

UK | CHINA | MALAYSIA

A Performance-based Sustainability Assessment tool for Road pavements and Railway tracks

Dr. Davide Lo Presti

Principal Research Fellow @ University of Nottingham/NTEC

2017 STA Annual Conference & Innovation Awards 28 November 2017

SUP&R ITN Research Project

How can we design Sustainable technologies for **Road Pavements** and **Railway Trackbeds ?**

Sustainability Rating Systems (SRS) in Transp.Infr.Eng

Infrastructures

- CEEQUAL (UK)
- Envision (USA)
- BREEAM Infrastructures (NL)
- IS rating system (AUS)

Road Infrastructures (in use)

- GREENROADS (USA)
- FHWA INVEST (USA)
- GreenPave (CA)
- BE²ST- In-Highway
- I-LAST (IL, USA)
- GreenLITES (NYS, USA)
- LCE4ROADS

SRS Conclusions and suggestions

- SRS are usually **qualitative based**, although few recent tools are defined for a quantitative assessment
- A third-party assessment system allows behaviour changing, however self-assessment is a good first step for design workshops
- European, Flexible, User-friendly framework mainly based on quantitative measurements is needed!

SUP&R MCDA Tool

Performance-based Sustainability assessment tool Road Pavement and Railway trackbed technologies

The Team

WP3 leader: DAVIDE LO PRESTI

davide.lopresti@nottingham.ac.uk

James Bryce ER1a – University of Nottingham

Stefanie Brodie ER1b – University of Nottingham

Sara Bressi ER2 – University of Palermo, IT

Joao Oliveira Dos Santos ER3 – IFSTTAR, FR

Methodology & Tool development

STEP1: Framework - Objective Hierarchy

James Bryce, Stefanie Brodie, Tony Parry, Davide Lo Presti, **A systematic assessment of road pavement sustainability through a review of rating tools**, Resources, Conservation and Recycling, 2016

STEP1: Framework - Objective Hierarchy

STEP1: Framework - Concept

STEP1: Framework - Concept

STEP 2: Definition of indicators (short list)

14

STEP 2: Definition of indicators (short list)

STEP 2: Definition of indicators (short list)

STEP 2: Definition of indicators (railways)

Indicator	Means objectives	Description				
Greenhouse GHG (primarly	Healthy Climate and	Various gaseous compounds (principally carbon dioxide) that				
CO_2 emission)	Kesources	absolutimated radiation and trap near in the autosphere.				
Energy consumption	Healthy Climate and Resources	Amount of energy consumed in the process of construction or maintenance.				
Recycled content (Slag and ashes, RAP)	Healthy Natural Environment	Recycled content recovered from existing structure of total discarded/waste material.				
Water depletion	Healthy Natural Environment	Amount of water used for the required operations of construction or maintenance.				
Acidification potential	Healthy Natural Environment	Increase in the concentration of the hydrogen ions (H+) in water and soil. This alters the pH of that medium which may cause damage to the organic and inorganic materials.				
Eutrophication potential (EP)	Healthy Ecosystems	Potential presence of nutrients that can cause over-fertilisation of water and soil which in turn can result in increased growth of biomass.				
Ozone depletion potential (ODP)	Healthy Ecosystems	Indicates the potential for emissions of chlorofluorocarbon (CFC) compounds and other halogenated hydrocarbons to deplete the ozone layer.				
Safety impact	Healthy People	Accidents in property damage, medical, and legal costs.				
User comfort	Healthy People	Factor that evaluates passenger's feeling about vibration environment.				
Noise or vibration reduction	Healthy Community	Reduction of noise/vibration level in order to reduce the acoustic impact on the users and population.				
Life cycle cost	Healthy Economy	The total cost of the purchase and installation, and the use an the maintenance during the life cycle.				

STEP 3: EU survey with Stakeholders (weights)

Approximately **fifty** stakeholders have been interviewed. It was asked them to judge the relative importance of the means objectives and sub-categories.

- public/institutional representative
- public administration,
- self-employed professional,
- universities,
- Enterprises
- other social agents

Means objectives	Weights of the means objectives	Sub-category	Weights of the sub- categories
Healthy Climate and Resources		Recycling and Materials Conservation	15,63
		Long-life Pavements	11,97
		GHG Emissions and Non- renewable Resources	11,87
	11,25	Land Resources	11,06
		Energy	10,83
		Local Materials	10,56
		Climate Change	10,42
		Renewable resources	10,25
		Albedo	7,46

Step 4 – SUSTAINABILITY ASSESSMENT TOOL (MCDA)

DEFINITION OF ALTERNATIVES, MCDA and SA ALTERNATIVI ACDA and 3

✓ European ✓ Multi-sector ✓ Flexible ✓ User-friendly ✓ Quantitative

Step 4 – SUSTAINABILITY ASSESSMENT TOOL (MCDA)

Initial pavement structure and M&R plan

Definition of the alternative (asphalt mixtures for road surface)

	Type of mixture					
Itom	HMA 0%	WMA-	Foamed	HMA,	WMA-	Foamed
Ittill	$\mathbf{D} \mathbf{A} \mathbf{D}$	CECABASE [®] ,	WMA, 0%	50%	CECABASE [®] ,	WMA,
	KAI	0% RAP	RAP	RAP	50% RAP	50% RAP
Virgin aggregate						
Quantity (%/m)	94.4	94.4	94.4	48.4	48.37	48.36
Water content	3	2	3	2	3	3
(%/a)	5	5	5	5	5	5
RAP						
Quantity (%/m)	-	-	-	48.4	48.37	48.36
Water content				2	3	3
(%/RAP)	-	-	-	5	5	5
Bitumen						
Penetration grade	35/50	35/50	35/50	35/50	35/50	35/50
Quantity (%/m)	5.4	5.4	5.4	3.2	3.2	3.2
WMA agent						
Туре	-	surfactant	water	-	surfactant	water
Quantity (%/m)	-	0.054	0.077	-	0.054	0.077
Mixture density	2260	2240	2260	2270	2260	2360
(kg/m^3)	2300	2340	2200	2370	2300	2300

Evaluation matrix

Table 1. Evaluation matrix.

Alternative scenario		Sustainability indicators										
ID	Name	GW (Kg CO ₂ - eq)	ED (MJ)	S M C (%)	W C (m ³)	AC (kg SO ₂ -eq)	EU (kg PO ₄ -eq)	SOD (kg CHC ₁₁ - eq)	PM (kg PM ₁₀ -eq)	TC (Hr)	LCH AC (€)	LCR UC (€)
1	HMA, 0%RAP WMA-	1257 898	69679 068	0	24 24	103 76	451 3	0.823	2871	46.1 42	12663 06	2145
2	CECABA SE [®] , 0%RAP	1236 348	69442 583	0	41 23	102 21	449 5	0.818	2847	40.9 21	12702 96	2042
3	Foamed WMA, 0%RAP	1223 723	68680 490	0	23 99	101 17	443 1	0.811	2809	40.9 21	12590 28	2042
4	HMA, 50%RAP	1202 024	63620 766	11	22 34	978 8	427 3	0.750	2713	46.1 42	12047 73	2145
5	WMA- CECABA SE [®] , 50%RAP	1181 481	63536 209	11	39 36	964 5	425 9	0.748	2691	40.9 21	12090 36	2042
6	Foamed WMA, 50%RAP	1178 377	63380 866	11	22 32	963 0	424 8	0.748	2679	40.9 21	12032 25	2042

Key: HMA- hot mix asphalt; WMA- warm mix asphalt; RAP- reclaimed asphalt pavement; GW- global warming; ED- Energy demand; SMC- Secondary materials consumption; WC- Water consumption; AC- acidification; EU- Eutrophication; SOD- Stratospheric ozone depletion; PM- Particulate matter, TC- Traffic congestion; LCHAC- Life cycle highway agency costs; LCRUC- Life cycle road user costs.

Define Weighting Method

Visualize MCDA results

Sensitivity analysis (weights)

SUP&R MCDA Tool				
File Edit Library Help About				
· · · · · · · · · · · · · · · · · · ·				
	Sensitivity Analysis Results			- = × 📕
222	Outranking flows Deviation values Preference fu	unction values		
	Alternative Name	Positive	Negative	Rankings Net Outranking Rows
		0.05485	outranking	
Self and a self a	VTAC: WMACECABASE additive 0%BAP 5	0.10094	0.43843	
all	VTAC: Foamed WMA 0%RAP 4	0.17859	0.3246	
T	VTAC: HMA_50%RAP 2	0,48244	0,16648	Baseline Scenario Alternative Scenario
Teste Conv	VTAC: WMA-CECABASE additive_50%RAP_3	0,40849	0,19743	
Teste_copy	VTAC: Foamed WMA_50%RAP 1	0,47993	0,03181	8- 5
Uncompleted				
STEP 1: Select Indicators				^{c2} 2-
				80.00 BOLES CO.
STEP 2: Define Alternatives				HMAA SWMAA BASE BASE
				amed A CEC
STEP 3: Filter Evaluation Matrix				WMA F
STEP 4: Define Weighting Method				Alternative
	<		>	
	N			pL
STEP 5: Define PROMETHEE Parameters				Export results Cancel
				Cancel
STEP 6: Display MCDA Results				
STED 7. Desferre Considerity Analysis				MCDA Step 6/7
STEP 7: Perform Sensitivity Analysis				Accomplished

Sustainability Ranking

Alternatives

Conclusions

Flexible Performance-based Sustainability Assessment

Sustainable Pavement & Railway Internal Training Network ER1, ER1bis - Sustainability Assessment framework:

- Objectives
- Categories
- Indicators identity

ER3

Multi-Criteria Decision Analysis (Rating tool)

• Rev

Det

Resources Conservation &

Recycling

Conclusions

SUP&R MCDA tool

ER1, ER1bis - Sustainability Assessment framework:

- Objectives
- Categories
- Indicators identity
- Stakeholders engagement (Weighting set)

ER2,

- Review of system specific scientific papers, reports, etc
- Selection methodology (ER2)
- Railway indicator selection
- Sust Assess SUP&R railway technologies

ER3

- Multi-Criteria Decision Analysis (Rating tool)
- Review of papers, reports, SRS
- Pavement indicator selection
- Sust Assess SUP&R railway technologies

General SA Framework

SUPER ITN Sustainable Pavement & Railway Internal Training Network

System specific tasks:

- Road Pavements

- Railway trackbeds Resources Conservation &

Recycling

ACKNOWLEDGMENTS

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement number 607524.

www.superitn.eu

SUPeRITN #sustainablepavement(s) #sustainablerailway(s)

The next one...

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement number

607524.

Sustainable Multi-functional Automated Resilient Transport Infrastructures

15 Marie Curie researchers in place http://smartietn.eu

GRAZIE!

Davide Lo Presti

http://about.me/davidelopresti davide.lopresti@nottingham.ac.uk

PROJECTS:

- Sustainable Pavements
- Sustainable Railways
- Sustainability Assessment of Transport Infrastructures