Smart Transportation Alliance

Sustainability: Environmental Product Declarations for road restraint systems

Patrick Le Pense ArcelorMittal Europe - Flat Products Claudia Cofano CRM Group

2017 STA Annual Conference & Innovation Awards 28 November 2017

Introduction

- Transportation and Construction sectors consume large amounts of energy and produce high levels of CO_2 -equivalent emissions.
- For the assessment of the sustainable use of resources and of the impact of construction works on the environment Environmental Product Declarations (EPD) should be used when available.
- It is fundamental to consider sustainability when designing new solutions for road infrastructures and for construction of road networks.
- In the future CPR will require construction products to sustainably use natural resources.(CPR, (55))

What's an EPD

- An EPD is an independently verified and registered document that communicates transparent and comparable information about the life-cycle environmental impact of products.
- An EPD is created and verified in accordance with the ISO 14025.
- The EN15804 provides core product category rules for all construction products and services.
- EPD, already used for buildings, will be more & more required in Green Public Procurement process for infrastructure.
- EPD is valid for 5 years.

EPD process

• Five steps to create an EPD:

ISO 14025 and EN 15804

und Umwelt e.V.

PLATFORM

EPD in a glance

Smart Transportation Alliance

ArcelorMittal

- Contains all relevant info (technical features of the products, modelling approach and assumptions, data sources)
- System boundaries:

5.	LCA:	Results	

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)																		
PRO	PRODUCT STAGE CONSTRUCTI ON PROCESS STAGE					USE STAGE							END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES	
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement		Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential	
A1	A2	A3	A4	A5	B1	B2	B3	6 B4	E	35	B6	B7	C1	C2	C3	C4	D	
Х	Х	Х	MND	MND	MND	MND	MN	D MND	М	ND	MND	MND	MND	MND	Х	MND	Х	
RESI	JLTS	OF TH	E LC	A - EN	VIRON	IMENT	AL		1	ton	of rei	nforci	na ste	el in b	ars			
			Paran	neter			Τ	Unit		A1-A3			СЗ				D	
	Global warming potential							[kg CO2-Eq.] 1.23E+3			+3	4.28E+0			-1.78E+1			
	Depletion potential of the stratospheric ozone layer							[kg CFC11-Eq.] 2			2.00	JE-8 1.24E-9			9	7.93E-11		
	Acidification potential of land and water							[kg SO ₂ -Eq.] 8.43E+0			E+0	1.98E-2				-6.81E-2		
Error	fam and a	Eu	rophicatio	n potentia	al	ained avriate		[kg (PO ₄) ² -Eq.]			4.18E-1		2.53E-3 1.90E 3			-5.3/E-3		
Forma	Formation potential of tropospheric ozone photochemical oxidants							[kg enene-Eq.]			0./JE-1 4/33E-3		1.00E-3			-9.90E-5		
	Abiot	ic denleti	on notent	ial for foss	si resourc	98	-	IM I	IMI 123E+3			4.28E+0				-178E+1		
DESI	II TS				SOLID		E- 1	ton of reinforcing steel in				hare	1.202			-1.102.11		
ILL SI			IE 207		JOON	02 03	<u> </u>		GII	nor	cing 5	ceel III	Dais					
			Para	meter				Unit	A1-A3			C3				D		
-	Rer	ewable	primary er	nergy as e	energy ca	mer		MJ	8.37E+2			1.22E+1				8.71E+0		
Renewable primary energy resources as material utilization							MJ	0.00E+0 837E+2			0.00E+0 1.22E+1				0.00E+0			
I otal use of renewable primary energy resources								INU I	0.3/E+2 1.34E+4			644E+1				-1.59E+2		
	Non-renewable primary energy as energy carrier							IMJ	0.00E+0				0.00E+0				0.00E+0	
	Total use of non-renewable primary energy resources							MJ	1.34E+4				6.44E+1				-1.59E+2	
	Use of secondary material							[kg]	3 8.39E+2				0.00E+0				0.00E+0	
	Use of renewable secondary fuels							[MJ]	0.00E+0				0.00E+0				0.00E+0	
	Use of non-renewable secondary fuels							[MJ]	J 0.00E+0			0.00E+0				0.00E+0		
	Use of net fresh water							[m²] 3.21E+0						1.97E-2			-1.17E-2	
RESI 1 ton	RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES:																	
Parameter Uni							Unit	A1-A3			сз				D			
Hazardous waste disposed							[ka]	961E-6				1.03E-6				-225E-7		
Non-hazardous waste disposed							[kq]	8.31E+0				1.50E+2				-2.52E-1		
Radioactive waste disposed							[kg]	1.40E-1				4.97E-3				2.87E-3		
Components for re-use								[kg]	0.00E+0				0.00E+0				0.00E+0	
Materials for recycling								[kg]	0.00E+0				8.50E+2				0.00E+0	
<u> </u>	Materials for energy recovery							[kg]	(g] 0.00E+0				0.00E+0				0.00E+0	
	Exported electrical energy							MJ	0.00E				0.00E+0				0.00E+0	
Exported thermal energy								INN			UUUE+U			U.UUE+U			U.UUE+U	

Sustainability: Environmental Product Declarations for road restraint systems Patrick Le Pense, ArcelorMittal Europe - Flat Products Claudia Cofano, CRMGroup

EPDs rating

• First sustainability rating schemes have been developed for construction works.

BREEAM®	Open Person Open Person	BREEAM rating	% score
BREEAM New Construction: Infrastructure (pilot) Infrastructure (International)	5. Strategy and project management Strategy and	Outstanding	≥ 85
Technical Manual SD219 21 - Palot	G2. Resilience & G3. People & G4. Surrounding risk movement environment G5. Resources	Excellent	≥ 70
	21 Auditors 14 Standards 14	Very good	≥ 55
	Location (P) A Overvilyee ith registreents Location (P) L	Good	≥ 45
	Konsequent K	Pass	≥ 30
bre	L successful and parts 2. Notified anoth 2. Notified anoth	Unclassified	< 30

- Software using EPDs within Integrated Design to calculate LCA at each construction stage.
- EPDs contribute up to 7 credits.

EPD for VRS

- ArcelorMittal has published recently 3 EPDs for Single-sided safety barriers and MPS.
- Manufacturing: High strength steels & Magnelis®

EPDs comparison

Barrier A H1 W3 A side barrier High strength steels & Magnelis® (100%)

Barrier B H1 W5 A side barrier Commodity steels & Batch galva (89%) + HDG **Z600 (11%)**

- Functional Unit: 1m of road steel barrier
- Same End of Life (EoL) scenario (99% RR)

Barrier	Weight [kg/m]	GWP*	[kg CO	2-eq./m]	Innovative steel products				
		A1-3	D	A1-3+D	represent a strong improvement				
Barrier A	20.3	50.7	-33.6	17.1	to:				
Barrier B	24.4	58.4	-24.4	34.0	 17% Weight reduction 50% GHG reduction 				
*Preliminary resu	Its				*Greenhouse gas (GHG)				

*Preliminary results

Recycling potential

Smart Transportation Alliance

End-of-life practice is key:

- Steel: reuse/recycling into new steel products
- Concrete: downcycling (use as aggregate or filling material)

Sustainability: Environmental Product Declarations for road restraint systems Patrick Le Pense, ArcelorMittal Europe - Flat Products ArcelorMitta Claudia Cofano, CRMGroup

- EPDs will enable to compare environmental performance of functionally equivalent products.
- Published EPDs demonstrate that high strength steels and new coatings decrease the use of natural resources, increase the lifespan of solutions and are 100% recyclable (and recycled) at the end-of-life.

- EPDs are a strong asset in considering benefits of recycling at the end-life as part of the products environmental performance.
- Safety improvements & Sustainability approach are rocking road infrastructure engineering enabling further innovations.

For more info:

http://constructalia.arcelormittal.com/en /tools/epd 40 Gracechurch Street London EC3V 0BT (United Kingdom) Tel: +44 20 37690538

Email: info@smart-transportation.org

www.smart-transportation.org