j

i = F j
i (Sji◦Xi),

and there exists at least one X̂i such that F j
i (X̂i) 6= AjiFi(X̂i). By Assumption 3, for any

Xi we can find
(
Ŷj
i ,Xi

)
∈ PFi . Denote this value of Y j

i , given Xi, as Ŷ j
i (Xi). Assumption

2 implies that Ŷ j
i (Xi) = AjiFi (Xi). Since Fi (Xi) is strictly increasing in all it’s arguments,

this implies that Ŷ j
i (Xi) is also strictly increasing in all it’s arguments.

Let Sji

(
Ŷ j
i (Xi) ,Xi

)
denote the optimal input shares for the proposed production func-

tion F j
i (.). The fact that Ŷ j

i (Xi) is strictly increasing in all it’s arguments implies that for

any
(
Ŷ j
i (Xi) ,Xi

)
∈ PFi , we must have Sji

(
Ŷ j
i (Xi) ,Xi

)
= 1. To prove this, suppose not,

so that Y j
i (Xi) = F j

i (Sji

(
Ŷ j
i (Xi) ,Xi

)
◦Xi), where Sji

(
Ŷ j
i (Xi) ,Xi

)
is strictly less than 1

for at least one input. Denote X̃i = Sji

(
Ŷ j
i (Xi) ,Xi

)
◦ Xi, where X̃i is strictly less than
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Xi in at least one dimension. Since Ŷ j
i (Xi) is strictly increasing in all it’s arguments, this

means that Y j
i (Xi) = F j

i (X̃i) > Y j
i

(
X̃i

)
,which further implies

Y j
i

(
X̃i

)
F j
i (X̃i)

< 1

Next, consider
(
Ŷ j
i

(
X̃i

)
, X̃i

)
∈ PFi . Since the production possibility frontier provides

maximal quantities of output, given inputs, it must be that:

F j
i (Sji ◦ X̃i) ≤ F j

i

(
Sji

(
Ŷ j
i

(
X̃i

)
, X̃i

)
◦ X̃i

)
for any feasible Sji . Note that this implies, when combined with the above inequality:

Y j
i

(
X̃i

)
F j
i

(
Sji

(
Ŷ j
i

(
X̃i

)
, X̃i

)
◦ X̃i

) ≤ Y j
i

(
X̃i

)
F j
i (X̃i)

< 1

Which is a contradiction since if
(
Ŷ j
i

(
X̃i

)
, X̃i

)
∈ PFi we must have

Y ji (X̃i)
F ji (S

j
i(Ŷ

j
i (X̃i),X̃i)◦X̃i)

=1.

Therefore, Sji

(
Ŷ j
i (Xi) ,Xi

)
= 1 for all

(
Ŷ j
i (Xi) ,Xi

)
∈ PFi .

Next, choose any X̂i such that F j
i (X̂i) 6= AjiFi(X̂i), and consider

(
Ŷ j
i

(
X̂i

)
, X̂i

)
∈ PFi .

The previous argument has established Ŷ j
i = F j

i (Sji ◦ X̂i) = F j
i (X̂i), i.e. Sji = 1 , while

Assumption 2 implies Ŷ j
i = AjiF (X̂i), which together imply F j

i (X̂i) = AjiF (X̂i), generating

a contradiction. Therefore, the only F̃ j
i (.) that may support non-joint production are F̃ j

i (.) =

AjiFi(.).

We now turn to the statement and proof of Theorem 1, which will make use of these two

lemmas.

Theorem (1). Suppose Assumptions 2 and 3 hold. Then a firm’s technology is non-joint if

and only if:

Di(Yi,Xi) =

(∑
j

(
Y ji
Aji

) 1
φi

)φi
Fi(Xi)

(48)

Proof. The proof proceeds in two steps. First, in Step 1 we show that if the firm’s input

distance function satisfies (48), then the technology is non-joint. Then in Step 2 we show

that if the technology is non-joint, it must have an output distance function given by (48).
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Step 1: Suppose a firm’s input distance function satisfies (48). To prove that this

production possibilities set involves non-joint production, we must show that there exist F̃ j
i (.)

such that for all (Yi,Xi) ∈ PFi , there exist input shares {Sji}j such that Y j
i = F̃ j

i (Sji ◦Xi).

Take F̃ j
i (.) = AjiFi(.). Lemma 1 tells us that the output distance function for this

proposed class of non-joint technologies (Fi(.), {Aji}j) has an output distance function equal

to DNJ
i (Yi,Xi;Fi(.), {Aji}j) =

∑
j

(
Y
j
i

A
j
i

) 1
φi

φi
Fi(Xi)

.

Since the firm’s output distance function satisfies (48), (Yi,Xi) ∈ PFi is the same as the

set of all (Yi,Xi) such that

∑
j

(
Y
j
i

A
j
i

) 1
φi

φi
Fi(Xi)

= 1. However, since DNJ
i (Yi,Xi;Fi(.), {Aji}j) =∑

j

(
Y
j
i

A
j
i

) 1
φi

φi
Fi(Xi)

was generated under the assumption that Y j
i = AjiFi(S

j
i ◦ Xi), then if we

consider the set of (Yi,Xi) such that DNJ
i (Yi,Xi;Fi(.), {Aji}j) =

∑
j

(
Y
j
i

A
j
i

) 1
φi

φi
Fi(Xi)

= 1, this

immediately implies that for all (Yi,Xi) ∈ PFi , there exist input shares {Sji}j such that

Y j
i = F̃ j

i (Sji ◦Xi)

Step 2: Suppose the technology is non-joint. By Lemma 2, Y j
i = AjiFi(.) is the only set

of non-joint technologies consistent with Assumptions 1 and 2. Lemma 1 then immediately

implies Di(Yi,Xi) =

∑
j

(
Y
j
i

A
j
i

) 1
φ

φ
Fi(Xi)

.

B A model of input sharing in production

In this Appendix, we show that the output distance function (13) can be obtained from

a model of production where inputs are shared across product lines, similar to the CES cost

function described in Chapter 15 of Baumol et al. (1982).

Suppose that each firm assembles final output using two classes of intermediate inputs;

private intermediates, Irji , and a public intermediate, Ipi . Private intermediates are special-

ized inputs, such as product-line specific equipment or machinery, that can only be used in

the production of product line j. Public intermediates, on the other hand, are non-rival and

can be used in the production of all product lines at once— these might be thought of as

managerial inputs, or buildings and structures that are useful for producing many things at

once.

Each of these intermediate inputs are built entirely in-house, using the firm’s vector of

48



inputs Xi. We let Xrj
i denote the vector of inputs allocated to producing the specialized

private intermediate Irji , and Xp
i denote a vector of inputs allocated to producing the public,

non-rival intermediate, Ipi . Because Xp
i contains public inputs across product lines, it does

not have an index j. The production of the public and private intermediates within the firm

are given by:

Ipi = G(Xp
i ); Irji = G(Xjr

i )

Note that the aggregation of inputs to make the public and private intermediates are deter-

mined by the same function G(·). We then assume that the production function for product

j at a given firm i is

Y j
i =

Aji
κ

(Irji )βφ(Ipi )(1−β)φ =
Aji
κ
G(Xrj

i )βφG(Xp
i )

(1−β)φ. (49)

where β ∈ [0, 1] governs the intensity of private intermediate use relative to the public

intermediate use, βφ and (1−β)φ are the private and public returns to scale respectively, Aji
is a Hicks-neutral productivity shifter specific to product line j, and κ = (β)βφ(1− β)(1−β)φ

is a constant. Note that even though there exist product-specific production functions inside

the firm, the above defines a joint production technology because of the presence of public

inputs. Therefore, product line production functions within the firm vary only due to the

productivity shifters Aji .
57 We now make two assumptions that will facilitate the derivation

of the output distance function Di(Yi,Xi) for this firm.

Assumption 7 G(·) : RN → R continuous and twice differentiable, equal to zero if any

of its arguments are equal to zero, strictly increasing in all arguments, quasi-concave, and

homogeneous of degree 1.

Assumption 8 Both static and dynamic inputs can be costlessly transferred between public

and private use.

The firm’s output distance function specified in definition 2 can be characterised as

57We can also derive a closed form expression for a firm’s output distance function that has varying total
returns to scale by product line, i.e. φj . We show the derivation for the simple case here.
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follows:

Di(Yi,Xi) ≡ min
δ,Xp

i ,{X
rj
i }j

δ

s.t.
Y j
i

δ
≤ Aji

κ
G(Xrj

i )βφG(Xp
i )

(1−β)φ ∀ j (50)

Xp
si +

∑
j

Xrj
si ≤ Xsi ∀ s

The above optimization problem has the following Lagrangian:

L = δ +
∑
j

λji

(
Y j
i

δ
− Aji

κ
G(Xrj

i )βφG(Xp
i )

(1−β)φ

)
+
∑
s

µsi

(
Xp
si +

∑
j

Xrj
si −Xsi

)
(51)

Since the production functions are increasing in all inputs, all constraints will bind with

equality. The first order necessary conditions where all constraints bind are given by:

FOCδ (δ,Xr
i ,X

p
i ,λi,µi) ≡ 1−

∑
j

λjiY
j
i

δ2
= 0 (52)

FOCXrj
si

(δ,Xr
i ,X

p
i ,λi,µi) ≡ βφ

G(s)(X
rj
i )

G(Xsr
i )

λjiY
j
i

δ
− µsi = 0 ∀ {s, j} (53)

FOCXp
si

(δ,Xr
i ,X

p
i ,λi,µi) ≡ (1− β)φ

G(s)(X
p
i )

G(Xp
i )

∑
j

λjiY
j
i

δ
− µs = 0 ∀ {s} (54)

FOCλji
(δ,Xr

i ,X
p
i ,λi,µi) ≡ Y j

i

δ
− Aji

κ
G(Xrj

i )βφG(Xp
i )

(1−β)φ = 0

& λji > 0 ∀ {j} (55)

FOCµsi (δ,Xr
i ,X

p
i ,λi,µi) ≡ Xp

si +
∑
j

Xrj
si −Xsi = 0

& µsi > 0 ∀ {s} (56)

where G(s)(·) = ∂G(·)/∂Xsi, and λi and µi denote the vectors of Lagrangian multipliers.

Stacking equations (52) - (56) allows us to represent the solution to the cost minimiza-

tion problem as a vector (δ,Xr
i ,X

p
i ,λi,µi) that satisfies FOC (δ,Xr

i ,X
p
i ,λi,µi) = 0 with

(λi,µi) >> 0.
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Consider the following candidate solution for the input allocation rule:

Xrj∗
si = β

(
Y ji
Aji

) 1
βφ

∑
k

(
Y ki
Aki

) 1
βφ

Xsi ∀ {s, j} (57)

Xp∗
si = (1− β)Xsi ∀ {s} (58)

Substituting the above into the product line production function that is binding (equation

55), and using the homogeneity of G(·):

Y j
i

δ∗
=
Aji
κ
ββφ


(
Y ji
Aji

) 1
βφ

∑
k

(
Y ki
Aki

) 1
βφ


βφ

G(Xi)
βφ(1− β)(1−β)G(Xi)

(1−β)φ

(δ∗)
1
βφ

(
Y ji
Aji

) 1
βφ

∑
k

(
Y ki
Aki

) 1
βφ

=

(
Y j
i

AjiG(Xi)φ

) 1
βφ

(δ∗)
1
βφ

∑
j

(
Y ji
Aji

) 1
βφ

∑
k

(
Y ki
Aki

) 1
βφ

= (δ∗)
1
βφ =

∑
j

(
Y j
i

AjiG(Xi)φ

) 1
βφ

=⇒ δ∗ =

∑
j

(
Y j
i

AjiF (Xi)

) 1
βφ

βφ

where F (X) = G(X)φ (59)

Further, also consider the following solutions for the Lagrangian multipliers:

λji =

∑
j

(
Y j
i

AjiF (Xi)

) 1
βφ

2βφ
(
Y ji
Aji

) 1
βφ

∑
k

(
Y ki
Aki

) 1
βφ

1

Y j
i

∀ {j} (60)

µsi = φ

∑
j

(
Y j
i

AjiF (Xi)

) 1
βφ

βφ

G(s)(Xi)

G(Xi)
∀ {s} (61)

It is easily verified that the candidate solution (δ∗,Xr∗
i ,X

p∗
i ,λ

∗
i ,µ

∗
i ) defined in equations (57)

- (61) satisfies the first order conditions stated in equations (52) - (56). Therefore, the output
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distance function for a firm that shares public intermediates across product lines is given by:

Di(Yi,Xi) =

∑
j

(
Y j
i

AjiF (Xi)

) 1
βφ

βφ

(62)

where F (X) is homogeneous of degree φ. An important takeaway from the above expression

is that β governs whether there is joint-production or not.

C Monte Carlo Details

This appendix discusses in more detail the Monte Carlo exercises presented in section

3.2. There are J product-specific CES aggregates Cj each comprised of firm-specific varieties

cji as described in the text. Because the ASI data lists a maximum of ten products a firm

can list, we set J=10. We also assume that each firm produces a random subset of 5 of these

10 products. Production of other products is exogenously set to zero. For the Monte Carlo

exercises, we assume that the output distance function takes the form of equation (13), with

F (Xi) = Li and therefore φ = 1. Labour, Li, is paid an exogenous wage w=1 in both uses.

β is the cost share of rival (non-public) inputs in production at the firm as in Appendix

B. The constant elasticity of substitution demand structure combined with goods market

clearing implies that

cji =
(νji )

σ−1(P j
i )−σ

j∑
i(P

j
i /ν

j
i )

1−σ
γjE (63)

where E is aggregate expenditure, γj is a Cobb-Douglas expenditure share 1/J , and νji are

idiosyncratic demand shifters whose properties are discussed below. The true CES markup

is given by

P j
i =

σj

σj − 1
MCj

i . (64)

where

MCj
i = −

∂Di(Yi,Li)

∂Y ji
∂Di(Yi,Li)

∂Li

w. (65)

Using equations (13), (64), and (65), and substantially manipulating, we obtain:

P j
i =

σ

σ − 1

[
Y j
i

Li

]α−1
w

(Aji )
α
. (66)
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where α = 1
φβ

. If returns to scale are constant and there is no joint production, then

φβ = 1, and this simplifies to the familiar CES constant markup of price over marginal cost:

P j
i = σ

σ−1
w

Aji
.

Parameters

Lower case letters represent log transformations such that x = lnX. We assume that

firm-product productivity can be parameterized by aji = ai + ãji . Firms draw ai from a

random normal distribution N(0, σ2
F ) where we set σ2

F = 5. ãji is drawn from a different

random normal distribution N(0, σ2
FJ). The ratio σ2

FJ/σ
2
F is the key parameter that we vary

to assess the importance of within-firm productivity heterogeneity. We assume that quality

can be written as νji = exp dji where dji = di+ d̃ji −a
j
i . di and d̃ji are random variables drawn

from distributions N(0, σ2
D) and N(0, σ2

DJ). We set σ2
D = 5 and σ2

DJ = 0.5 in all cases. The

final term (−aji ) captures the negative correlation of productivity and quality documented

in Orr (2022). We assume that the cost of one unit of labor is exogenous and equal to 1, and

that aggregate expenditure is also exogenous, E = 100. We assume that there are 10,000

firms such that N = 10, 000. We assume constant returns to scale in all specifications φ = 1.

Unless otherwise stated, we assume that β = 1 such that production is non-joint.

Fixed Point

We start by nominating a N × J matrix of prices P j
i . Using equation (63) and goods

market clearing, we obtain N ×J matrices of revenue and output where typical elements are

Rj
i and Y j

i , respectively. Using equation (13) with F (Xi) = Li, we obtain a N × 1 vector of

total labor demands which we then use to generate a new vector of firm-product prices P̂ j
i

using (66). We then update P j
i until P j

i and P̂ j
i converge. When there is no joint production

(β = 1), this convergence occurs immediately. This delivers values of Y j
i , Rj

i , and Li that

we combine with exogenous parameters Aji and β to calculate true and measured markups

using equations (16)-(19) as we discuss below.

Within-Firm Productivity Heterogeneity (Figure 1, panel a)

All parameters are as described above except σFJ which we initially set to zero imposing

no productivity heterogeneity across product lines within a firm. We then calculate the

correlation between markups implied by equations (16) and (17). This correlation is 1 which

is the first triangle seen in the upper left of panel a. We then increase σFJ by 0.1, take the

relevant draws solve the model again, and calculate the correlation between markups implied
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Figure 10: Monte Carlo: Log Variance of Estimates

(A) Within-Firm Productivity Heterogeneity (B) Joint Production

Notes: Each triangle in panel a presents the log of the variance of estimated markups. The horizontal axis
shows the ratio of within- to across-firm productivity heterogeneity for that correlation. There is no joint
production in this panel. Each triangle is a separate variance term. Each triangle in panel b presents the
log of the variance of estimated markups. The horizontal axis shows the cost share of public inputs 1 − β.
Each triangle is a separate log of variance term. There is no within-firm productivity heterogeneity in this
panel. The log of the variance of markups when there is no within-firm productivity heterogeneity and no
joint production is 6.78=ln(885.4).

by equations (16) and (17), plotting it as the second triangle in this figure. Seeds are set

such that the distribution of across firm draws is the same for each point in the figure. We

continue increasing σFJ , and calculating/plotting the relevant correlation until σFJ/σF = 1.

Joint Production (Figure 1, panel b)

All parameters are as described above except β which we initially set to 1 imposing no

joint production. We then calculate the correlation between markups implied by equations

(18) and (19). This correlation is 1 which is the first triangle seen in the upper left of panel b.

We then decrease β by 0.1, take the relevant draws, solve the model again, and calculate the

correlation between markups implied by equations (18) and (19). Again, seeds are set such

that draws of the relevant exogenous variables are held constant. We continue decreasing β,

and calculating/plotting the relevant correlation until β = 0.2. At this point, we begin to

encounter scaling issues in the shares.

Variance of Estimated Markups

Figure 10 presents the log of the variance of estimated markups analogous to figure 1.

The horizontal axis of each panel is exactly the same in each figure. We present the y-axis
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in logs because of the scale of panel (a). Panel (a) shows that the variance starts to increase

dramatically when within-firm productivity heterogeneity is roughly 20 percent of across

firm heterogeneity. Panel (b) again shows that the omission of joint production produces

less dramatic results although the log of the variance of estimated results increases slightly

to 7.41 inputs for joint production are rougly 80 percent of total costs.

D Constrained Social Planner and Decentralized Econ-

omy

We will show that the object that the constrained social planner outlined in section

4.3 cares about is the aggregate firm-level markup µi. We first re-state the social planners

problem here and derive the first order conditions. Then we characterize the decentralised

economy and show that firm-level aggregate markups are the object that the social planner

wants to equalize across firms.

Constrained Social Planner: A social planner that wants to eliminate across-firm misal-

location while holding within-firm output allocations constant faces the following constrained

optimization problem:

max
{Yi}i

U ({Yiλi})

s.t. Di(Yiλi,Xi) = 1 ∀ i∑
i

Xsi ≤ Xs ∀ s

where λi is the vector of relative output levels within the firm, and Yi is scale of the firm.

Suppose δi and γs are the lagrangian multipliers associated with firm i’s technology constraint

and input s’s resource constraint respectively, then the first order conditions for the above

problem are given by:

FOC wrt Yi :
∑
k

∂U({Yi})
∂Y k

i

λki = δi
∑
j

∂Di(Yi,Xi)

∂Y k
i

λki ∀ i (67)

FOC wrt Xsi : δi
∂Di(Yi,Xi)

∂Xsi

= −γs ∀ {s, i} (68)
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Substituting equation 68 into 67, and substituting for λki = Y k
i /Y

r
i for some reference product

r, we can rewrite the above conditions to be:

∑
k∈Yi

∂U({Yi})
∂Y k

i

Y k
i = − γs

∂Di(Yi,Xi)
∂Xsi

∑
k∈Yi

∂Di(Yi,Xi)

∂Y k
i

Y k
i

−
∂Di(Yi,Xi)

∂Xsi

Xsi
Di(Yi,Xi)∑

k∈Yi
∂Di(Yi,Xi)

∂Y ki

Y ki
Di(Yi,Xi)

∑
k∈Yi

∂U({Yi})
∂Y ki

Y k
i

Xsi

= γs

=⇒ −
∂ lnDi(Yi,Xi)

∂ lnXsi∑
k∈Yi

∂ lnDi(Yi,Xi)
∂ lnY

ik

∑
k∈Yi

∂U({Yi})
∂Y ki

Y k
i

Xsi

= γs (69)

Therefore the social planner will allocate resources across firms such that the object on the

left hand side of equation (69) is equalized across all firms.

Decentralized Economy: Consumers maximize their utility given prices, and firms will

minimize costs. We do not require disciplining how firms set prices for deriving markups,

but rather use prices we observe in the data as the set of prices that maximize firms’ profits.

The consumer problem is given by:

max
{Y ji }i,j

U({Yi}) s.t.
∑
i

∑
j

P j
i Y

j
i ≤ I

=⇒ ∂U({Yi})
∂Y j

i

= θuP
j
i (70)

where θu is the Lagrangian multiplier associated with the consumer budget constraint. From

the firm’s cost minimization problem specified in section 3 and the firm-level aggregate

markup defined in section 4, we have:

µi = −
∂ lnDi(Yi,Xi)

∂ lnXis∑
k∈Yi

∂ lnDi(Yi,Xi)

∂ lnY ki

∑
k R

k
i

Esi
= −

∂ lnDi(Yi,Xi)
∂ lnXis∑

k∈Yi
∂ lnDi(Yi,Xi)

∂ lnY ki

∑
k P

k
i Y

k
i

wsiXsi

Substituting for price P k
i from the consumer FOC, we have:

µi = −
∂ lnDi(Yi,Xi)

∂ lnXis∑
k∈Yi

∂ lnDi(Yi,Xi)

∂ lnY ki

∑
k∈Yi

∂U({Yi})
∂Y ji

Y k
i

Xsi

1

θuwis

=⇒ −
∂ lnDi(Yi,Xi)

∂ lnXis∑
k∈Yi

∂ lnDi(Yi,Xi)

∂ lnY ki

∑
k∈Yi

∂U({Yi})
∂Y ji

Y k
i

Xsi

= θuwisµi (71)
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The left hand side of equation 71 is exactly equal to the object that the constrained social

planner wants to equalize across all firms. Therefore, under the scenario where all firms face

the same input costs, wsi = ws, the social planner wants to equalize firm-level markups µi

across all firms in order to eliminate across firm misallocation while holding the within-firm

(mis)allocation fixed.

E Proof of Proposition 1

Proof. By Assumption 4, we have

Di (Yi,Xi) =
Gi(Yi)

Fg(i)(Xi)
, (72)

where Gi(Yi) is homogenous of degree 1. This implies

∑
k∈Yi

∂ lnDi(Yi,Xi)

∂ lnY k
i

=
∑
k∈Yi

∂ lnGi(Yi)

∂ lnY k
i

=
1

Gi

∑
k∈Yi

∂Gi

∂Y k
i

Y k
i = 1

Substituting this into (21) yields:

µi =
∂ lnDi (Yi,Xi)

∂Mis

∑
j R

j
i

Esi
(73)

While (72) implies:

µi =
∂ lnFg(i) (Xi)

∂ lnMsi

∑
j R

j
i

Esi
= θsg(i) (Xi)

∑
j R

j
i

Esi
. (74)

The last part of the Theorem then follows from Assumptions 3 and 4, where if Yi = Yj
i ,

then Di

(
Yj
i ,Xi

)
=

Y ji
AjiFg(i)(Xi)

. Since cost minimizing firms will operate on their produc-

tion possibilities frontier, and therefore Di

(
Yj
i ,Xi

)
= 1, this immediately implies Y j

i =

AjiFg(i) (Xi), and therefore θsg(i) (Xi) ≡
∂ lnFg(i)(Xi)

∂ lnMsi
can be interpreted as the output elastic-

ity for static input s for firms that choose to produce a single product.

F Firm-level Cost Shares

In this Appendix, we consider an alternative set of restrictions that will allow researchers

to identify the firm-markup for any output distance function satisfying constant returns to

scale. In a multi-output context, constant returns to scale is defined as follows:
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Assumption 9 Each firm’s production possibility frontier involves constant returns to

scale, i.e. for any λ > 0 and (Yi,Xi) ∈ Pfi

Di (λYi, λXi) = 1 (75)

Equation (75) essentially states that if we scale inputs by λ from any previously feasible

production vector (Yi,Xi), then we can also produce an output vector that is scaled by λ.

To identify the firm-markup for all output distance functions satisfying Assumption 9,

we require the following further restriction on the firm’s operating environment.

Assumption 10 All inputs are static, i.e. Xi = Mi

Assumption 10 is a very strong restriction, requiring that all inputs, including capital,

be available for purchase for some (potentially firm varying) input price WX
i . A key ben-

efit of this restriction is that with it, we can prove that the firm markup is identified for

any technology that satisfies constant returns to scale; importantly, this includes technolo-

gies with non-separable output distance functions. This is important, since non-separable

specifications of a firm’s technology are needed to capture situations where firms operate

non-joint production technologies that have different factor intensities (Hall 1973)— for ex-

ample, situations where a high quality good may be more capital intensive than a low quality

good.

Proposition 3 If firms minimize total costs and Assumptions 9 and 10 hold, then :

−
∂ lnDi(Yi,Xi)

∂ lnXsi∑
k∈Yi

∂ lnDi(Yi,Xi)

∂ lnY ki

=
WsiXsi∑
sWsiXsi

(76)

Proof. Since firms cost minimize, Di (Yi,Xi) = 1. Totally differentiating this expression

yields:

∑
j∈Yi

∂Di(Yi,Xi)

∂Y j
i

dY j
i +

∑
s

∂Di(Yi,Xi)

∂Xsi

dXsi = 0

or:

∑
s

∂Di(Yi,Xi)

∂Xsi

dXsi = −
∑
j∈Yi

∂Di(Yi,Xi)

∂Y j
i

dY j
i

Divide by Di and multiply the left hand side by Xsi
Xsi∑

s

∂Di(Yi,Xi)

∂Xsi

Xsi

Di

dXsi

Xsi

= −
∑
j∈Yi

∂Di(Yi,Xi)

∂Y j
i

Y j
i

Di

dY j
i

Y j
i
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∑
s

∂ lnDi(Yi,Xi)

∂ lnXsi

dXsi

Xsi

= −
∑
j∈Yi

∂ lnDi(Yi,Xi)

∂ lnY j
i

dY j
i

Y j
i

Assumption 9 implies that if dX
X

= 1 + δ ∀X, then
dY ji
Y ji

= 1 + δ ∀j, which implies:

∑
s

∂ lnDi(Yi,Xi)

∂ lnXsi

= −
∑
j∈Yi

∂ lnDi(Yi,Xi)

∂ lnY j
i

(77)

Next, since firms cost minimize and all inputs are static by Assumption 10, the static

cost minimization condition (8) holds for all inputs s, which implies:

Wis = −λi
∂Di

∂Xsi

→ WsiXsi

Di

= −λi
∂Di

∂Xsi

Xsi

Di

Since Di = 1

WsiXsi = −λi
∂ lnDi(Yi,Xi)

∂ lnXsi

(78)

Sum over all s

∑
s

WsiXsi = −λi
∑
s

∂ lnDi(Yi,Xi)

∂ lnXsi

(79)

Divide (78) by (79), yielding:

WsiXsi∑
sWsiXsi

=

∂ lnDi(Yi,Xi)
∂ lnXsi∑

s
∂ lnDi(Yi,Xi)

∂ lnXsi

Substituting using (77) to substitute out
∑

s
∂ lnDi(Yi,Xi)

∂ lnXsi
in this expression then yields:

WsiXsi∑
sWsiXsi

= −
∂ lnDi(Yi,Xi)

∂ lnXsi∑
k∈Yi

∂ lnDi(Yi,Xi)

∂ lnY ki

(80)

Proposition 3 tells us that the series of output distance function elasticities that are

necessary to recover the firm markup in (21) can be point identified, firm-by-firm, by simply

examining the cost shares of one of the inputs. This is a powerful result, as the only restriction

on the shape of the output distance functions is that it be constant returns to scale, which

incorporates an extremely broad class of joint and non-joint technologies, including non-joint

technologies with different product-line production functions. However, it requires the strong

restriction that all inputs be static, which may not be appropriate in many settings. Since
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the requirement that all inputs be static means that the static first-order conditions hold for

all inputs, Proposition 3 also implies to following corrolary:

Corollary 1 If firms minimize total costs and Assumptions 9 and 10 hold, then:

µi =

∑
j R

j
i∑

sWsiXsi

(81)

Proof. Implied by substituting (76) into (21) and cancelling out WsiXsi
Esi

= 1

This result is reminiscent of a well known result that the ratio of revenues to costs

measures the markup when there are constant returns to scale and all inputs are static (e.g.

De Loecker et al. 2020). However, a key distinction is that previous variants of this result

focused on settings where revenue and cost data were interpreted as if they applied to a

single product. Here, we allow firms to produce arbitrary numbers of products, and allow

firms to operate using an extremely wide class of joint and non-joint production technologies.

In this more general setting, the “markup” cannot always be interpreted as the price over

marginal cost of a single product (this is only true if a firm produces a single product), but

rather a weighted average of a series of production level markups, µi =
∑

j ρ
j
iµ

j
i .
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G Proof of Proposition 2

Proof. Since Di (Yi,Xi) = 1, then

∂Di (Yi,Xi)

∂Xsi

Xsi =
∂Di (Yi,Xi)

∂Xsi

Xsi

Di (Yi,Xi)
= −βs,g(i),

where the last equality follows from Assumption 6. Combining this with Assumption 5 then

implies

E (WsiXsi|g = g(i)) = βs,g(i)E (λi|g = g(i)) .

Since this holds for all inputs:

E

(∑
s

WsiXsi|g = g(i)

)
=
∑
s

βs,g(i)E (λi|g = g(i)) = E (λi|g = g(i)) .

58De Loecker and Warzynski (2012) emphasize a similar result when addressing the issue of multiple
products shipped to different markets. Specifically, they show that the firm level markup derived in their
setting is an input share weighted average of product-level markups. However, their results apply only to
non-joint production settings with product line production function.
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Takign the ratio of the previous two expression then yields:

E (WsiMsi|g = g(i))

E (
∑

s′Ws′iXs′i|g = g(i))
= βs,g(i)

Since s is assumed to be a static input, (21) holds for this input, and the result immediately

follows.

H Data Appendix

• Labour (Lit) : Labour input : We use labour input in person-days, as recorded in

ASI Block E. We use the total labour input for all classes of employees, including

managers. Wage bill, wL: The wage bill is the total expenditure on wages for all

classes of employees. Dividing the wage bill by labour input gives the implied wage,

w.

• Capital (Kit) : Stock of Capital : We rely on the perpetual inventory method, use the

heterogeneous depreciation rates of 0%, 5%, 10%, 20%, and 40% for land, buildings,

machinery, transportation equipment, and computers & software, respectively, when

constructing the capital stock over time as in Boehm and Oberfield (2018). The starting

value for each component of a plant’s capital stock is given by its book net opening

value as recorded in block C of the ASI, and investment is taken as the value of gross

additions plus gross revaluations minus gross deductions. The perpetual inventory

method is only used to construct the capital stock for plants operating in multiple

sequential years. We use the book net opening value as an estimate of the capital stock

for all plants that are missing past values. Value of Capital, rK: For the cost share

approach, we need to calculate the total user cost of capital for each firm. We largely

follow Raval (2022) for this purpose. In particular, we obtain the real interest rate by

year as Rt = it−πt
1+πt

, where it is the private sector lending rate and πt is the inflation

rate.59 The rental rate of capital is then defined as the sum of the real interest rate plus

depreciation for each type of capital (buildings, machinery, transportation equipment,

and computers software). Then value of the capital stock is then the rental rates times

the value of the capital stock, summed over each type of capital.

• Materials (Mit) : Domestic and directly imported inputs are recorded in ASI Blocks H

and I, respectively. For domestic inputs, we keep the total value of intermediates used,

59We obtain the private sector lending rate from IMF Financial Statistics, and the inflation rate for India
from World Development Indicators.
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including electricity. For directly-imported intermediates we also keep the total, and

impute zero imports for firms that do not fill out the block. Total materials expenditure

is the sum of expenditure on domestic and foreign intermediates.

I Baseline Estimation Details

In this Appendix, we outline in detail the construction of our control function estimator

for the production function using single product firms. In particular, we describe how we deal

with input price bias, selection into single product firm status, and finally how we construct

out estimating equation based on innovations to productivity.

I.1 Input prices

Although we observe output quantities in the ASI, we do not observe input prices for all

inputs. As De Loecker and Goldberg (2014) explain, using deflated input expenditures as

a proxy for physical inputs can bias elasticity estimates when physical output is observed.

De Loecker et al. (2016) deal with unobserved input prices using a control function approach.

Modeling input prices as a function of output prices, market shares, and other state vari-

ables, they estimate the parameters of this function simultaneously with translog parameters.

Recovering input price control function parameters allows them to predict input “prices,”

which are used to deflate expenditures and construct output elasticities.

We exploit a unique feature of the ASI to correct for input price bias during the production

function estimation routine, without having to use a control function. The ASI includes data

on both labor expenditure and physical input in man-days, which allows us to recover labor

unit values (wages). Following De Loecker et al. (2016) in assuming common deviations from

the national price index for each of capital, labor and intermediates, we use these unit values

to deflate plant expenditures for capital and intermediates, in addition to using labor input

in man-days.60 More formally, we assume that prices for input s can be decomposed into

time- and time-plant varying components, or

Wsit = Wst ×Wit. (82)

Recall that we deflated nominal expenditures using the Indian WPI, which is time-varying

only. By subsequently deflating using the observed wage, we capture components of input

60De Loecker et al. (2016) require that input “prices” be the same across inputs within each product line
in order to identify input price control function parameters.
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prices that vary cross-sectionally. We refer to the plant-level wage as an input “price,” it is

properly interpreted as the plant’s idiosyncratic input price deviation from the WPI.

Since we only observe plant-level wages, not plant-product wages, this approach does not

allow for plant-product input prices as in De Loecker et al. (2016). Since we only use single-

product firms for estimation, this is without a loss of generality at the estimation stage.

However, this distinction matters once we turn to identifying markups in multi-product pro-

ducers. In particular, firm-product input price control functions can incorporate information

on unobserved quality differences by product line. This is a key piece of identifying informa-

tion that can, and should, be incorporated in the algorithm for identifying the unobserved

input allocations. As a result, when using their approach to uncover input allocations, we

follow De Loecker et al. (2016) and allow for firm-product input prices. In practice, we

do this by directly estimating a firm-product input price controls function using observed

plant-level wages for single-product producers. See Section K below for details.

On the other hand, when we consider our measure of firm-level markups, we do not allow

for firm-product specific input prices. The reason for this is that our approach allows for joint

production, i.e. situations where inputs are not directly allocated to particular product lines,

but rather enter the production of all goods simultaneously. In these cases, a firm-product

input price does not have a clear meaning. Therefore, to truly have our approach nest both

joint and non-joint production, we do not allow for within-firm input price variation.

I.2 Selection correction

A concern with using single-product plants is that this may introduce selection bias due

to the non-random addition of product lines. As De Loecker et al. (2016) note, plants may

choose to add product lines if their realized productivity exceeds an idiosyncratic threshold.

Moreover, this threshold may be negatively correlated with past levels of dynamic inputs

(for example, floor space in a factory) because firms with large stocks of these inputs at t−1

would rather add a product at t, even if their productivity is low, rather than leave inputs

underutilized. This may induce a negative correlation between the firm’s time-t productivity

shock and levels of dynamic inputs at t, which are positively correlated with levels at t− 1.

This violates the exclusion restrictions described below.

We correct for potential selection bias of this form using a similar procedure to De Loecker

et al. (2016). An important component of this approach is that selection into multi-product

firm status at time t be based on the productivity of a single-product firm through a simple

cutoff rule based on their productivity at time t− 1. For this purpose, we assume that the

decision to add a product at time t is made at time t− 1. We then require that this decision
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be based on a simple threshold productivity rule, where, letting Jit denote the number of

products by i at time t:61

Jit > 1 if ai,t−1 > ai,t−1 = at−1(li,t−1, ki,t−1, ii,t−1,Γi,t−1), otherwise Jit = 1 (83)

where ii,t−1 is investment, ai,t is log TFPQ for the single product produced by firm i, and

Γi,t−1 is a vector of firm-level state variables at time t − 1, excluding dynamic inputs and

ait.
62

If this is the case, we can then write:

Pr(Jit = 1|Ji,t−1 = 1) = Pr (ai,t−1 ≤ ai,t−1)

= Pr (ai,t−1 ≤ at−1(li,t−1, ki,t−1, ii,t−1,Γi,t−1)

= κt−1 (li,t−1, ki,t−1, ii,t−1,Γi,t−1)

≡ SPit (84)

Importantly, this expression can be estimated using a standard binary outcome model (e.g.

a probit) on a dummy for whether a firm changes their status from single product to multi-

product in the subsequent period. This allows us to then obtain probabilities that a firm

exits the sample, which can then be used to correct for selection. We provide the details of

this procedure I.3 below.

An important consideration is whether the more general setting of MRT heterogeneity

and joint production considered in this paper is likely to generate the required threshold

selection rules as in (83). In particular, De Loecker et al. (2016) appeal to the model in

Mayer et al. (2014), which is explicitly non-joint. In Appendix Q, we consider a particular

parametric example that extends the Mayer et al. (2014) environment to our setting with

joint production, and show that this model generates exactly this class of selection rule.

Note, however, that this particular parametric structure is not strictly necessary; rather,

any model that generates a selection rule as in (83) will be valid.63

61De Loecker et al. (2016) consider a slightly different formulation of the this problem, based on firm’s
productivity at time t, rather than t− 1. Note however, that since the decision to add products is made at
time t− 1, it is natural to state the selection rule in terms of realized productivity at time t− 1 (when the
firm makes their decision to add a product), rather than time t. Note, however, that both approaches to the
problem lead to basically identical selection corrections.

62We set Γit ≡ (wit, pit,msit,Dit) where wit is the firm wage, pit is a log output price, msit is the firm’s
quantity market share for product j, Dit is a vector of year and 5-digit ASICC product code dummies for
the product produced by the single product firm.

63An important condition for this type of selection rule to be valid is that the degree of joint-production
not vary across firms; otherwise, the selection cutoff will depend on other unobservables that would need to
be estimated.
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I.3 Proxy-variable estimator

We rely on a proxy-variables approach as in De Loecker et al. (2016), where we assume

that the physical materials demand function can be written as

mit = mg(i) (ait, kit, lit,Γit) , (85)

Under the assumption that this function is monotonic in ait for single product plants, we

can invert this expression, yielding ajit as a function of observables:

ait = hg(i) (mit, kit, lit,Γit) = hg(i) (xit,Γit) . (86)

Estimation relies of a two step procedure as in De Loecker et al. (2016), In the first step

we estimate the following model for all single product firms:

yit = ln
[
Fg(i)(Xit; β)

]
+ ait + εit = ln

[
Fg(i)(Xit; β)

]
+hg(i) (Xit,Γit) + εit = Φg(i) [Xit,Γit] + εit

(87)

where Fg(i)(Xit; β) has the translog form in (29), εit is an error term capturing unanticipated

shocks when inputs are chosen at time t, or measurement error in yit, and Φg(i) [Xit,Γit] ≡
ln
[
Fg(i)(Xit)

]
+ hg(i) (Xit,Γit)

We use (87) to estimate Φg(i) [Xit,Γit], which allows us to then construct an estimate of

ai,t for single product firms as âi,t = Φ̂g(i) [Xit,Γit]− ln
[
Fg(i)(Xit;β)

]
.64

The production function parameters are then estimated in the second step. We assume

that productivity follows a Markov process, so E (ai,t|Ii,t−1) = E (ai,t|ai,t−1), where Ii,t−1 is

firm i’s information set at time t. Since in this step we need to condition of firms that

were single product in both time periods, and we assume that selection in multi-product

firm status, conditional on being single product at time t− 1, follows selection rule (83) and

probability (84), we work with the following moment:

ai,t = E (ai,t|ai,t−1, ai,t−1 ≤ ai,t−1) + ξit

ai,t = E
(
ai,t|ai,t−1, ai,t−1 ≤ fg(i)(SPit)

)
+ ξit

ai,t = mg(i) (ai,t−1, SPit;γ) + ξit (88)

where γ denotes a vector of parameters governing the shape of the unknown function mg(i)(, ),

and ξit is a productivity shocks unknown to firms at time t − 1.65 Note that the second

64In practice, we approximate the unknown function with a second order polynomial in all continuous
variables, plus the various fixed effects.

65We approximate g(.) with a second order polynomial in all it’s arguments.
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equality uses the fact that according to (84), SPit = Pr (ai,t−1 ≤ ai,t−1), and the fact that

Pr (ai,t−1 ≤ ai,t−1) will be a monotonic function of ai,t−1, and therefore we can invert this

expression to obtain ai,t−1 = fg(i)(SPit).

We simultaneously estimate γ, and the production function parameters β, by substituting

âi,t = Φ̂g(i) [Xit,Γit]− ln
[
Fg(i)(Xit; β)

]
into (88), which yields the following expression for ξit

as a function of unknown parameters (β,γ):

ξit(β,γ) = Φ̂it − ln[Fg(i)(Xit;β)]−mg(i)

(
Φ̂i,t−1 − ln[Fg(i)(Xi,t−1;β)], ŜP it;γ

)
(89)

where ŜP it is the predicted values obtained by estimating a binary choice model for remaining

single product based on (84). In practice, we do this by estimating the following probit model

DSPit = κt−1 (li,t−1, ki,t−1, ii,t−1,Γi,t−1) (90)

where DSPit is a dummy for whether a firm remains single product at time t, and κt−1(.) is

approximated with a second degree polynomial in all continuous variables.

We rely on equation (89) to construct sample equivalents of moments based on

E[ξit × Zit] (91)

where Zit is a vector of instruments.66 We instrument labour and materials with their lagged

values, and to deal with measurement error in kit, we instrument kit with lagged investment,

as suggested by Collard-Wexler and De Loecker (2015). Together (li,t−1,mi,t−1, ii,t−1) identify

the linear terms in (29), while we generate further instruments for identifying the nonlinear

translog terms of the form x1x2− 0.5 ((x1)2 + (x2)2) for each (x1, x2) ∈ (l,m, k) by replacing

xs with the instrument chosen for that particular input.67

66In practice, we concentrate out γ̂ in an “inner-loop”, given β̂, as in Levinsohn and Petrin (2003), where

conditional on a guess β̂, we estimate mg(i)() using OLS, and then use the error terms for from this to
construct the GMM criterion function. To account for differences in units across product codes, we demean
all variables within 5-digit ASICC code when constructing the GMM criterion function.

67So, for example, we generate an instrument for litmit − 0.5
(
(lit)

2 + (mit)
2
)

using li,t−1mi,t−1 −
0.5
(
(li,t−1)2 + (mi,t−1)2

)
, and an instrument for kitmit − 0.5

(
(kit)

2 + (mit)
2
)

using ii,t−1mi,t−1 −
0.5
(
(ii,t−1)2 + (mi,t−1)2

)
.
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J Linear dynamic panel estimator

As an alternative to the proxy variable approach with a selection-correction for single

product plants, we also apply a linear dynamic panel style estimator to the sample of single-

product firms. While this approach does not deal with selection into single-product plant

status, it does address some concerns articulated in Bond et al. (2021) concerning internal

consistency of proxy-variable methods when there are variable markups.

The estimation approach relies on the assumption that the productivity of single product

plant follows a linear AR(1) process:

ait = a0 + ρai,t−1 + ξit (92)

We can use the above to ρ-difference yit = ln[Fg(i)(Xit;β)] + ait yielding:

yit = ρyi,t−1 + ln[Fg(i)(Xit;β)]− ρ ln[Fg(i)(Xit;β)] + ξit (93)

We estimate the above model using a non-linear GMM routine, using the same set of

instruments as used in the control function estimator, plus yi,t−1 to identify ρ. To account

for differences in units across product codes, we demean all variables within 5-digit ASICC

code when estimating this expression.

K Recovering Shares in Closed Form

In our baseline procedure for recovering markups by product line, we follow De Loecker

et al. (2016) as allow for product-line specific input prices, to potentially account for quality

differences across products. First, we assume as in De Loecker et al. (2016) that plant-

product input prices can be decomposed into time-varying and time- and plant-product

varying components, or

Ŵ j
sit = Wst × Ŵ j

it. (94)

where Wst is simply an industry-level deflator for input s. We then assuming that the cross-

section varying component can be modeled as a function of firm state variables, including

output prices, market shares, vectors of state and product dummies, and a trade status

indicator, or

lnW j
it = w(pjit,ms

j
it, IMPit,Dit,Git). (95)

Since we actually observe input prices (plant wages) in the data, we can use single-product
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plants to predict input prices for multi-product plants. In particular, we estimate the model

lnW j
it = δ ·Cj

it + εit (96)

on the sample of single-product plants, where Cj
it contains a low-order polynomial in log

output prices and market shares, plus product, state, import status, and year dummies.

Indicators are permitted to enter log-additively, identically to De Loecker et al. δ is a vector

of parameters. We estimate (96) by OLS, and use the fitted values Ŵ j
it as product-level

deviations from the price index, for all firms.

With the predicted product-line specific input prices in hand, we can then derive our

closed for expression for input shares. We start with generalization of (32) that allows for

MRT heterogeneity, and then obtain our baseline by imposing Ajit = Ait.

Since F (.) is homogenous of degree φ > 0, we can write:

Y j
it = AjitF

(
ρjit

Eit

Ŵ j
it

)
= Ajit

(
ρjit

Ŵ j
it

)φ

F (Eit) (97)

Which implies

(
Y j
it

Ajit

) 1
φ

Ŵ j
it = ρjit (F (Eit))

1
φ (98)

Sum over j

∑
j

(
Y j
it

Ajit

) 1
φ

Ŵ j
it = (F (Eit))

1
φ (99)

where we use the fact that
∑

j ρ
j
it = 1. Divide (100) by (99):

(
Y jit
Ajit

) 1
φ

Ŵ j
it∑

k

(
Y kit
Akit

) 1
φ
Ŵ k
it

= ρjit (100)

Equation (33) in the main text is then obtained by imposing Ajit = Ait.

L Alternative Share Procedures for Figure 3

In this Appendix, we describe in detail three alternative to our baseline input allocation

rule that we report in Figure 3 of the main text.
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1: We consider modifying the input allocation rule by dropping the input price control

function, Ŵ j
it from the problem, generating the modified input share rule ρjit =

(Y jit)
1
φ∑

k(Y kit)
1
φ

(“No

Wj”). This case corresponds to the standard setting considered in this paper where inputs

are the same when used across various product lines. We find that dropping the input-price

control function does little to change the proportion of right tail outliers, while it slightly

increases the proportion of zero outliers.

2: We replace realized output in (33) with “predicted” output, as suggested by De Loecker

et al. (2016) to adjust for measurement error. More precisely, in this specification (“Phi”),

we re-rerun the first step of our control function estimation routine for the full sample of

single- and multi-product plants. We then use this regression to generated predicted output

Φ̂j
it, which we use in place of Y j

it in (33)— this specification appears to increase both the

proportion of tail, as well as zero, outliers.

3: We consider whether the Ajit = Ait restriction is generating issues due to differences in

quantity units across product lines. In particular, Ajit is a quantity-based TFP measure, and

therefore will partly vary with the units product j is measured in. To correct for this, we

consider a units adjusted input allocation rule

(
Y
j
it

A
j

) 1
φ

Ŵ j
it

∑
k

(
Y k
it

A
k

) 1
φ
Ŵk
it

, (“Units Adjustment”), where

A
j

is average TFPQ for single-product plants producing product code j. Unfortunately, we

find that this approach does little to alleviate the zero markup puzzle.
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M Product Markups with Quantity Ranked TFPQ

Figure 11: Product-level Markup Outlier Ratios with Productivity Ladders

(A) Core Product - Highest Quantity (B) Core Product - Lowest Quantity

Notes: The above reports outlier ratios for different models of product-level markups. Letting Z denote

the set of product-level markups where µ ≤ 0.5, T denote the set of product-level markups where µ ≥ 5,

and R denote product-level markups between 0.5 and 5, the Zeros outlier ratio (represented by circles)

is defined as |Z||R| , while the Tail outlier ratio (represented by triangles) is defined as |T||R| , where |.| de-

notes the number of elements in a given set. These statistics are report as a function of within firm

productivity dispersion, parameterized by 1
δ . Product-level markups calculated using equation (34) with

ρjit =

[(
Y jit
(δ)j

) 1
φ

Ŵ j
it

]
/
∑
k

(
Y kit
(δ)k

) 1
φ

Ŵ k
it

]
. Panel (A) orders products j within a plant from highest to lowest

quantity sold, with j = 0 having the highest quantity sold, j = 1 having the second highest quantity, and

so on. Panel (B) orders products within a plant from lowest to highest quantity, with j = 0 denoting the

lowest quantity product, j = 1 denoting the second lowest quantity product, and so on.

N Production Function Estimates

In this Appendix, we report output elasticities and overall returns to scale for the various

approaches used to estimate plant and plant-product markups. The approaches considered

in the paper are:

1. Baseline: We rely on a translog specification of the technology as in equation (29), and

use the control function estimation approach outlined in Appendix I. In particular, we

only use single product plants for estimation and correct for this with a De Loecker et al.

(2016)-style selection correction, and also correct for input price bias using plant-level

wages. We include lagged investment as an instrument for capital in this specification,

as recomended by Collard-Wexler and De Loecker (2021). We only estimate a single set
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of production function parameters for the entire Indian economy in this specification;

however, this still allows for heterogeneity in output elasticities across firms due to the

translog form. Estimates reported in Table 2.

2. Linear dynamic panel: We rely on a translog specification of the technology as in

equation (29), and use the dynamic panel approach outlined in Appendix J. We only

use single product plants for estimation but do not correct for this with a De Loecker

et al. (2016)-style selection correction. However, we do correct for input price bias

using plant-level wages. We include lagged investment as an instrument for capital in

this specification, as recomended by Collard-Wexler and De Loecker (2021). We only

estimate a single set of production function parameters for the entire Indian economy

in this specification. Estimates reported in Table 3.

3. Baseline by industry: Same as Baseline, except we estimate production function

parameters by 2-digit NIC industry. Estimates reported in Table 4.

4. Linear dynamic panel by industry: Same as Linear dynamic panel, except we

estimate production function parameters by 2-digit NIC industry. Estimates reported

in Table 5.

5. Baseline alternative instruments: Same as Baseline, except we use kit as an

instrument, rather than lagged investment. Estimates reported in Table 6.

6. Baseline Cost Share: Cost-share approach described in the main text, where produc-

tion function parameters only differ across 2-digit NIC industries. Estimates reported

in Table 7.

7. Heterogeneous Cost Share: Cost-share approach described in the main text, where

production function parameters differ across 2-digit NIC industries× labour-to-material

quintiles, as suggested by Raval (2023). Estimates reported in Table 8.

For each specification, we report the mean and standard deviation for each output elas-

ticity, as well as the mean and standard deviation of returns to scale.68 In the first column,

we report these statistics for all available industries. In the subsequent columns, we report

statistics by industry, for a subset of India’s largest industries. The output elasticities are cal-

culated over single-product plants when we rely on approaches that only use single-product

plants for estimation (Tables 2 through 6). In the cost-share approaches (Tables 7 and 8, we

rely on all plant-years, including multi-product plants.

68Sometimes the standard deviation is zero, if that particular specification holds the statistic constant
within a particular industry-group.
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Table 2: Output Elasticities: Baseline estimation using single product plants

All 15 17 18 21 24 25 26 27 28 29 31

θk 0.187 0.186 0.188 0.189 0.188 0.184 0.188 0.194 0.179 0.185 0.187 0.183

(0.020) (0.021) (0.020) (0.019) (0.015) (0.021) (0.016) (0.017) (0.018) (0.019) (0.018) (0.020)

θl 0.057 0.049 0.055 0.064 0.051 0.054 0.050 0.071 0.040 0.056 0.060 0.051

(0.022) (0.020) (0.021) (0.020) (0.014) (0.020) (0.017) (0.018) (0.021) (0.019) (0.019) (0.020)

θm 0.900 0.909 0.901 0.890 0.905 0.905 0.906 0.879 0.925 0.902 0.897 0.909

(0.037) (0.037) (0.037) (0.036) (0.026) (0.037) (0.030) (0.030) (0.035) (0.035) (0.034) (0.037)

RTS 1.144 1.144 1.144 1.144 1.144 1.144 1.144 1.144 1.144 1.144 1.144 1.144

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Notes: The above table reports the estimated average output elasticities and their standard deviation across single-product
plants. Output elasticities are based on a single translog estimated for the entire Indian economy. The first column reports the
statistics for all sectors, while the remaining columns report statistics for India’s largest manufacturing sectors (organized by
2-digit NIC code). The bottom row reports estimated returns to scale.

Table 3: Output Elasticities: Linear dynamic panel estimation using single product plants

All 15 17 18 21 24 25 26 27 28 29 31

θk 0.219 0.223 0.224 0.219 0.226 0.213 0.227 0.228 0.210 0.215 0.218 0.211

(0.051) (0.052) (0.051) (0.046) (0.039) (0.057) (0.041) (0.048) (0.045) (0.048) (0.046) (0.049)

θl 0.030 0.012 0.025 0.046 0.017 0.028 0.015 0.057 0-.001 0.030 0.037 0.022

(0.042) (0.035) (0.040) (0.035) (0.028) (0.041) (0.033) (0.040) (0.039) (0.035) (0.034) (0.036)

θm 0.860 0.873 0.860 0.844 0.866 0.869 0.868 0.825 0.901 0.864 0.855 0.876

(0.065) (0.065) (0.064) (0.062) (0.046) (0.064) (0.053) (0.052) (0.061) (0.061) (0.060) (0.065)

RTS 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Notes: The above table reports the estimated average output elasticities and their standard deviation across single-product
plants. Output elasticities are based on a single translog estimated for the entire Indian economy. The first column reports the
statistics for all sectors, while the remaining columns report statistics for India’s largest manufacturing sectors (organized by
2-digit NIC code). The bottom row reports estimated returns to scale.
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Table 4: Output Elasticities: Multi-industry baseline estimation using single product plants

All 15 17 18 21 24 25 26 27 28 29 31

θk 0.219 0.170 0.129 0.056 0.425 –0.049 0.122 0.262 0.257 0.298 0.311 0.706

(0.765) (0.062) (0.095) (0.400) (0.384) (0.663) (2.308) (0.670) (0.220) (0.597) (0.508) (0.606)

θl 0.162 0.069 –0.459 0.049 0.087 –0.006 0.624 0.853 0.052 0.073 –0.161 –0.182

(0.602) (0.025) (0.341) (0.447) (0.373) (0.156) (1.131) (0.274) (0.251) (0.504) (0.168) (0.811)

θm 0.828 0.897 1.497 0.914 0.686 1.064 0.659 0.181 0.888 0.867 1.217 0.740

(0.658) (0.043) (0.246) (0.326) (0.666) (0.508) (1.247) (0.686) (0.261) (0.106) (0.365) (0.312)

RTS 1.209 1.135 1.167 1.019 1.198 1.008 1.404 1.296 1.197 1.238 1.367 1.264

(.114) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Notes: The above table reports the estimated average output elasticities and their standard deviation across single-product
plants. Output elasticities come from seperate translog production functions estimated for each of the listed 2-digit NIC sectors.
The first column reports the statistics for all sectors, while the remaining columns report statistics for by sector. The bottom
row reports estimated returns to scale.

Table 5: Output Elasticities: Multi-industry linear dynamic panel estimation using single
product plants

All 15 17 18 21 24 25 26 27 28 29 31

θk 0.284 0.170 0.104 0.235 0.561 0.292 0.550 0.275 0.153 0.186 0.366 0.692

(0.462) (0.211) (0.213) (0.760) (0.695) (0.217) (0.292) (0.560) (0.230) (0.486) (0.338) (0.557)

θl 0.140 0.096 –0.134 0.161 0.122 0.066 –0.054 0.704 0.048 0.233 –0.313 –0.266

(0.704) (0.108) (0.570) (1.305) (0.177) (0.059) (0.460) (0.166) (0.183) (1.779) (0.123) (0.435)

θm 0.710 0.853 1.109 0.462 0.482 0.692 0.640 0.247 0.918 0.902 1.103 0.702

(0.668) (0.198) (0.676) (0.585) (0.856) (0.233) (0.479) (0.534) (0.409) (1.439) (0.215) (0.180)

RTS 1.134 1.12 1.079 .857 1.164 1.05 1.136 1.225 1.119 1.321 1.156 1.128

(.099) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Notes: The above table reports the estimated average output elasticities and their standard deviation (in parentheses) across
single-product plants. Output elasticities come from seperate translog production functions estimated for each of the listed
2-digit NIC sectors. The first column reports the statistics for all sectors, while the remaining columns report statistics for by
sector. The bottom row reports estimated returns to scale.
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Table 6: Output Elasticities: Baseline estimation using single product plants— Alternative
Instruments

All 15 17 18 21 24 25 26 27 28 29 31

θk –0.13 –0.10 –0.117 –0.152 –0.103 –0.133 –0.10 –0.159 –0.093 –0.134 –0.141 –0.125

(0.081) (0.067) (0.078) (0.063) (0.059) (0.087) (0.063) (0.085) (0.070) (0.067) (0.062) (0.066)

θl 0.160 0.136 0.147 0.175 0.136 0.167 0.133 0.174 0.142 0.167 0.169 0.163

(0.089) (0.081) (0.087) (0.072) (0.068) (0.100) (0.071) (0.093) (0.076) (0.078) (0.072) (0.077)

θm 1.067 1.062 1.067 1.074 1.065 1.063 1.064 1.083 1.049 1.065 1.069 1.06

(0.031) (0.031) (0.030) (0.029) (0.022) (0.031) (0.025) (0.025) (0.029) (0.029) (0.028) (0.031)

RTS 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097 1.097

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Notes: The above table reports the estimated average output elasticities and their standard deviation (in parentheses) across
single-product plants. Output elasticities are based on a single translog estimated for the entire Indian economy. The first
column reports the statistics for all sectors, while the remaining columns report statistics for India’s largest manufacturing
sectors (organized by 2-digit NIC code). The bottom row reports estimated returns to scale.

Table 7: Output Elasticities: Cost Shares by 2-digit NIC

All 15 17 18 21 24 25 26 27 28 29 31

θk 0.064 0.039 0.080 0.039 0.104 0.081 0.062 0.133 0.075 0.035 0.039 0.037

(0.033) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

θl 0.068 0.047 0.079 0.138 0.068 0.040 0.057 0.071 0.048 0.080 0.090 0.070

(0.029) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

θm 0.868 0.914 0.842 0.823 0.828 0.878 0.881 0.796 0.877 0.884 0.871 0.892

(0.043) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

RTS 1 1 1 1 1 1 1 1 1 1 1 1

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Notes: The above table reports the estimated average output elasticities and their standard deviation (in parentheses) across all
plants. Output elasticities obtained by the industry cost shares for each NIC2 industry. The first column reports the statistics
for all sectors, while the remaining columns report statistics for India’s largest manufacturing sectors (organized by 2-digit NIC
code). The bottom row reports estimated returns to scale.
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Table 8: Output Elasticities: Cost Shares by 2-digit NIC× Labour-to-materials quintiles

All 15 17 18 21 24 25 26 27 28 29 31

θk 0.066 0.044 0.079 0.045 0.105 0.096 0.066 0.103 0.078 0.042 0.050 0.044

(0.031) (0.017) (0.011) (0.020) (0.026) (0.016) (0.015) (0.027) (0.024) (0.014) (0.021) (0.014)

θl 0.116 0.063 0.108 0.168 0.074 0.101 0.080 0.218 0.052 0.120 0.138 0.100

(0.112) (0.051) (0.091) (0.110) (0.043) (0.083) (0.058) (0.155) (0.048) (0.092) (0.098) (0.077)

θm 0.817 0.892 0.813 0.787 0.821 0.803 0.854 0.680 0.870 0.838 0.812 0.856

(0.122) (0.066) (0.085) (0.130) (0.058) (0.097) (0.072) (0.131) (0.070) (0.106) (0.119) (0.088)

RTS 1 1 1 1 1 1 1 1 1 1 1 1

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Notes: The above table reports the estimated average output elasticities and their standard deviation (in parentheses) across all
plants. Output elasticities obtained by the industry cost shares for each materials-to-labour quintile in each NIC2 industry. The
first column reports the statistics for all sectors, while the remaining columns report statistics for India’s largest manufacturing
sectors (organized by 2-digit NIC code). The bottom row reports estimated returns to scale.
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O Allowing for Scope and Varying Estimators

In this Appendix, we consider whether two further sources of potential misspecification

can explain the zeros puzzle; assuming non-joint production when production may be joint,

and misspecification of the production technology. Figure 12 considers the case of joint

production by relying on output distance function (13), in which case 1 − β captures the

share of public, non-rival intermediates in production. While we find a slight decrease in

the degree of zeros as we increase the public share, this is more than counterbalanced by a

significant increase the the proportion of tail outliers, suggesting that joint production, on

its own, is unlikely to solve the zero puzzle.

In Figure 13, we examine whether alternative methods of estimating material’s output

elasticity can resolve the zeros puzzle. We report outlier ratios derived from: (1) our base-

line estimates, (2) a linear dynamic panel estimator, (3) estimating a separate production

function for each of the largest 2-digit NIC industries, (4) a linear dynamic panel estimator

applied by industry to the same set of industries as in (3), (5) our baseline approach but

using kit as an instrument to identify βK rather than lagged investment, (6) a cost share es-

timator by 2-digit NIC industry], and (7), a cost share estimator applied to each 2-digit NIC

industry × five separate labour to material expenditure quintiles, as recommended by Raval

(2023). Each set of bars in Figure 13 reports outlier ratios where input shares are calculated

using (33) as well as using revenue shares. Each set of bars tells a similar story: there is a

sizeable number of zero and tail outliers when assume that there is no MRT heterogeneity,

but many fewer when we allocate inputs using revenue shares.
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Figure 12: Product-level Markup Outlier Ratios with Scope

Notes: The above reports outlier ratios for different models of product-level markups. Letting Z denote the

set of product-level markups where µ ≤ 0.5, T denote the set of product-level markups where µ ≥ 5, and R
denote product-level markups between 0.5 and 5, the Zeros outlier ratio (represented by circles) is defined

as |Z||R| , while the Tail outlier ratio (represented by triangles) is defined as |T||R| , where |.| denotes the number

of elements in a given set. These statistics as a function of the public input share, 1− β, where markups are

calculated using equation (34) with ρjit =
(Y jit)

1
βφ∑

k(Y kit)
1
βφ
..

77



Figure 13: Product-level Markup outlier Ratios Across Methods

(A) Baseline (B) Revenue Share

Notes: The above bar chart plots two outlier ratios for different models of product-level markups for the

sub sample of multi-product plants. Letting Z denote the set of product-level markups where µ ≤ 0.5, T
denote the set of product-level markups where µ ≥ 5, and R denote product-level markups between 0.5 and

5, the Zeros outlier ratio is defined as |Z||R| , while the Tail outlier ratio is defined as |T||R| , where |.| denotes the

number of elements in a given set. Panel (A) reports outlier statistics when markups are calculated using

(33) and (34), as in our baseline. Panel (B) reports outlier statistics when markups are calculated using (34)

with ρjit equalling a product’s revenue share (Rshare). The numbers of the x axis denote different ways

of estimating relevant output elasticities to recover product-level markups. Specification (1) refers to our

baseline estimates, where a single production function is estimated for all of India, using a control function

approach with a selection correction. Specification (2) recovers output elasticities using a linear dynamic

panel estimator. Specification (3) applies a control function with a selection correction by 2-digit NIC

industry (industries 15, 17, 18, 21, 24, 25, 26, 27, 28, 29, and 31). Specification (4) applies the linear

dynamic panel estimator by 2-digit NIC for the same set of industries. Specification (5) applies the control

function estimator with the selection correction using, using the current capital kit as instrument to identify

βK , rather than lagged investment as in our baseline. Specification (6) estimates the materials output

elasticity by 2-digit NIC code using the cost share approach. Specification (7) estimates the materials

output elasticity by 2-digit NIC code× labour to material expenditure quintiles using the cost share approach.

Specifications (1) through (5) are rely on a homogeneous translog specification of the production function,

while Specification (6) and (7) rely on Cobb-Douglas.
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P Plant-Markups: Alternative Estimation Routines

Figure 14: Plant-level Markup Dispersion Across Methods

Notes: The above plots the mean plant-level markup, as well as the 90th to 10th percentile of markups,

across various methods for calculating the plant-level materials elasticities. Baseline uses the estimates

from Table 2 . Dynamic Panel obtains plant-level markups using the elasticities in Table 3. Baseline

by Industry obtains plant-level markups using the elasticities in Table 4. Dynamic Panel by Industry

obtains plant-level markups using the elasticities in Table 5. Baseline, Alternative Z obtains plant-level

markups using the elasticities in Table 6.

Q De Loecker et al. (2016) selection correction when

there is joint production and markup heterogeneity

De Loecker et al. (2016) justify their selection correction with reference to a model similar

to Mayer et al. (2014), which rules out joint production. In this appendix, we show that

their approach to correcting for selection can still be valid even if firms produce using joint

production technologies. In particular, we work through a simple parametric example of

demand which generates a selection rule as in (83).
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Q.0.1 Market Structure, Preferences, and Technologies

We consider a model of monopolistic competition with variable markups, based on Kim-

ball (1995). Specifically, we consider a representative consumer whose overall welfare, V , is

implicitly defined by the following equation:∫
ω∈Ω

Υ

(
Y (ω)

V

)
dω = 1, (101)

where Y (ω) is the total quantity consumed of variety ω, Ω is the set of all available varieties,

and Υ (ψ) for ψ ≡ Y (ω)
V

is a function satisfying Υ
′
(ψ) > 0 and Υ

′
(ψ) < 0. For our purposes,

it will be convenient to work with the following specification of Υ (ψ):

Υ (ψ) = η ln(ψ) + β
σ

σ − 1
(ψ)

σ−1
σ , (102)

where η, β and σ are utility parameters.69

We assume that the representative consumer minimizes their expenditure on all goods

in Ω, subject to the preference relation (101). This leads to the following inverse demand

function for variety ω:

P (Y (ω)) =
λ

V
Υ
′
(
Y (ω)

V

)
=
λ

V

(
ηV

Yi
+ β

(
Y (ω)

V

)−1
σ

)
(103)

where λ is the consumer’s Lagrangian multiplier from their expenditure minimization prob-

lem. We assume that there are infinitely many firms in the market, so Ω is infinitely large,

and therefore all firms take λ and V as given It is then straightforward to show that these

preferences lead to the following variable markup rule:

µ(ω) =
P (ω)

MC(ω)
=

σ

σ − 1

(
1 +

η

β

(
Y (ω)

V

)−σ−1
σ

)
(104)

While we assume there infinitely many firms in the market, we assume that each firm

produces at most N + 1 products, where N is a finite integer. We then assume that each

firm produces using the following production possibility frontier.∑
j

(
Y j
i

Aji

) 1
α

α

= (Ki)
1−βL (Li)

βL (105)

Here α 6= 1, which allows for joint production. We assume, similar to Olley and Pakes

69It is straightforward to verify that if η = 0, then (101) and (102) together imply that the representative
consumer has standard CES preferences.
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(1996), that capital predetermined at time t, while labour is static.70

Following Mayer et al. (2014), we assume that each firm has a core variety, which is simply

the product that highest the highest single-product productivity index Aji . For simplicity,

we index this product by j = 0 for each firm. Products j = 1, 2, ... decline in productivity

according to the following deterministic productivity ladder:

Aji
A0
i

= δj (106)

Where δ ∈ (0, 1).

Since capital is pre-determined, a firm’s total costs for producing some vector of out-

puts Yi ≡ (Y 0
i , Y

1
i , ..., Y

N
i ), conditional on Ki, firm specific wages wi, and their vector of

productivity shocks Ai ≡ (A0
i , A

1
i , ..., A

N
i ) is given by:

C(Yi,Ai, Ki, wi) =
wi

(Ki)
1−βL
βL

 Ji∑
j=0

(
Y j
i

Aji

) 1
α


α
βL

=
wi(

K1−βL
i A0

i

) 1
βL

 Ji∑
j=0

(
Y j
i

δj

) 1
α


α
βL

(107)

where the second equality uses (106).

Q.0.2 Characterizing the Variable Profit Function

Each firm can produce their core variety j = 0, at no additional costs beyond the labour

and capital necessary to produce each unit quantity. However, each marginal variety beyond

their core variety, j = 1, 2, ... requires that the firm pay a fixed cost f one period before they

can begin selling it. Before we determine the product selection rule, consider a exogenously

firm producing J varieties. Since productivity declines in the index j, a firm producing J

varieties will produces varieties j = 0, 1, ..., J − 1. Given this set of varieties, they choose

their quantities to maximize their profits, i.e.:

max
Yi

J−1∑
j=0

λη + βλ

(
Yi
V

)σ−1
σ

− wi(
K1−βL
i A0

i

) 1
βL

J−1∑
j=0

(
Y j
i

δj

) 1
α


α
βL

(108)

After evaluating each of the firm’s J first order conditions, we obtain the following closed

for expression for variable profits, as a function of J , the firm’s predetermined capital stock

Ki, their core product productivity level A0
i , and firm specific wages wi.

70We simply limit out attention to one dynamic input and one static input here to save on notation, but
the approach easily generalizes to multiple static inputs inlucding materials.
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Π(J,Ki, A
0
i , wi) = γ0J + γ1


(
K1−βL
i A0

i

) 1
βL

wi


(σ−1)βL

σ+βL−σβL (
J−1∑
j=0

(
δj
) σ−1
σ+α−ασ

) σ+α−ασ
σ+βL−σβL

(109)

where:

γ0 ≡ λη

γ1 ≡ (βλ)
σ

σ+βL−σβL V
1−σ

σ+βL−σβL

(
σ − 1

σ
βL

) (σ−1)βL
σ+βL−σβL

(
βL + σ − σβL

σ

)
Note that α + σ − ασ > 1 since σ > 1. Therefore σ−1

α+σ−ασ > 0 and since δ ∈ (0, 1), then

δ
σ−1

α+σ−ασ ∈ (0, 1). From the standard formula for geometric series:

Π(J,Ki, A
0
i , wi) = γ0J + γ1


(
K1−βL
i A0

i

) 1
βL

wi


(σ−1)βL

σ+βL−σβL
1−

(
δ

σ−1
α+σ−ασ

)J
1− δ

σ−1
α+σ−ασ


σ+α−ασ

σ+βL−σβL

or, by defining:

γ2 ≡ γ1

(
1

1− δ
σ−1

α+σ−ασ

) σ+α−ασ
σ+βL−σβL

C0(Ki, A
0
i , wi) ≡


(
K1−βL
i A0

i

) 1
βL

wi


(σ−1)βL

σ+βL−σβL

Π(J,Ki, A
0
i , wi) = γ0J + γ2C0(Ki, A

0
i , wi)

(
1−

(
δ

σ−1
α+σ−ασ

)J) σ+α−ασ
σ+βL−σβL

To guarantee that each firm produces a finite number of products J , we need
∂Π(J,A0

i ,Ki,wi)

∂J
>

0 and
∂2Π(J,A0

i ,Ki,wi)

∂J2 < 0. Note that it is straightforward to verify that the first condition

always holds, since:
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∂Π(J,A0
i , Ki, wi)

∂J
= γ0−ln δγ2C0(Ki, A

0
i , wi)

σ − 1

σ + βL − σβL

(
1−

(
δ

σ−1
α+σ−ασ

)J) σ+α−ασ
σ+βL−σβL

−1

δ
J(σ−1)
α+σ−ασ > 0

(110)

To obtain the second condition, we need to assume that:

δ <

(
σ + βL − σβL
α + σ − ασ

)α+σ−ασ
σ−1

(111)

In which case it is easily verified that:

∂2Π(J,A0
i , Ki, wi)

∂J2
= (lnω)2 γ2C0

σ − 1

σ + βL − σβL
(σ − 1)

α + σ − ασ

×
(

1−
(
δ

σ−1
α+σ−ασ

)J)−1
δ
J(σ−1)
α+σ−ασ

(σ + βL − σβL)
(

1− δ
J(σ−1)
α+σ−ασ

)
×
(
δ
J(σ−1)
α+σ−ασ (α− ασ + σβL − βL)− (σ + βL − σβL)

(
1− δ

J(σ−1)
α+σ−ασ

))
< 0

Which establishes that the variable profit function is concave in J .

Q.0.3 Product Selection Rule

Recall that we previously made the assumption that a firm will choose to add products

at time t − 1. To account for this, we know index all variables with t. Since a firm needs

to decide to add products one period before selling that product, and Π(.) is concave in Jit,

then a single product firm will only choose to add a new product in the following period if:71

E
(
Π(2, A0

i,t, Ki,t, wi,t)− Π(1, A0
i,t, Ki,t, wi,t)|Ii,t−1

)
≥ f, (112)

i.e. the marginal gain in profit from adding a new product is less than the marginal fixed

cost of adding a new product. Since it is easily verified that:

∂2Π(J,A0
it, Ki, wi)

∂A0
it∂J

> 0, (113)

then Π(2, A0
it, Kit, wit)−Πi(1, A

0
it, Kit, wit) is strictly increasing in A0

it. As long as Ait follows

a Markov process

A0
it = E

(
A0
it|Ii,t−1

)
+ ξi,t = g

(
A0
i,t−1

)
+ ξi,t (114)

71For simplicity, we consider myopic firms that one look forward one period when deciding to add products;
however, it is straightforward to extend the logic here to the case of infinitely lived, forward looking firms,
at the cost of some extra notation.
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such that g
(
A0
i,t−1

)
is strictly increasing in A0

i,t−1, then Π(2, g
(
A0
i,t−1

)
+ ξi,t, Kit, wit) −

Πi(1, g (Ai,t−1)+ξi,t, Kit, wit) is strictly increasing in A0
i,t−1 for every realization of ξit, Kit, wit,

and therefore, as long as the distribution of wit conditional on Ii,t−1 does not depend on A0
i,t−1,

then E
(
Π(2, A0

i,t, Ki,t, wi,t)− Π(1, A0
i,t, Ki,t, wi,t)|Ii,t−1

)
is strictly increasing in A0

i,t−1. This

means that the firm will remain single product in the subsequent period as long as A0
i,t−1 ≤ A,

where A solves

E
(
Π(2, g

(
A
)

+ ξi,t, Ki,t, wi,t)− Π(1, g
(
A
)

+ ξi,t, Ki,t, wi,t)|Ii,t−1

)
= f, (115)

Note that the relevant variable in the firm’s information set at time t− 1 for predicting

future period profits are lagged wages, the lagged capital stock, and previous period’s in-

vestment (which allows them to perfectly forecast Kit, leading to a cutoff productivity level

that will be a function of the lagged state variable of the firms, and investment, i.e.

Jit > 1 if Ai,r−1 > Ai,t−1 = At−1(ki,t−1, ii,t−1, wi,t−1), otherwise Jit = 1 (116)

which has the same structure as the cutoff rule (83).
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