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Abstract

We estimate a model of firm export dynamics featuring cross-country complemen-

tarities. The firm decides where to export by solving a dynamic combinatorial discrete

choice problem, for which we develop a solution algorithm that overcomes the compu-

tational challenges inherent to the large dimensionality of its state space and choice

set. According to our estimated model, firms enjoy cost reductions when exporting to

countries geographically or linguistically close to each other, or that share deep trade

agreements. Countries, especially small ones, sharing these traits with attractive des-

tinations receive significantly more exports than in the absence of complementarities.
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1 Introduction

Since Baldwin (1988), a large literature documents the dynamics of firms in export markets.

This literature nearly unanimously assumes a firm’s exports to a country are unaffected by

its exports to other countries. There is however a growing body of evidence questioning

this assumption, supporting instead the hypothesis that there are cross-country export com-

plementarities, understood as mechanisms through which a firm’s export participation in

a country (due, for example, to low tariffs) makes the firm more likely to export to other

countries. The current literature nonetheless lacks a quantification of the role these comple-

mentarities play in the firm’s export choices. In this paper, we take a first step towards this

quantification.

Quantifying the importance of cross-country complementarities while accounting for the

dynamics of firms in export markets requires addressing two challenges. First, one must

identify the impact that the firm’s decision to export to a country has on its export prof-

its in other countries. Here, we follow a literature (e.g., Albornoz et al., 2021; Mattoo et

al., 2022) that uses instruments to separately identify export complementarities from cross-

market correlation in unobserved determinants of export choices, addressing in this way an

identification challenge similar to the reflection problem studied in Manski (1993). Second,

one must devise an algorithm to solve dynamic firm entry models with cross-country com-

plementarities. This is our main contribution. Building on Jia (2008) and Arkolakis et al.

(2023), we design an algorithm to solve rational-expectations single-agent dynamic discrete

choice models with cross-choice complementarities. Our algorithm addresses the computa-

tional challenges inherent to the large dimensionality of the state space and choice set in

this kind of models. The algorithm is applicable to a broad set of dynamic discrete choice

models with supermodular objective functions, as illustrated, e.g., in Liu (2023).

The notion of cross-country complementarities features prominently in trade policy dis-

cussions. Specifically, it is often used as a justification for the signing of preferential trade

agreements (PTAs), which interested parties proclaim act as gateways to markets beyond

those of the agreements’ signatories.1 Relatedly, in the specific case of deep PTAs, the belief

that the regulatory convergence these treaties impose on their members is itself a source

of complementarities between them has been used to argue that these agreements help at-

tract imports from third countries. This line of reasoning was particularly salient in policy

discussions of Brexit.2 Using our model and solution algorithm, we evaluate the impact of

1To provide an example involving Costa Rica, whose data we use in this paper, its government defended
its 2013 PTA with Singapore by claiming it would increase its exports all throughout Asia (Ruiz, 2013).

2Models à la Eaton and Kortum (2002) or Anderson and van Wincoop (2003) predict that shallow PTAs
divert trade from third countries. When forecasting the impact of Brexit, UNCTAD (2020) hypothesized this
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counterfactual trade policies with the aim of shedding light on these policy discussions.

We extend a canonical model of firm export dynamics à la Das et al. (2007) to allow

for cross-country complementarities. Our model features monopolistically competitive firms

with constant marginal production costs and country- and period-specific variable, fixed, and

sunk export costs. Variable costs are “iceberg,” and firms face sunk costs when exporting

to countries to which they did not export in the previous period (see Roberts and Tybout,

1997). All export costs in a country are allowed to depend on its geographic and linguistic

distance to, and the deepness of its PTAs with, the firm’s home country. The fixed cost

a firm faces in a country and period may additionally depend on the firm’s other export

destinations in the same period. Specifically, a firm may face smaller fixed costs in a country

if it concurrently exports to another country, and the size of this cost reduction may depend

on these countries’ geographic and linguistic proximity as well as the deepness of the PTAs

of which both are members. To discipline the estimation of the parameters determining

the extent to which fixed costs in a country depend on the firm’s export choices in other

countries, we allow these costs to also depend on a term unobserved to the researcher that

is potentially correlated across countries.

The inclusion of sunk costs, and our modeling of fixed costs, make a firm’s static export

profits in a country and period weakly larger if the firm exported to the same country in the

previous period, or if it exports to other countries in the same period. The firm internalizes

the impact its export choice in a country and period has on profits in other countries and

periods. It thus chooses each period’s set of export destinations as the solution to a dynamic

combinatorial discrete choice problem. When forecasting the impact of its choices on future

periods, firms form expectations rationally.

Given commonly available computational capabilities, the optimization problem deter-

mining the firm’s export path cannot be solved using standard algorithms. The reason is

that, given J foreign countries, the choice set in any given period includes 2J elements (each

one a J-dimensional vector of binary variables indicating the set of countries to which the

firm exports), and the state space similarly grows exponentially in the number of possible

destinations. To compute the firm’s optimal export path, we develop an algorithm that

solves a series of increasingly complex problems that place gradually tighter bounds on the

firm’s optimal choice. Our algorithm exploits the supermodularity of the firm’s objective

function: exporting to a country in a period and state weakly increases the returns to ex-

porting in every other country, future period, and possible state. It thus builds on prior

work that has leveraged the supermodularity of the objective function to solve otherwise

negative third-country effect would be mitigated by increased UK-EU regulatory divergence as “trade costs
rise for third countries due to production process adjustment costs or duplication of proofs of compliance.”
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intractable static optimization problems (see Jia, 2008, Antràs et al., 2017, Arkolakis et al.,

2023), and it extends the set of problems that are computationally feasible to solve to a

family of supermodular problems featuring dynamics and firms’ uncertainty about future

payoffs. In our implementation, for faster computation of the solution to the firm’s problem,

we assume the firm has perfect information on the future path of some payoff-relevant vari-

ables. However, this informational assumption is not required for the validity our solution

algorithm, and can be relaxed at the expense of computation time.

The problem of separately identifying the parameters governing the strength of the export

complementarities from those determining the cross-country correlation in fixed costs’ un-

observed determinants is an instance of the general problem of separately identifying “path”

(or group) dependence from correlated unobservables; in our case, across countries within a

period. Given any proximity measure between countries, be it geographic or linguistic, or

whether they share a deep PTA, we use two types of moments to separately identify these

parameters. First, moments capturing how the covariance in firm export choices in any

two countries depends on their proximity. Second, moments capturing how the probability

the firm exports to a destination depends on exogenous shifters of export profits in other

countries close to it. These shifters operate in our estimation as instruments for the firm’s

export participation in those other countries.3 While the first type of moments is particu-

larly sensitive to the parameters determining the correlation in unobserved fixed cost shocks,

the second one is especially sensitive to the parameters determining the impact exporting

to a country has on fixed costs in other countries. We present simulation results illustrating

that, in our model, both types of moments jointly identify the parameters of interest.

Our estimates reveal a large heterogeneity across country pairs in the impact exporting to

one of them has on fixed costs in the other one. This heterogeneity reflects their geographic

and linguistic proximity, as well as the deepness of the PTAs tying together their regulations;

e.g., exporting to Korea reduces fixed costs in China in 0.3%, exporting to Canada brings

down costs in the US in 3.5%, and exporting to France reduces costs in Germany in 9%.

These cost savings accumulate as the firm adds destinations; e.g., for a firm exporting to

France, adding Switzerland to its export bundle increases the reduction in fixed costs in

Germany from 9% to 16%. Generally, EU members, being geographically close to each other

and sharing a deep PTA, have fixed costs that are particularly sensitive to the firm export

choices in the other members.

3We use the aggregate export potential of a country in a sector as an export profit shifter for firms
in that sector. We measure a country’s export potential as the importer fixed effect in a sectoral gravity
equation estimated using data on all country pairs that do not include Costa Rica as importer or exporter.
A limitation of this strategy is that the destination-specific profit shifters vary not by firm but by sector. For
a similar identification approach that uses product-specific export profit shifters, see Albornoz et al. (2021).
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We perform three types of analysis. First, to quantify the role complementarities play

in determining firm exports, we compare the predictions of a version of our model in which

we set to zero the parameters determining the strength of complementarities to those of

alternative versions in which some or all of these parameters take their estimated values.

Overall, complementarities increase the number of firm-country-periods with positive exports

in 12%, and total exports in 5%. Of the three sources of complementarities we consider,

geographical proximity plays the largest role, causing a 3% increase in exports, while deep

PTAs generate complementarities that increase exports in 2%, and linguistic proximity does

so in 1%. These numbers mask a large heterogeneity across countries: while EU members see

Costa Rican exports increase in at least 10%, with countries in Central Europe experiencing

increases above 25%, exports to countries such as the US or China are largely unaffected.

Solving our estimated model takes 125 times more than solving the version with no com-

plementarities. There is thus a trade-off between computation time and accuracy of the

model predictions. To explore this trade-off, we compute the predictions of versions of our

model in which we group countries into clusters such that complementarities between coun-

tries in the same cluster are set to their estimated values, and those between countries in

different clusters are set to zero. When equating clusters to continents, the time required

to solve the model decreases in 30%, and we find that within-continent complementarities

increase the number of firm-country-periods with positive exports in 10%, and total exports

in 4%. When partitioning countries into 50 clusters according to the estimated comple-

mentarities, the computation time decreases in 75%, and the implied increase in export

events and total exports, relative to the model with no complementarities, equals 9% and

3%, respectively. Intuitively, as spatial proximity is the key source of complementarities ac-

cording to our estimates, and the estimated geographical complementarities decrease rapidly

in the distance between countries, the predictions of our model are well approximated by

those of alternative models that partition the set of countries into a large number of small

geographical clusters.

Second, to shed light on discussions on the third-country effect of complementarities due

to deep PTAs, we quantify the impact of Brexit on Costa Rican exports to the UK and

the EU. Specifically, we compare model-predicted exports in a setting in which the UK

and the EU share no deep PTA post Brexit to those in a scenario in which the UK still

belongs to the EU and, thus, shares a deep PTA with its members. Trade barriers between

Costa Rica and all destinations are kept the same in both scenarios. Given the partial-

equilibrium nature of our model, this analysis isolates the third-country effect of Brexit

due to cross-country complementarities alone. We find that, in the four years between the

Brexit referendum and the UK withdrawal from the EU, firms anticipate the future reduction
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in UK-EU complementarities, causing the number of firm-periods with positive exports and

total exports to the UK to decrease in 1.6% and 0.8%, respectively. In the ten years following

the withdrawal, the number of firm-periods with positive exports and total exports to the

UK drop in close to 5%. Conversely, the impact on exports to the EU is minimal.

Third, and last, we study the impact of Costa Rica signing PTAs that bring its export

tariffs with different destinations to zero, and compare our model’s predictions to those of a

re-estimated model that rules out the possibility of complementarities. Our model predicts

eliminating Costa Rican export tariffs with the EU increases the number of firm-country-

years with positive exports and total exports to its members in 65% and 83%, respectively.

Although tariffs with non-EU countries do not change, exports to some of them are affected;

e.g., exports to Iceland and to the UK increase in close to 7%, reflecting that the former shares

a deep PTA with the EU, and the latter is geographically close to several of its members.

The model without complementarities predicts smaller increases of 55% and 80% in export

participation and total exports to EU members, respectively, and no change in exports to

non-members. When eliminating tariffs with CPTPP members instead, our model predicts

an increase in exports to these countries that is less than 1 pp. higher than that predicted by

the model without complementarities, and no significant change in exports to non-member

countries. The reason for the larger divergence in model predictions when studying a change

in trade policy with EU members than when doing so with CPTPP members is that the

former exhibit stronger complementarities among themselves and with non-member countries

than the latter. Thus, whether models that allow for complementarities yield predictions

similar to those of models that do not depends on the policy change being studied.

Our results have implications for the right definition of export markets. Customs agencies

generally provide information on export destinations by foreign country. Researchers thus

typically equate foreign countries to markets. However, for firms, countries and markets may

not be synonyms. For example, a firm from Costa Rica selling in California may face non-

zero fixed costs when adding clients in Massachusetts, but an exporter selling in Germany

may find that the extra fixed costs of adding Austria as a destination are minimal. While

data limitations complicate studying whether large countries are better approximated as ag-

gregations of markets, our analysis helps determine whether countries sharing geographical,

linguistic, or regulatory, similarities are better treated as single markets. For example, our

results reveal that the EU is far from being a collection of 27 independent markets.4

Our model assumes away the presence of substitutabilities in the firm’s export choices

across destinations. The reason is computational, as our algorithm is guaranteed to find

the solution to the firm’s problem only when the value function is supermodular. Although

4For an analysis of market aggregation and the gravity equation, see Redding and Weinstein (2019).
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factors that make the firm’s sales in different spatial markets substitutable have been shown

to be relevant in other settings (Almunia et al., 2021; Boehm and Pandalai-Nayar, 2022),

and may also be present in ours, our estimates suggest that complementarities are the

dominant force in our data. In our estimation, the moment that identifies the parameters

that determine the strength of the cross-country complementarities is monotonic in these

parameters. Thus, our estimate of these parameters would have equaled zero if it had been

the case that firms export decisions across countries exhibit subsitutabilities in net.

Our paper relates to several strands of the literature. First, it relates to the literature

on export dynamics which, as reviewed in Alessandria et al. (2021a), has largely studied

the firm’s export decision in an aggregate market (Roberts and Tybout, 1997; Das et al.,

2007; Alessandria and Choi, 2007; Arkolakis, 2016; Ruhl and Willis, 2017) or in indepen-

dent markets (Fitzgerald et al., 2023).5 Exceptions are Schmeiser (2012), Chaney (2014),

Albornoz et al. (2016), and Morales et al. (2019), which allow for cross-market firm ex-

port complementarities. Relative to this work, our contribution is twofold: first, we solve a

canonical partial-equilibrium model of firm export dynamics extended to allow for comple-

mentarities across many markets; second, we use the estimated model to quantify the role

complementarities play in determining the reaction of firm exports to policy changes.6

Second, our paper also relates to a reduced-form literature identifying cross-market in-

terdependencies in firm exports. While there is a large literature documenting correlation

patterns in firm sales across markets (Lawless, 2009; Albornoz et al., 2012, 2023), there is a

more recent literature using instruments to separately identify cross-market interdependen-

cies from correlation in unobserved determinants of firm sales (Defever et al., 2015; Berman

et al., 2015; Albornoz et al., 2021; Mattoo et al., 2022).7 Our contribution is to allow for

complementarities in an export dynamics model, and to quantify the role complementarities

play both in overall firm exports and in their reaction to changes in trade policy.

Third, our paper relates to the work solving combinatorial discrete choice problems. This

literature has focused nearly exclusively on static problems, and has implemented several

approaches: evaluating all choices (Tintelnot, 2017); modeling combinatorial choices as an

5Other work on export dynamics in a single market or independent markets includes Eaton et al. (2008,
2021a,b); Alessandria and Choi (2014a,b); Albornoz et al. (2016); Fitzgerald and Haller (2018); Dickstein
and Morales (2018); Gumpert et al. (2020); Alessandria et al. (2021b). Work on dynamics in imports or
multinational production with independent markets includes Conconi et al. (2016); Ramanarayanan (2017);
Garetto et al. (2021); Lu et al. (2022).

6The paper closest to ours is Morales et al. (2019), which partially identifies export complementarities
under weak restrictions on firm expectations, choice sets, and planning horizons, without solving the resulting
model. Hoang (2022) uses a similar methodology to Morales et al. (2019) to identify complementarities in
firm imports. In Section 6, we compare our estimates to those in Morales et al. (2019)

7There is also a literature studying complementarities between exporting and importing in a market; e.g.,
Kashara and Lapham (2013) or Antràs et al. (2017).
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aggregation of multinomial ones (Hendel, 1999); approximating the discrete problem as

a choice over a continuous variable (Oberfield et al., 2023; Castro-Vincenzi, 2022); using

simulation-based global optimization algorithms that converge to the solution as the number

of simulations grows to infinity (Houde et al., 2023; Castro-Vincenzi et al., 2023); or, devising

algorithms that exploit the super- or sub-modularity of the objective function (Jia, 2008;

Antràs et al., 2017; Arkolakis et al., 2023).8 Building on this last approach, we introduce

an algorithm to solve rational-expectations single-agent dynamic discrete choice problems in

which all choices are complements.

The rest of the paper proceeds as follows. Section 2 describes our data and documents

correlation patterns in firm exports. Section 3 introduces our model, and sections 4 and

5 explain how we solve and estimate it, respectively. In Section 6, we present the model

estimates, and we discuss counterfactual results in Section 7. Section 8 concludes.

2 Data

In Section 2.1, we describe the sources of our data and present summary statistics. In Section

2.2, we discuss correlation patterns in firm export choices across destinations.

2.1 Sources and Summary Statistics

Our analysis uses two types of data: data on characteristics of firms located in Costa Rica,

and data on characteristics of foreign countries as destinations of Costa Rican exports.

Our firm-level data covers the period 2005-2015 and comes from three sources. First,

the Costa Rican customs database, which provides information on export revenues by firm,

foreign country, and year for the universe of Costa Rican firms. Second, an administrative

dataset that, for all firms located in Costa Rica, contains information on their sector, total

sales, and expenditure in labor and materials. Using information in these datasets, we

construct a measure of firm domestic sales by subtracting total export revenue from total

sales. Third, a dataset built by Alfaro-Ureña et al. (2022), which identifies the Costa Rican

firms that belong to a foreign multinational corporation. We merge the three datasets using

firm identifiers provided by Alfaro-Ureña et al. (2022), and restrict our sample to include

only manufacturing firms (i.e., whose main activity is in sectors 10 to 33 of the ISIC Rev. 4

classification) that are not part of a foreign multinational corporation.

The resulting dataset includes 7,203 firms. Approximately 8% of them export in a typical

8For work incorporating dynamics, see Zheng (2016), who groups choices in clusters such that each choice
affects choices in other clusters only through cluster-specific aggregates.
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year. While exporting firms often export to a single destination (this being the case for 40%

of exporters), 25% of them export to at least four destinations, 10% of them export to

at least seven, and 5% of them export to at least ten. By sector, export participation

events are concentrated in the manufacturing of other food products (sector 1079) and of

plastic products (sector 2220). The most popular destinations are countries that are either

geographically close to Costa Rica (e.g., Nicaragua) or relatively large (e.g., the United

States). We provide additional descriptive statistics in Appendix B.1.

We complement the firm-level data with data on country characteristics. We collect

measures of the geographical distance between countries from CEPII (Mayer and Zignago,

2011), of the languages spoken in each country from Ethnologue (Eberhard et al., 2021),

of the content of PTAs from Hofmann et al. (2019), of the tariffs applied to Costa Rican

exports from Barari and Kim (2022), and of countries’ GDP from the World Bank. Using

these data, we build geographical, linguistic, and regulatory distances between countries.

We denote the geographical distance between countries j and j1 as ngjj1 . As in Head

and Mayer (2002), we measure ngjj1 as a population-weighted harmonic mean of distances

between cities located in j and j1. Two features of this measure are worth noting. First,

it accounts for the location of population within a country; e.g., according to this measure,

Russia is closer to Germany (2,290 km) than to China (4,984 km). Second, large countries

appear isolated; e.g., while the distance between Switzerland and the UK is 872 km, that

between the US and Canada is 1,154 km.

We denote the linguistic distance between countries j and j1 as nljj1 . We measure it

as the probability two individuals randomly drawn from j and j1, respectively, have no

shared language. To compute this probability, we use country data on the population shares

that speak any given language. Relative to measures based on the commonality of official

languages between countries, nljj1 reflects the prevalence of languages by country, and thus

accounts for the fact that languages may be popular in a country without being official;

e.g., although the UK and Denmark share no official language, they are linguistically close

according to our measure, as a large share of Denmark’s population report speaking English.9

Our third distance measure between countries j and j1 in a year t is an inverse measure

of the breadth of the regulatory harmonization imposed by the PTAs of which j and j1

are members in t, if any. We denote this measure as najj1t, refer to it as the regulatory

distance between j and j1 in t, and build it using the data in Hofmann et al. (2019), which

reports whether a PTA contains provisions in each of 52 policy areas. We focus on the

seven areas that concern regulatory harmonization, and count in how many of them PTAs

9The linguistic distance between the UK and Denmark is 0.11; i.e., the probability that a randomly drawn
individual from Denmark does not understand a randomly drawn individual from the UK is 11%.
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include a provision.10 When countries share more than one PTA, we consider only the treaty

containing provisions in the largest number of harmonization-focused areas, and compute:

najj1t “ 1´
1

7

#

number harmonization-focused policy areas in which

the PTA between j and j1 in t includes some provision

+

. (1)

This measure is between zero and one. For example, EU countries are bound by an agreement

including provisions in all seven harmonization-focused areas and, thus, najj1t “ 0 between

them. NAFTA contains provisions in five of the areas; thus, najj1t “ 0.29 between their

members. See Appendices B.2 to B.4 for more information on the distances introduced here.

2.2 Correlation in Export Participation Decisions

If geographical, linguistic, or regulatory proximity are sources of cross-country complemen-

tarities in firm exports, a firm’s export probability in a country j and year t will, all else

equal, be larger if it concurrently exports to countries close to j according to any of these

three distance measures. To explore whether firm exports in our sample exhibit these cor-

relation patterns, for each firm i, country j, and year t, and for each of the three distance

measures we consider, we compute a dummy variable that equals one if firm i exports in year

t to at least one country close to j; e.g., for the case of geographical distance, we compute

Y g
ijt “ 1

 

ÿ

j1‰j

1tngjj1 ď n̄guyij1t ą 0
(

, (2)

where 1t¨u is an indicator function, ngjj1 is introduced in Section 2, n̄g is a threshold deter-

mining whether we classify two countries as geographically close to each other, and yij1t is a

dummy variable that equals one if firm i exports to country j1 in year t. We use expressions

analogous to that in equation (2) to define two dummy variables, Y l
ijt and Y a

ijt, that equal

one if firm i exports in year t to at least one country sufficiently close to j according to the

distance measures nljj1 and najj1t, respectively. In Appendix B.5, we describe the thresholds

we use to classify two countries geographically, linguistically, or regulatory close, and present

results for alternative thresholds.

Table 1 presents OLS estimates of regressions of a dummy variable that equals one if

firm i exports to a country j in a year t on Y g
ijt, Y

l
ijt, and Y a

ijt. Panel A includes estimates

of specifications without fixed effects. The results in column (1) show exporting in year t to

10These areas cover the harmonization of: sanitary or phytosanitary measures; technical barriers to trade;
intellectual property rights; environmental standards; consumer protection laws; statistical methods; com-
petition laws.
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Table 1: Conditional Export Probabilities

Panel A: Panel B:
No Controls Controlling for Firm-Year Fixed Effects

(1) (2) (3) (4) (1) (2) (3) (4)

Y gijt 0.2622a 0.2082a 0.2226a 0.1957a

(0.0092) (0.0079) (0.0089) (0.0081)

Y lijt 0.1617a 0.0752a 0.1220a 0.0718a

(0.0076) (0.0054) (0.0067) (0.0055)

Y aijt 0.0857a 0.0386a 0.0517a 0.0259a

(0.0037) (0.0021) (0.0026) (0.0018)

Panel C: Panel D:
Controlling for Sector-Country-Year Controlling for Sector-Country-Year &

Fixed Effects Firm-Year Fixed Effects

(1) (2) (3) (4) (1) (2) (3) (4)

Y gijt 0.2462a 0.1955a 0.2043a 0.1809a

(0.0089) (0.0076) (0.0086) (0.0078)

Y lijt 0.1572a 0.0764a 0.1160a 0.0720a

(0.0074) (0.0052) (0.0066) (0.0054)

Y aijt 0.0809a 0.0363a 0.0473a 0.0207a

(0.0035) (0.0019) (0.0026) (0.0018)

Note: a denotes 1% significance. Standard errors are clustered by firm. The dependent variable is a
dummy that equals 1 if i exports to j in t. The covariates are Y xijt “ 1t

ř

j1‰j 1tn
x
jj1 ď n̄xuyij1t ą 0u for

x P tg, lu, and Y aijt “ 1t
ř

j1‰j 1tn
a
jj1t ď n̄auyij1t ą 0u, with n̄g “ 790 km, n̄l “ 0.11 and n̄a “ 0.43. In all

specifications, the number of observations equals 3, 859, 618.

a destination geographically close to a country j increases in 0.26 the probability the firm

exports to j in t. The results in columns (2) and (3) indicate this probability increase is 0.16

when the destination is linguistically close to j, and 0.09 when it shares a deep PTA with

j. These estimates reveal a strong correlation in firm export choices across countries close

to each other, as the average probability a firm exports to a country in a year is below 0.01.

In panels B to D, we present estimates analogous to those in Panel A but for specifications

that control for firm-year fixed effects, sector-country-year fixed effects, or both. The point

estimates in these panels are only moderately smaller than those in Panel A. The results in

Table 1 thus show that firms’ export participation decisions in countries geographically or

linguistically close to each other, or cosignatories of a deep PTA, are positively correlated,

and that factors varying at the firm-year level (e.g., firm productivity, or total number of

destinations) or at the sector-country-year level (e.g., market size, or total number of Costa

Rican exporters in a destination) are not the main drivers of this correlation.

In Table B.5 in Appendix B.5, we present estimates analogous to those in Table 1 but

adding the lagged dependent variable as a control. As in the prior literature, we find there is

a strong serial correlation in the firm’s export status in a destination, with firms exporting
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to a country in a year being 0.63 more likely to continue exporting to it the following year.

Controlling for the lagged dependent variable decreases the estimates of the coefficients on

Y g
ijt, Y

l
ijt, and Y a

ijt, but they remain large relative to the mean export probability in a country.

Although consistent with them, the results in Table 1 may not be due to cross-country

complementarities in firm exports, as they may be attributable to unobserved firm-country

specific export profit shifters that are positively correlated across countries geographically

or linguistically close to each other, or that are cosignatories of a deep PTA. Furthermore, it

is unclear how one may use the estimates of linear probability models such as those in Table

1 to quantify the contribution of complementarities to overall firm exports. To guide the

identification of cross-country complementarities, and to quantify the role these play in de-

termining firm exports, we present below a model that allows both for potential cross-country

complementarities and for cross-country correlation in unobserved export determinants.

3 Dynamic Export Model With Complementarities

We present here a partial-equilibrium model in which forward-looking firms choose every

period the bundle of countries they export to among a large set of potential destinations.

When exporting to a country, firms face variable, fixed, and sunk costs. We allow the fixed

costs a firm faces in a destination and period to be smaller if the firm also exports to other

countries in the same period. This creates cross-country complementarities: a firm’s profits

when exporting to multiple countries in a period are weakly larger than the sum of the

profits of exporting to each of them individually. Sunk costs make a firm’s export choice in

a country and period impact export profits in that country in the subsequent period. This

creates within-country complementarities: a firm’s profits when exporting to a country in

two consecutive periods are weakly larger than the sum of the profits of exporting in each of

the two periods individually. In the presence of within- and cross-country complementarities,

a firm’s export choice in a country and period impacts its export profits in other countries

and periods. Firms take this into account when choosing where to export. More specifically,

firms determine their export bundle in a period after solving an infinite-horizon dynamic

combinatorial discrete-choice problem.

We incorporate several shocks that allow export profits to vary flexibly across firms,

countries and periods. For faster computation of the solution to the firm’s problem, we

assume the firm has perfect foresight on some (but not all) of these shocks. We force all

shocks on which firms have perfect foresight to stay constant after a terminal period T . The

partial perfect foresight assumption can be relaxed at the expense of computation time.
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3.1 Setup

Firms produce in country h. Time is discrete. We index periods by t ě 0, firms by i, and

destinations by j. Firm i is born exogenously at period ti and, once born, is active forever.

We denote the first and last sample periods as t and t, respectively, and assume T ą t.

3.2 Marginal Costs, Demand Function, and Market Structure

Firm i has constant marginal production costs wit. Exporting requires incurring in extra

variable “iceberg” costs; specifically, firm i must ship τijt units of output for a unit to reach

country j at period t, and its marginal cost of selling in j at t is thus τijtwit.

Conditional on firm i exporting to j at t, the quantity sold qijt, depends on the price

pijt it sets, the price index Pjt, and the market expenditure Yjt, according to the function

qijt “ p´ηijtP
η´1
jt Yjt. Firms set optimal prices in all markets taking as given the market’s

expenditure and price index and, thus, fix a markup η{pη ´ 1q over their marginal cost.

3.3 Potential Export Revenues

The assumptions in Section 3.2 imply the potential export revenue of firm i in j at t is

rijt “
” η

η ´ 1

τijtwit
Pjt

ı1´η

Yjt. (3)

We model the impact of variable trade costs on potential export revenues as

pτijtq
1´η

“ exppξyyijt´1 ` ξs ` ξjt ` ξa lnpasjtq ` ξw lnpwitqq, with ξy ě 0, (4)

where yijt´1 is a dummy variable that equals one if firm i exports to country j at period

t ´ 1, ξs is a term specific to the sector s to which firm i belongs, ξjt is a country-period

term that accounts for trade barriers common to all firms located in country h, asjt equals

one plus the average tariffs country j imposes at t on exports from h in sector s, and, as

indicated above, wit denotes marginal production costs. Equations (3) and (4) imply

rijt “ exppαs ` αjt ` αyyijt´1 ` αa lnpasjtq ` αr lnprihtqq, (5)

where αs and αjt are sector and country-period specific terms, respectively, and riht is firm

i’s domestic sales at t. The term αs accounts for the impact of the sector-specific trade

cost term ξs, and αjt accounts for the impact of the foreign price index Pjt, market size Yjt,

and variable trade cost component ξjt. The dependency of rijt on the export participation
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dummy yijt´1 accounts for the limited sales firms often obtain upon entering a new market.11

The term αa lnpasjtq accounts for the impact of tariff barriers, and domestic sales riht proxy

for the impact of the firm’s marginal production cost, wit. See Appendix C for details.

According to equation (5), potential revenues depend on the lagged export participation

dummy yijt´1 and four exogenous terms: the time-invariant term αs and three time-varying

terms comprising the country-period component αjt, log domestic sales lnprihtq, and tariffs

asjt. The time-invariant term and the in-sample values of the time-varying ones are observed

or consistently estimated; see sections 2 and 5.1. Out-of-sample, we impose the following

restrictions on the distribution of the time-varying exogenous determinants of revenues.12

We assume αjt and lnprihtq are constant after period T and, for all t ď T , follow stationary

AR(1) processes. Formally, for all j and t ď T , we assume αjt “ pX
α
jtq
1βα`ρααjt´1`ι

α
jt, with

Xα
jt a vector including a constant, market j’s log GDP at t, and the geographic, linguistic,

and regulatory distances between h and j; βα and ρα are parameters with |ρα| ă 1; and, ιαjt

is iid normally distributed with mean zero and variance σ2
α. Similarly, for all i and t ď T ,

lnprihtq “ pX
r
i q
1βr`ρr lnpriht´1q` ι

r
iht, with Xr

i a vector including dummies for firm i’s sector

and location within country h; βr and ρr are parameters with |ρr| ă 1; and ιrit is iid normally

distributed with mean zero and variance σ2
r . Additionally, we assume asjt is constant out-

of-sample; i.e., for all j and s, asjt “ asjt if t ď t, and asjt “ asjt if t ě t. Finally, we assume

the time series of these three time-varying determinants of revenues are independent of each

other and of any other determinant of firm export profits.

3.4 Fixed and Sunk Export Costs

Firms face fixed and sunk costs. Conditional on selling in a market, these costs do not

depend on the quantity sold. While fixed costs are paid all periods a firm sells in a country,

sunk costs are paid by firms that did not sell in it the prior period. We model fixed costs as:

fijt “ gjt ´ eijt ` νijt ` ωijt. (6)

The first term captures the impact of all distance measures between countries h and j,

gjt “ γF0 `
ÿ

x“tg,lu

γFx n
x
hj ` γ

F
a n

a
hjt. (7)

11These may be due to limited information or customer capital (Fitzgerald et al., 2023) or partial-year
effects (Bernard et al., 2017; Gumpert et al., 2020). At the expense of running time when solving the model,
we may allow the firm’s demand in a country to grow gradually over several years (Ruhl and Willis, 2017).

12The need to restrict the out-of-sample distribution of the exogenous determinants of export revenues is
due to our model featuring sunk costs and forward-looking firms with rational expectations, which implies
firms’ export choices in-sample depend on expected potential export revenues out-of-sample; see Section 3.6.
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The second term is the main novelty of our framework relative to previous quantitative export

dynamics models. It captures cross-country complementarities in export destinations:

eijt “
ÿ

j1‰j

yij1tcjj1t, (8)

where the fixed cost reduction in country j for a firm exporting to country j1 is

cjj1t “
ÿ

x“tg,lu

γEx p1` ϕ
E
x n

x
hjq expp´κEx n

x
jj1q ` γ

E
a p1` ϕ

E
a n

a
hjtq expp´κEa n

a
jj1tq, (9)

with pγEx , ϕ
E
x q ě 0 for x “ tg, l, au. For all three distance measures we consider, equation (9)

allows the fixed cost reduction a firm enjoys in a country j if it also exports to a country j1

to depend on the distance between j and j1 and between j and the firm’s home market h.

For example, for the case of linguistic distances, a firm exporting to j1 enjoys a fixed cost

reduction in j equal to the product of a constant γEl , a function 1 ` ϕEl n
l
hj of the distance

between countries h and j, and a function expp´κEl n
l
jj1q of the distance between j and j1.13

Imposing pγEx , ϕ
E
x q ě 0 for x “ tg, l, au implies cjj1t ě 0 for all pj, j1, tq, ruling out the

possibility that adding an export destination increases fixed costs in other countries. Along

with the rest of the model, this sign restriction on cjj1t implies the firm’s export participation

decisions are not substitutable. This restriction is necessary for our algorithm to correctly

solve the optimization problem determining firms’ export bundles; see Section 4.1.

The third term in fixed export costs, νijt, is a an unobserved (to the researcher) firm-

country-period variable whose distribution in all periods prior to terminal period T is inde-

pendent of all other determinants of export profits, and satisfies the following restrictions:

νijt „ Np0, σ
2
νq, for all i, j, and t, (10a)

νijt KK νi1j1t1 , if i ‰ i1 or t ‰ t1, (10b)

ρjj1t “
ÿ

x“tg,lu

γNx exppκNx n
x
jj1q ` γ

N
a exppκNa n

a
jj1tq, if j ‰ j1, (10c)

where ρjj1t is the correlation coefficient between νijt and νij1t. In our estimation, we impose

restrictions on pγNx , κ
N
x q for x “ tg, l, au that guarantee that the resulting correlation matrix

is valid. By allowing for νijt to be potentially correlated across countries, we allow for the

correlation patterns in firm exports shown in Table 1 to be due not to complementarities but

13By allowing the complementarities between j and j1 to depend on j’s distance to country h –which
corresponds to Costa Rica in our setting– we let, e.g., the complementarities between German-speaking
countries differ from the complementarities between countries in which Spanish is the dominant language.
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to correlated unobserved determinants of export profits. From T onwards, νijt is constant.14

The fourth term, ωijt, is an unobserved (to the researcher) variable that is independent of

all other determinants of profits and has two points of support, ω and ω. More specifically,

ωijt KK ωi1j1t1 if i ‰ i1, j ‰ j1 or t ‰ t1, (11a)

P pωijt “ ωq “

#

p if ω “ ω,

1´ p if ω “ ω.
(11b)

To simplify the model estimation, we set pω, ωq “ p0,8q, thus modeling ωijt as a “blocking”

shock that prevents firm i from exporting to country j at t. Equation (11) specifies the

distribution of ωit ” tωijtu
J
j“1 in all periods; thus, ωit may vary over time even after T .15

We model sunk costs more parsimoniously than fixed costs. Specifically, sunk costs in a

market j and period t are only a function of the distance between countries h and j:

sjt “ γS0 `
ÿ

x“tg,lu

γSxn
x
hj ` γ

S
a n

a
hjt, with sjt ě 0, for all pj, tq. (12)

Sunk costs allow for within-country complementarities in firm export decisions.16

3.5 Static Export Profits

The assumptions in Section 3.2 imply potential export revenues net of variable trade costs

equal η´1rijt. Netting out also fixed and sunk export costs, and using the expressions in

equations (6) and (8), we can write the potential export profits of firm i in j at t as

πijtpyit, yijt´1, ωijtq “ uijtpyijt´1, ωijtq `
ÿ

j1‰j

yij1tcjj1t, (13)

with

uijtpyijt´1, ωijtq “ η´1rijt ´ pgjt ` νijt ` ωijtq ´ p1´ yijt´1qsjt. (14)

14Equation (10b) imposes νijt is serially uncorrelated for all t ă T . All persistence in export status is thus
attributed in our model to persistent observed shifters of export profits or to sunk export costs. We consider
in Appendix F.8 an alternative model in which we assume νijt is permanent; i.e., νijt “ νij for all t.

15In our model, firm i will not export to country j at period t if ωijt “ 8. Thus, we may interpret ωijt as a
shock to the firm’s consideration set, accounting thus for the possibility that firms do not consider exporting
to some foreign countries, and that their consideration set varies for reasons unknown to the researcher.

16Although our model does not feature cross-country complementarities in sunk costs, the introduction of
sunk costs and cross-country complementarities in fixed costs implies that expected shocks to export profits
in a country j at a period t may impact the firm’s export choice in some other country j1 at a period t1 ă t.
Thus, our model is able to reproduce some of the predictions of models with cross-country complementarities
in sunk export costs.
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The variable rijt is defined in equation (5), and yit ” tyijtu
J
j“1 identifies the bundle of export

destinations of firm i at period t. Total export profits of firm i at period t thus are

πitpyit, yit´1, ωitq “
J
ÿ

j“1

yijtπijtpyit, yijt´1, ωijtq. (15)

3.6 Optimal Export Choice

The firm chooses every period a set of export destinations maximizing its expected discounted

sum of current and future profits. At any t, we assume firm i knows the distance measures

between all countries, the true value of all model parameters, and the information set

Jit “ ptxit1ut1ět, yit´1, ωitq with xit1 “ pνit1 , αt1 , ast1 , riht1q, (16)

where, for any t1, νit1 “ tνijt1u
J
j“1, αt1 “ tαjt1u

J
j“1, and ast1 “ tasjt1u

J
j“1. Therefore, xit1

includes all period-t1 realized export profit shocks known to firm i at any period t ď t1.

Every firm i thus knows at any t the value of all exogenous determinants of current and

future potential export profits except for the future fixed costs shocks tωit1ut1ąt.

The problem firm i solves when choosing its period t export bundle may be written as

Vitpyit´1, ωitq “ max
yitPt0,1uJ

Eit
”

πitpyit, yit´1, ωitq ` δVit`1pyit, ωit`1q

ı

, (17)

where Eitr¨s denotes the expectation with respect to the data generating process conditional

on Jit (i.e., expectations are rational); the function Vitp¨q, firm i’s value function at t, implic-

itly conditions on the path of shocks txit1ut1ět (i.e., Vitpyit´1, ωitq “ V ptxit1ut1ět, yit´1, ωitq);

and δ ă 1 is the discount factor. Given equations (13), (16), and (17), we can rewrite

Vitpyit´1, ωitq “

max
yitPt0,1uJ

!

J
ÿ

j“1

yijtpuijtpyijt´1, ωijtq `
ÿ

j1‰j

yij1tcjj1tq ` δEitVit`1pyit, ωit`1q

)

. (18)

For all values of txit1ut1ět, Vitp¨q is bounded, and a solution to the problem in equation (18)

thus exists; see Appendix E.2.2. We denote firm i’s optimal policy function at t as

oitpyit´1, ωitq “ poi1tpyit´1, ωitq, . . . , oiJtpyit´1, ωitqq (19)

where oijtp¨q is a function that equals one if firm i exports to country j at t, and zero

otherwise. As xit is constant from period T onwards (see sections 3.3 and 3.4), it holds
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that Vitp¨q “ ViT p¨q for all t ě T and, consequently, oitp¨q “ oiT p¨q for all t ě T . The firm’s

problem is thus non-stationary until terminal period T , and stationary thereafter.

4 Solution Algorithm

We introduce an algorithm to solve the problem in equation (18). We discuss the algorithm’s

formal properties in Appendix A. In Appendix D.2, we use a simple setting to illustrate

how the algorithm works. Given a period t and a sequence of shocks txit1ut1ět, the firm’s

optimization problem in equation (18) has three properties that make solving for the value

of the policy function oitpyit´1, ωitq at every state pyit´1, ωitq computationally challenging:

P.1 Large discrete choice set. The choice set t0, 1uJ is discrete and has cardinality 2J .

P.2 Integration over a discrete variable with many points of support. For any choice yit,

evaluating the firm’s objective function requires integrating numerically next period’s

value function, Vit`1pyit, ωit`1q, over ωit`1, whose support includes 2J points.

P.3 Large state space. As yit´1 and ωit are of dimension 2J , the state space has 22J points.

These properties imply the choice set, the support of the random variable one must in-

tegrate over, and the state space grow exponentially in J . Allowing firms to export to a

reasonable set of countries thus makes their optimization problem computationally challeng-

ing to solve with standard algorithms for solving dynamic problems. Specifically, as the firm’s

problem is non-stationary for all t ď T , property P.3 implies one must solve 22JpT ´ ti ` 1q

optimization problems to compute firm i’s export choices in all periods in which it is active

and in all points in the state space. Properties P.1 and P.2 make finding the solution to each

of these problems computationally challenging.

To overcome the challenges posed by properties P1 to P3, we develop a new solution

algorithm. Our algorithm does not yield the value of the policy function oitpyit´1, ωitq for

every feasible state pyit´1, ωitq. Instead, we consider each firm i independently and, given a

sequence of shocks txitutěti , we compute for each t ě ti the value of oitpyit´1, ωitq at one state,

which we denote as py̌it´1, ω̌itq. The state py̌it´1, ω̌itq is reached when the shocks tωitu
t
t1“ti

follow a particular path tω̌it1u
t
t1“ti

and the firm makes the optimal choices at all periods prior

to t. More specifically, y̌it´1 is determined by the following procedure:

y̌it1 “ oit1py̌it1´1, ω̌it1q, for t1 “ ti, . . . , t´ 1, with initial value y̌iti´1 “ 0J , (20)

with 0J a J ˆ 1 vector of zeros. Thus, according to this procedure, y̌iti “ oitip0J , ω̌itiq, y̌iti`1

“ oiti`1py̌iti , ω̌iti`1q, and so on. In practice, the sequences of shocks txit1ut1ěti and tω̌it1ut1ěti
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defining the states at which we solve for firm i’s optimal choices correspond to either the

sequences of shocks observed in the data (or fixed to counterfactual values) or, when the

shock is unobserved, to random sequences drawn from their distribution.

As our model is dynamic and firms are forward-looking, solving the optimization problem

of firm i at period t and state py̌it´1, ω̌itq requires some knowledge of how the firm will

subsequently behave at any state that may be reached from py̌it´1, ω̌itq. However, it may not

require knowing exactly the firm’s optimal export bundle in all states that may subsequently

be reached; e.g., if firm i’s potential export profits in a country j at period t and state

py̌it´1, ω̌itq are sufficiently high, its optimal decision may be to export to j at this state

regardless of its optimal decision in subsequent periods. Our algorithm uses this idea and

computes the optimal choice of a firm i at a period t and state py̌it, ω̌itq using bounds on the

firm’s optimal choice at future states.

Our algorithm has several steps. In each one, we obtain upper and lower bounds on the

solution to the firm’s problem at the states of interest. If the bounds coincide, they equal

the solution as well. If they do not, we move to the next step.

Step 1. For a country j and period t, assume we know for all j1 ‰ j and t1 ě t a value b̄ij1t1

such that b̄ij1t1 ě oij1t1pyit1´1, ωit1q for all pyit1´1, ωit1q. We can then solve the firm’s problem

in j at t while conditioning on the upper bound b̄ij1t1 for each j1 ‰ j and t1 ě t:

V̄ijtpyijt´1, ωijtq “

max
yijtPt0,1u

!

yijtpuijtpyijt´1, ωijtq `
ÿ

j1‰j

b̄ij1tpcjj1t ` cj1jtqq ` δEitV̄ijt`1 pyijt, ωijt`1q

)

. (21)

The complementarities in our model imply that the solution to this problem is an upper

bound on the firm’s optimal choice in j at t; i.e., the solution is a function ōijtp¨q such that

ōijtpyijt´1, ωijtq ě oijtpyijt´1, ωijtq for all pyijt´1, ωijtq. Importantly, the problem in equation

(21) does not have any of the three properties P.1 to P.3 described above: the choice vari-

able is binary, one only needs to integrate over the binary variable ωijt`1, and the vector

pyijt´1, ωijtq only takes four values.17

Given upper bounds b̄it “ pb̄i1t, . . . , b̄iJtq for all t ě ti, we may solve the problem in equa-

tion (21) for all countries and periods, obtaining in this way upper-bound policy functions

ōitpyit´1, ωitq “ pōi1tpyi1t´1, ωi1tq, . . . , ōiJtpyiJt´1, ωiJtqq, for all ti ď t ď T . (22)

More specifically, we use value function iteration to solve for period-T value and policy

17These are p0, ωq, p0, ωq, p1, ωq, and p1, ωq. As ω “ 8 in our application, oijtp0, ωq “ oijtp1, ωq “ 0 for
all i, j and t, and we only need to compute oijtp0, ωq and oijtp1, ωq.
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functions V̄ijT p¨q and ōijT p¨q, and backward induction to solve for tV̄ijtp¨qu
T´1
t“ti

and tōijtp¨qu
T´1
t“ti

.

The upper-bound policies tōitp¨qutěti we obtain depend on the constant upper bounds

tb̄itutěti we use: the tighter these are, the tighter the resulting upper-bound policies will be.

To initialize our algorithm, we use constant upper bounds implying the firm exports in all

countries and periods. We denote these with a zero superscript (i.e., b̄
r0s
ijt “ 1 for all j and t)

and use them to solve the problem in equation (21) for every country and period, obtaining

in this way upper-bound policies ō
r0s
it p¨q for all t ě ti. Using these policies, we compute new

constant upper bounds, which we use to solve again the problem in equation (21) and obtain

new upper-bound policies. Generally, we implement an iterative algorithm computing each

iteration’s constant upper bounds using the policies obtained in the prior iteration. More

specifically, to compute the period-t iteration-pn`1q constant upper bound, we evaluate the

period-t iteration-n upper-bound policy at the feasible state at which the firm is most likely

to export at t. This is the state reached when, for all t1 ď t, the vector of shocks ωit1 equals

the smallest value in its support and the firm chooses the bundle prescribed by ō
rns
it1 p¨q. That

is, for a firm i, we compute the period-t iteration-pn` 1q constant upper bound as:

b̄
rn`1s
it1 “ ō

rns
it1 pb̄

rn`1s
it1´1 , ¯

ωJq, for t1 “ ti, . . . , t, with initial value b̄
rn`1s
iti´1 “ 0J , (23)

As shown in Appendix A, these bounds get tighter with every iteration and converge in a

finite number of iterations.

We denote the converged upper-bound policies as tō˚itp¨qutěti , obtain lower-bound policies

t
¯
o˚itp¨qutěti in a similar way, and use both to obtain bounds on the firm choices at the states

of interest. Formally, denoting the upper and lower bounds at t at the state py̌it´1, ω̌itq as

ˇ̄yit and ˇ
¯
y
it
, respectively, we compute ˇ̄yit through the following iterative procedure:

ˇ̄yit1 “ ō˚it1pˇ̄yit1´1, ω̌it1q, for t1 “ ti, . . . , t, with initial value ˇ̄yiti´1 “ 0J , (24)

and compute ˇ
¯
y
it

analogously. If ˇ̄yit “ ˇ
¯
y
it

for all t ě ti, these bounds identify the firm’s

optimal choices along the path of interest. If they differ for some t ě ti, we move to step 2.

Step 2-5. In steps 2 to 5, we improve on the bounds ˇ̄yit and ˇ
¯
y
it

at the periods at which these

differ. For example, for a period t at which ˇ̄yit ą ˇ
¯
y
it
, we obtain weakly smaller upper bounds

ˇ̄yit by solving problems that, compared to that in equation (21), are computationally harder

to solve but that yield weakly smaller upper-bound policy functions ōitp¨q. We describe here

succinctly these alternative problems, and provide more details in Appendix D.1.

In step 2, to compute a tighter upper-bound policy ōitp¨q, we solve a problem analogous

to that in equation (21) but condition on the period-t state of interest py̌it, ω̌itq when building

the constant upper bounds on the firm’s optimal choices in subsequent periods. We hence use

19



constant upper bounds tb̄it1ut1ět that are weakly lower than those computed in equation (23).

In steps 3 and 4, instead of solving for the firm’s optimal policy at a country j and period

t conditioning on constant upper bounds in all other countries and subsequent periods, we

condition on contingent upper-bound functions b̄ij1t1pyij1t1´1, ωij1t1q for a subset of countries

j1 ‰ j and periods t1 ě t. Solving the resulting optimization problem requires integrating

over the corresponding variables ωij1t1 and, thus, is computationally more costly than solving

the problem in equation (21). Finally, in step 5, we no longer solve for the optimal export

path one country at a time, but instead solve for the optimal path in subsets of countries.

The resulting upper bounds are thus tighter, as they internalize the complementarities among

the countries whose policies we simultaneously solve for.

4.1 Discussion

Two model features are necessary for our algorithm to provide valid and computationally

feasible bounds on the firm’s optimal choices. First, the function the firm maximizes when

making choices at any period and state is supermodular; i.e., the objective function in the

optimization problem in equation (18) is supermodular. Supermodularity of the objective

function implies we can compute upper and lower bounds on the firm’s optimal policy func-

tion by iteratively solving for the firm’s optimal policy in a subset of countries and periods

while conditioning on upper and lower bounds, respectively, on the firm’s optimal choices in

all other countries and subsequent periods. In our model, the objective function is super-

modular because of possible complementarities in export choices across countries within a

period (due to fixed costs being weakly smaller when firms concurrently export to several

destinations) and across periods within a country (due to weakly positive sunk costs). The

specific source of complementarities is irrelevant for the validity of the solution algorithm.

Second, given bounds on the firm’s optimal choices in all other countries, the firm’s

dynamic optimization problem for one country (or a small set of them) is computationally

tractable. For this, the dimensionality of the state vector in the country-specific problem in

equation (21) must be small. In our model, this vector takes only four values, as yijt´1 P t0, 1u

and ωijt P t
¯
ω, ω̄u for all i, j, and t. As long as the state space of the country-specific problem

is small, our solution algorithm is however still feasible if, e.g., ωijt has a distribution with

more than two points of support; per-period profits in a country j depend on multiple lags

of the firm’s export participation choice in j; or, the firm’s information is more limited than

assumed in equation (16).

As discussed in Appendix D.3, the share of export choices solved in each step of the

algorithm, and the associated computing time, depend on the model parameter values.
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When these equal the baseline estimates (see Section 6), step 1 of the algorithm runs in close

to two minutes and yields the solution to 99.72% of the more than 22 million choices we

solve for when computing the model’s sample predictions, and all five steps of the algorithm

together find in less than 13 minutes the solution to 99.89% of all choices.18 The unsolved

choices are concentrated in countries sharing complementarities with a large number of

other destinations; i.e., according to our estimates, those sharing deep PTAs with many

other countries. At each step of the algorithm, the share of choices solved increases, and the

computing time decreases, as the gravity component in fixed or sunk costs gets larger (i.e., as

the value of the parameters entering equations (7) or (12) increase) and as complementarities

get smaller (i.e., as γEx or ϕEx decrease, or as κEx increases, for x “ tg, l, au).

5 Estimation Procedure

We estimate the model in two steps. First, we estimate the demand elasticity and time series

process of potential export revenues. Second, we estimate fixed and sunk costs.

5.1 First Step

We assume robsijt “ prijt ` εijtqyijt, where robsijt denotes observed export revenues, εijt captures

measurement error and, as a reminder, rijt is the potential export revenue of firm i in

country j at t, and yijt is a dummy variable that equals one if i exports to j at t. Using

ds and djt to denote vectors of sector and country-year dummies, respectively, we assume

Erεijt|yijt´1, ds, djt, asjt, riht, yijt “ 1s “ 0 and use a Poisson pseudo-maximum likelihood

estimator and data on the sample of firms, countries, and years for which yijt “ 1 to obtain

estimates of the parameters entering equation (5); i.e., pαy, αa, αr, tαjtujt, tαsusq.
19

We also assume robsit “ rit ` εit, where robsit denotes the observed total sales of firm i in

year t, rit is this variable’s true value, and εit accounts for measurement error. As firms

are monopolistically competitive and face in all markets a demand function with constant

elasticity equal to η, it holds that rit “ pη{pη ´ 1qqvcit, where vcit is the total variable costs

of firm i in year t, which we measure as the sum of the wage bill and total expenditure in

materials. Assuming Erεit|vcits “ 0, we use a non-linear least squares estimator to obtain a

consistent estimate of η.

18Times measured at Princeton University’s Della cluster using 44 processors with 20 GB of memory each.
19Our procedure is compatible with interpreting εijt as a revenue term unknown to firms when choosing

where to export. Assuming instead firms make this choice on the basis of such unobserved terms would force
us (for computational reasons) to limit the number of parameters entering revenues; e.g., we may need to
substitute the fixed effects tαjtujt and tαsus by functions of observed covariates and few parameters.
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Finally, given estimates of αjt for all sample countries and years, and data on domestic

sales for all sample firms and years, we compute OLS estimates of the parameters of the

first-order autoregressive processes for αjt and lnprihtq; see Section 3.3.

5.2 Second Step

Given first-step estimates, we use a Simulated Method of Moments (SMM) estimator to

obtain estimates of the fixed and sunk cost parameters; see equations (7) to (12). In Section

5.2.1, we use a simple example to illustrate the approach we follow to separately identify

the parameters that, according to equation (9), determine the strength of cross-country

complementarities in fixed costs from those that, according to equation (10c), determine the

strength of the cross-country correlation in unobserved fixed cost determinants. In Section

5.2.2, we describe our SMM estimator.

5.2.1 Identification of Cross-Country Export Complementarities

Consider a setting with three destinations j “ t1, 2, 3u. Countries 1 and 2 are identical except

in their connection to country 3, which is “connected” to country 2 but not to country 1.

Complementarities and the correlation in the fixed cost term νijt thus equal zero between

all country pairs except possibly between countries 2 and 3; i.e., cjj1t “ ρjj1t “ 0 if j “ 1 or

j1 “ 1, c23t “ c32t “ c̄, and ρ23t “ ρ32t “ ρ̄ for pc̄, ρ̄q ě 0. See Appendix F.1 for details.

To focus on the identification of c̄ and ρ̄, consider a researcher that knows the value of all

other parameters and, besides the variables described in Section 2, observes potential export

revenues for all firms, countries, and periods. Then, c̄ and ρ̄ are identified by the moments

m1 “ Eryi2t ´ yi1ts and m2 “ Cryi2t, yi3ts, (25)

where, generally, m1 captures the difference in export probabilities across destinations that

differ only in the size of the countries “connected” to them (in our setting, country 2 is

connected to country 3 while country 1 is not; countries 1 and 2 are otherwise identical),

and m2 captures the covariance in firm choices across “connected” countries (countries 2

and 3). As Table F.1 in Appendix F.1 shows, both moments equal zero when there are no

complementarities and νijt is independent across countries; i.e., when c̄ “ ρ̄ “ 0. Correlation

in unobservables in the absence of complementarities (i.e., ρ̄ ą 0 and c̄ “ 0) yields correlated

export choices without affecting the difference in export probabilities between connected

and isolated countries (i.e., m2 ą 0 and m1 “ 0). Complementarities alone (i.e., c̄ ą 0 with

ρ̄ “ 0) make both moments positive. This suggests an identification strategy in which m1
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identifies the strength of the complementarities and, given these,m2 identifies the correlation

in unobserved determinants of export profits. This logic is however incorrect, as m1 is also

affected by the correlation in unobserved determinants of profits whenever complementarities

are non-zero; i.e., m1 is also affected by ρ̄ when c̄ ą 0. What is true is that m1 and m2 are

differentially affected by c̄ and ρ̄, and jointly identify them; see Figure F.1 in Appendix F.1.

To estimate our model, we use moments analogous to m1 and m2, but adjusted to account

for the fact that no two countries in the data are identical in every dimension except the size

of their “connected” countries, and that the degree in which any two countries are connected

in our model (i.e., their proximity measures) is continuous.

5.2.2 Details on SMM Estimator

Consider a vector zi that includes all first-step estimates (see Section 5.1) and all observed

to the researcher firm i’s payoff-relevant variables. That is, besides the first-step estimates,

zi includes, for all sample years, firm i’s domestic sales and exports by destination, tariffs

by destination for i’s sector, and, for all country pairs, the distance measures introduced in

Section 2. Consider also a vector χi including all firm i’s payoff-relevant variables unobserved

to the researcher: the vectors of fixed cost shocks νit and ωit for all years, and, for non-sample

years, the vector of foreign countries’ export revenue shifters αt and firms’ domestic sales.

Finally, consider vectors yobsi and ysi pθq of observed and model-implied, respectively, export

choices in all countries and sample years. Specifically, ysi pθq includes the model-implied

choices given zi, a vector θ of values for all parameters estimated in the second step, and

a draw χsi from the distribution of χi conditional on zi. We can then write each of the

k “ 1, . . . , K moments we use in our SMM estimator as

1

M

M
ÿ

i“1

 

mkpy
obs
i , zi, xq ´

1

S

S
ÿ

i“1

mkpy
s
i pθq, zi, xq

(

“ 0, (26)

where M is the number of sample firms, mkp¨q is k’s moment function, and x is a vector of

export potentials for every sector, destination, and sample year. We estimate these export

potentials as the corresponding importer fixed effect in a gravity equation estimated using

sectoral trade data between all countries other than Costa Rica. In Appendix F.2, we

summarize the distribution of export potentials and show that, controlling for the export

potential of a destination, firms are more likely to export to destinations whose (geographical,

linguistic or regulatory) neighbors’ export potential is larger.

We use 89 moments. For expositional purposes, we organize them in three blocks. In

a first block, with the goal of identifying the parameters that determine the level of fixed
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and sunk costs and how these vary with the distance between the firm’s home country and

each destination (i.e., γF0 , γS0 , and tpγFx , γ
S
x qux“tg,l,au), we use as moments the firm’s export

participation and survival probabilities by groups of destinations that differ in their distances

to the firm’s home country. In a second block, to identify the parameters determining the

strength of export complementarities (i.e., tpγEx , ψ
E
x , κ

E
x qux“tg,l,au), we use moments that,

similar to m1 in equation (25), capture firm export probabilities by groups of destinations

that are similar in their size and distances to the firm’s home country but different in

the export potential of the countries close to them geographically or linguistically, or that

share with them a deep PTA. Finally, to identify the parameters of the distribution of the

unobserved terms νit and ωit (i.e., σν , p, and tpγNx , κ
N
x qux“tg,l,au), we combine moments that,

similar to m2 in equation (25), capture the cross-country correlation in firm choices, with

moments that capture the correlation in exports across firms, and moments that capture the

frequency with which we observe short-lived changes in a firm’s export status in a destination.

We include in Appendix F.3 the full list of moments. We provide details on our SMM

estimator in Appendix F.4. In Appendix F.5, we explore the robustness of our estimates to

alternative realizations of the simulation draws χsi we use in our moments.

6 Estimation Results

We summarize here our parameter estimates. We discuss additional details in Appendix F.6.

6.1 First-step Estimates: Potential Export Revenue Parameters

We estimate the export revenue parameters using the 13,293 firm-country-year observations

with positive exports. The estimate of αy is 1.86 (robust s.e. equal to 0.07), implying firm

potential export revenues grow significantly between the first and second year of exports to

a destination. The estimate of αa, which equals the elasticity of potential export revenues

to tariffs, is ´3.83 (s.e. equal to 0.07). If trade costs moved one-to-one with tariffs, this

estimate would imply a demand elasticity η equal to 4.83. When estimating η as described

in Section 5.1 (i.e., using information on total revenues and variable costs for all 44,785 firm-

year sample observations), we obtain an estimate of 5.71 (s.e. equal to 0.49). Following Das

et al. (2007), we adopt this latter estimate as our baseline. The estimate of αr, the elasticity

of potential export revenues to domestic sales, is 0.29 (s.e. equal to 0.04), reflecting a positive

cross-firm correlation in sales between the domestic and foreign markets.

In Figure F.7, we summarize the estimates of the country-year fixed effects in export

revenues: countries with large estimated values of αjt tend to be geographically close to
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Costa Rica (e.g., Guatemala) or large (e.g., the US), and countries with small values tend

to be geographically far from Costa Rica (e.g., Russia) or small (e.g., Oman). When using

the 467 estimated values tα̂jtujt to estimate the parameters of the stochastic process of αjt

(see Section 3.3), we obtain an estimate of its autocorrelation parameter ρα equal to 0.69

(s.e. clustered by destination equal to 0.06), an estimate of the standard deviation σα of its

innovations equal to 0.63, and estimates implying the mean of αjt increases in country j’s

GDP and geographical proximity to Costa Rica. Similarly, when estimating the parameters

of the autoregressive process for the firm’s log domestic sales (see Section 3.3), we obtain an

estimate of its autocorrelation parameter ρr equal to 0.86 (s.e. clustered by firm equal to

0.01), and an estimate of the standard deviation σr of its innovations equal to 0.87.

6.2 Second-step Estimates: Fixed and Sunk Costs Parameters

As shown in Figure 1, the estimates of the fixed and sunk cost parameters (see Table F.4)

imply the gravity component of fixed costs (see equation (7)), and sunk costs, are well

approximated by a constant (which equals $63,000 in the case of fixed costs and $115,000

in the case of sunk costs) plus a term that increases in the geographical distance between

the firm’s home country and each destination. The estimated impact of linguistic distance is

small and not statistically significant, while the differences in fixed and sunk costs between a

destination with whom Costa Rica has a deep PTA and one with whom it has no agreement

are only $29,000 and $22,000, respectively. Adding all terms, the gravity terms in fixed

costs in, e.g., Mexico, the US, and China, are close to $100,000, $125,000, and $180,000,

respectively. For the US and Mexico, these are between the median and the 75 percentile

(and below average) of the distribution of observed export revenues in those countries; for

China, they are between the 75 and the 95 percentile (and close to the mean). Similarly,

the sunk costs estimates in Mexico, the US, and China are close to $175,000, $200,000, and

$400,000, respectively, and, thus, larger than the corresponding fixed cost estimates.20

The actual fixed costs a firm faces will however differ from the fixed cost gravity compo-

nent due to the unobserved terms νijt and ωijt and to the effect of export complementarities.

As νijt is normal and its estimated standard derivation is close to $81,000, our estimates

reveal a large cross-firm heterogeneity in fixed costs in any given country and period. Firms

exporting to country j at period t will have on average low values of νijt. Thus, actual

20In Appendix F.7, we present a figure analogous to Figure 1 but for a model that assumes away the
existence of cross-country complementarities. The mean fixed cost function implied by the estimates of the
model without complementarities is smaller than that displayed in panel (a) of Figure 1. This is expected, as
the estimated fixed costs in the model without complementarities likely approximate an average of the fixed
costs faced by different firms depending on their export bundles; e.g., the model without complementarities
yields fixed costs estimates in China that are 30% lower than the model with cross-country complementarities.

25



Figure 1: Estimates of Fixed and Sunk Export Costs

(a) Fixed Export Costs
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(b) Sunk Export Costs
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Note: In both figures, countries are identified by their ISO 3166-1 alpha-3 code, and placed in the horizontal axis by their
distance to Costa Rica. The vertical axis indicates the estimated cost in thousands of 2010 USD.

exporters will on average face fixed costs that are below what is implied by the fixed cost

gravity component, even if they do not export anywhere else in the same period.

In Figure 2, we represent the estimated export complementarities. In each panel, we

plot, for the corresponding index x in tg, l, au, the function γ̂Ex p1` ϕ̂
E
x n

x
hjq expp´κ̂Ex n

x
jj1q for

three countries j (the US, Germany, and China) against their distance to any other country

j1, nxjj1 . Panel (a) shows that complementarities due to geographical proximity are large

between countries close to each other (e.g., they reach $90,000 for countries that are 200 km

apart and far from Costa Rica) but decrease quickly, being close to zero between countries

whose bilateral distance is 800 km or more. The size of the geographical complementarities is

Figure 2: Estimates of Cross-Country Complementarities By Source

(a) Geographical Proximity

0

100

200

300

F
ix

e
d

 C
o

s
t 
R

e
d

u
c
ti
o

n

0 .2 .4 .6 .8 1
Geographical Distance

USA Germany China

(b) Linguistic Proximity
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(c) Regulatory Proximity
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Note: In panels (a) to (c), the horizontal axis corresponds to the distance measures defined in equations (B.1), (B.2), and
(1), respectively. The vertical axis indicates the estimated reduction in fixed export costs in thousands of 2010 USD.
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heterogeneous across destinations depending on their distance to Costa Rica: for any given

distance between two destinations, complementarities are larger in China than in Germany,

and in Germany than in the US. Panel (b) shows that linguistic complementarities are always

small, reaching a maximum of close to $8,000 for country pairs whose linguistic distance is

zero; i.e., whose residents understand each other with probability one. Finally, panel (c)

shows that complementarities due to common participation in PTAs are close to zero unless

these agreements are sufficiently deep. Among common members of deep PTAs, the fixed

cost reduction in one of them for a firm that exports to the other one varies between $4,000

and $7,500 depending on whether the destination shares a PTA with Costa Rica.

In Figure 3, we quantify the cost reductions implied by the estimates in Figure 2. In

panel (a), we show for each destination the cost reduction (relative to the gravity component

of fixed costs) a firm experiences if it also exports to the country with whom its complemen-

tarities are the largest. This reduction is below 5% for countries such as the US or China,

but is on average much larger for EU members, being above 45% for several of them. These

estimates are due to EU members both sharing a deep PTA and being geographically close

to each other. In panel (b), we show there are countries (e.g., Mexico) that, although they do

not share strong complementarities with any one country (as shown in panel (a), exporting

to Mexico’s closest neighbor reduces fixed costs in it in less than 10%), benefit from sharing a

moderate level of complementarities with many countries (Mexico shares common language

and membership in deep PTAs with many countries). Thus, a firm exporting simultaneously

to several countries that share common language or deep PTAs with, e.g., Mexico, may ulti-

mately face small fixed costs in it. Linguistic and regulatory proximity may thus impact firm

Figure 3: Implications of Estimated Cross-Country Complementarities in Fixed Costs

(a) Cost Reduction from Closest Neighbor
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Note: In panel (a), we illustrate for each country j the value maxj1tcjj1t{gjtu. In panel (b), we illustrate for each j the
number of other foreign countries j1 ‰ j for whom cjj1t{gjt ě 5%.
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Figure 4: Estimates of Correlation Coefficient in Fixed Export Cost Shock By Source

(a) Geographical Proximity

.2

.3

.4

.5

.6

C
o

rr
e

la
ti
o

n

0 5 10 15 20
Geographical Distance

(b) Linguistic Proximity

0

.05

.1

.15

C
o

rr
e

la
ti
o

n

0 .2 .4 .6 .8 1
Linguistic Distance

(c) Regulatory Proximity

0

.02

.04

.06

C
o

rr
e

la
ti
o

n

0 .2 .4 .6 .8 1
Distance in Preferential Trade Agreements

Note: In panels (a) to (c), the horizontal axis indicates the distance measures defined in equations (B.1), (B.2), and (1),
respectively. The vertical axis indicates the estimated correlation in νijt.

exports even if, as shown in Figure 2, linguistic and regulatory complementarities between

any two countries are never large. In Figure F.8, we illustrate the complementarities of the

US, China, Germany, and Spain, with all other countries.

In Figure 4, we represent the estimated cross-country correlation in the fixed cost term

νijt within a firm-period. In each panel, we plot, for the corresponding index x in tg, l, au,

the function γNx exppκNx n
x
jj1q against the distance nxjj1 . The key determinant of the correlation

coefficient between any two countries is their geographic proximity, although their linguistic

proximity also plays a role. Furthermore, these correlation coefficients may be large; e.g.,

above 0.5 for countries 5000km apart from each other. Thus, when estimating cross-country

complementarities, it is important to allow for correlated unobserved export profit shifters.

For the US, China, Germany and Spain, we illustrate in Figure F.9 the correlation coefficient

of νijt vis-a-vis any other country.

Our estimates downplay the importance of export complementarities relative to, e.g.,

the estimates in Morales et al. (2019), where the reduction in sunk costs in a destination

is estimated to be between 70 and 90% for a firm that exported in the previous year to

a country that shares border, continent, language, and similar GDP per capita, with that

destination. There are several differences between our framework and that in Morales et al.

(2019). While our model accounts for firm- and country-specific unobserved determinants of

export profits that are potentially correlated across destinations, that in Morales et al. (2019)

assumes these determinants away, and this may bias its estimates of export complementari-

ties upwards. Alternatively, complementarities may manifest themselves more prominently

in the firm’s sunk costs (as considered in Morales et al., 2019) than in fixed export costs, and

this may bias our estimates downwards. The reason why we do not allow for cross-country
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complementarities in sunk costs is that the decisions to export to countries j and j1 at period

t become substitutes when exporting to country j at t lowers the firm’s sunk costs in country

j1 at t`1. However, as far as we know, the literature does not provide an algorithm to solve

large-dimensional dynamic models with cross-choice substitutabilities.21

Although we limit the heterogeneity in fixed and sunk costs to parametric functions of the

geographical, linguistic, and regulatory, distances between countries, we include in Appendix

F.9 goodness-of-fit measures that show that our estimated model captures well the observed

level and heterogeneity in export probabilities across countries. Specifically, a regression of

observed export probabilities by destination on the model-predicted probabilities yields OLS

estimates of the constant and slope coefficients equal to 0 and 0.95, respectively, with an

associated R2 equal to 0.86.

7 Quantitative Analysis

In Section 7.1, we quantify the importance of export complementarities by comparing the

predictions of versions of the estimated model in which some or all of the cross-country com-

plementarities are set to zero. In Section 7.2, we use the estimated model to compute the

impact on Costa Rican arm’s length exports of a Brexit-induced increase in the regulatory

distance between the UK and current EU members. In Section 7.3, for different counter-

factual changes in Costa Rican export barriers, we compare the predictions of our model to

those of a re-estimated model that assumes away the presence of complementarities.

7.1 Quantitative Importance of Cross-country Complementarities

To quantify the impact of complementarities, we compute model-implied export choices

for each firm and year in the sample using 200 simulations of the vector χi of unobserved

payoff-relevant variables (see Section 5.2.2). We do so for a baseline model that sets to

zero all of the parameters that, according to equation (9), determine the strength of the

complementarities, and compare the predictions of such model to that of alternative models

that set some or all of these parameters to their estimated values. We report in Table 2 the

cross-model differences in the predicted number of firm-country-years with positive exports

(export events) and total export revenues. The results in column “All” show that including

all complementarities causes the number of export events and total exports to increase in

11.8% and 4.9%, respectively. As shown in the remaining columns, the most important

21A specification that allows for dynamic cross-country complementarities while maintaining the super-
modularity of the firm’s value function is one in which a firm’s fixed costs in country j and period t depend
on its export choice in country j1 at t´ 1. This model may be solved using the algorithm in this paper.
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Table 2: Impact of Cross-country Complementarities

Sources of Complementarities Included:

Percentage Increase in: All
Geographic Linguistic Common
Proximity Proximity Deep PTA

Number of Export Events: 11.76% 7.39% 2.36% 2.55%

Export Revenues: 4.86% 3.03% 0.81% 1.51%

Note: In column All, we report the percentage difference in the number of export events and export revenues
between a model in which the parameters tpγEx , ψ

E
x , κ

E
x qux“tg,l,au are all set to zero and our estimated model.

In the other columns, we compare models in which only the subset of these parameters indicated by the
corresponding column label is set to their estimated values, while the other ones are kept at zero.

source of complementarities is spatial proximity: setting pγEg , ψ
E
g , κ

E
g q at their estimated

values, while keeping complementarities due to linguistic and regulatory proximity equal

to zero, causes export events and total exports to increase in 7.4% and 3%, respectively.

Complementarities due to linguistic and regulatory proximity each cause export events to

increase in close to 2.5%, and total exports to increase in 0.8% and 1.5%, respectively.

The smaller impact of complementarities on total exports relative to its impact on the

number of export events is partly due to complementarities having, all else equal, a larger

impact on less attractive destinations. To gain intuition on this model property, consider

a setting with two destinations A and B such that, in the absence of complementarities,

every firm’s potential export profits in A are larger than in B. As shown in Appendix

G, introducing complementarities in this context increases exports to B more than to A.

The reason is that, without complementarities, exports to A are larger than to B and,

with complementarities, firms benefit from a fixed cost reduction in B only if they also

export to A. Thus, complementarities push firms to export to both countries, but this

implies exports grow more in the country that had a lower level of exports in the absence

of complementarities. As large markets are, all else equal, more attractive destinations,

complementarities tend to have a larger impact on smaller markets.

Besides size, the geographical, linguistic, and regulatory proximity of each country to

every other country also matters for the impact that complementarities have on exports to

it. As a result, as shown in Figure 5, there is a large heterogeneity across countries in the

impact of complementarities. In many of them, these play a minimal role; conversely, for

some, several of which are located in Central Europe, complementarities increase the number

of export events and total exports from Costa Rica in more than 50%. These countries

most affected by complementarities are typically small, geographically close to many other

destinations, and members of deep PTAs that include many other countries.

Solving our estimated model with complementarities for all firms in the sample takes 125
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Figure 5: Impact of Eliminating Cross-country Complementarities

(a) On Number of Export Events
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Note: In Panel (a), we illustrate, for each destination and all firms and years in the sample, the percentage reduc-
tion in the total number of firm-year pairs with positive exports predicted by our model when we set the parameters
tpγEx , ψ

E
x , κ

E
x qux“tg,l,au to zero. In Panel (b), we provide analogous information for the total predicted export revenues.

times more per simulation draw than the model without complementarities, which we solve

in 50 seconds. In models with cross-country complementarities, a trade-off between accuracy

of model predictions and computational time thus arises. To study this trade-off, we compute

the predictions of versions of our model in which we group countries into clusters such that

complementarities between countries in the same cluster are fixed to the values implied

by our estimates, and complementarities between countries in different clusters are set to

zero. Table 3 presents results for different partitions of countries into clusters.22 Column

(1) in Table 3 reproduces column (1) in Table 2. Columns (2) and (3) show that the model

predictions are very similar when we partition countries into 2 or 3 clusters; however, the

gains in computing time are also small. More interestingly, the time required for computing

the model solution decreases in 30% when equating country clusters to continents, and

the implied increases in the number of firm-country-periods with positive exports and total

exports, relative to the model with no complementarities, are relatively similar to those

predicted by our estimated model. Intuitively, as shown in Figure 2, the key source of cross-

country complementarities is geographical proximity, and spatial complementarities decay

quickly in space, so the assumption that countries located in different continents exhibit no

complementarities does not bias model predictions significantly. When partitioning countries

into 50 clusters, the computing time is reduced in 75%, and the resulting model still predicts

22Given a fixed number of clusters, we follow von Luxburg (2007) to assign countries to clusters. This
procedure relies on an adjacency matrix between countries, which we compute using the formula in equation
(9) and our estimates of tpγEx , ψ

E
x , κ

E
x qux“tg,l,au, and uses spectral clustering to categorize countries into

groups. In Appendix G.2, we present maps showing the partitions of countries we consider. As illustrated
in those maps, our clusters may differ in the number of countries they incorporate.

31



Table 3: Impact of Cross-Country Complementarities for Alternative Country Clusterings

(1) (2) (3) (4) (5)

Percentage Increase in: Baseline 2 Clusters 3 Clusters 50 Clusters Continents

Number of Export Events 11.76% 11.58% 11.55% 9.25% 10.24%

Export Revenues 4.86% 4.75% 4.72% 3.30% 4.00%

Note: In each column, we report the percentage difference in the number of export events and export revenues between a
model in which the parameters tpγEx , ψ

E
x , κ

E
x qux“tg,l,au are all set to zero and alternative country clusters in which we allow

for our estimated complementarities within the cluster, and set the complementarities to zero outside of the cluster. The
first column corresponds to the baseline case in which we allow for complementarities between all countries. The clusters in
columns (2)-(5) are computed by defining an adjacency matrix using our estimates for tpγEx , ψ

E
x , κ

E
x qux“tg,l,au, and grouping

countries using spectral clustering. The clusters in the column “Continents” allow for geographic interdependencies within
the continent only. Maps for these clusters are shown in Appendix G.2.

an increase in the number of firm-country-periods with positive exports and total exports,

relative to the model with no complementarities, of approximately 9.3% and 3.3%.

7.2 Third-Market Effects of Regulatory Differences Due to Brexit

A potential implication of Brexit is that UK and EU regulations will drift apart. To quantify

the third-country effect of this regulatory divergence, we use our estimated model to evaluate

the impact on Costa Rican arm’s length exports of a permanent increase in 2021 (expected

since the 2017 referendum, but unexpected before) in the regulatory distance, najj1t, between

the UK and all EU members from zero (its pre-Brexit value) to one (its maximum value).

Specifically, for all sample firms and these two regulatory distances, we compute model-

implied export choices for 200 simulations of the vector χi, and report in Table 4 the relative

differences in the expected number of export events and total exports.

Model-predicted exports to the UK fall due to the increased regulatory distance between

the UK and the EU. Specifically, the predicted fall in export events and total exports in the

10 years after Brexit is around 5%. In the four years between the Brexit referendum and the

UK’s effective EU withdrawal, firms anticipate the policy change, and the number of export

events and total exports to the UK fall in 1.6% and 0.8%, respectively.

Although the reduction in complementarities between the UK and the EU is symmetric,

the effect on exports to the UK is larger than that on exports to the EU, where the drop is

around 0.4%. Zooming in on individual EU members, our model predicts that the countries

geographically close to the UK will be more affected than those further away; e.g., in com-

parison to the 0.4% reduction in overall exports to the EU between 2021 and 2030, exports

fall in 1.3% and 1% in Belgium and Ireland, respectively. To understand these effects, one

should bear in mind that the cross-country complementarities in the estimated model imply

that the reduction in exports to the UK as a result of its regulatory isolation from the EU
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Table 4: Impact of Regulatory Differences Due to Brexit

Countries:
Percentage Reduction in:

Export Events Export Revenues

2017-20 2021-30 2017-20 2021-30

United Kingdom -1.63% -4.57% -0.82% -5.34%
European Union -0.17% -0.44% -0.06% -0.39%

In particular:
Belgium -0.48% -1.62% -0.10% -1.33%
Ireland -0.22% -0.95% -0.10% -1.01%

Note: For the geographic area indicated in the column “Countries,” we report the relative
change for the periods 2017-20 and 2021-30 in the number of export events and total
exports of all sample firms caused by a permanent change in 2021 (expected since 2017)
in the regulatory distances between the UK and every EU member from zero to one.

will have subsequent effects on countries geographically close to the UK, such as Belgium

and Ireland. Similarly, exports to countries with large English-speaking populations will also

be affected by the increase in the UK-EU regulatory distance, but these effects are small as

a result of linguistic complementarities being small (see Section 6.2).

Without complementarities, a partial equilibrium model (such as ours) predicts Costa

Rican exports are unaffected by changes in trade barriers (regulatory or otherwise) between

destinations. General equilibrium models à la Eaton and Kortum (2002) or Anderson and

van Wincoop (2003) imply exports of different origins are substitutes and, thus, predict

Costa Rican exports to the UK and the EU to increase in reaction to the raise in the UK-

EU trade barriers.23 The third-market effects implied by cross-country complementarities in

our model are thus of opposite sign to those in standard trade models.

7.3 Impact of Reductions in Export Tariffs

In 2022, Costa Rica applied for CPTPP membership. We evaluate the effect on Costa Rican

exports of a reduction in export tariffs to this trade bloc. Specifically, for the period 2022-37,

all sample firms, and 200 simulations of the vector χi, we compute model-implied exports

in a setting in which tariffs do no change and in one in which, from 2022 onwards, Costa

Rican export tariffs to CPTPP members are zero. We do so using our estimated model and a

re-estimated model analogous to ours but in which complementarities are assumed away (see

Appendix F.7). To provide some guidance on when the model without complementarities

23Adão et al. (2017) and Lind and Ramondo (2023) allow for more flexible elasticities of substitution
across export countries, but maintain the assumption that different export countries are substitutes. For a
framework that allows for positive third-market effects, see Fajgelbaum et al. (2023).
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Table 5: Impact on Trade Area Members of Eliminating Export Tariffs to Them

Model With Cross-Country Model Without Cross-Country
Complementarities Complementarities

Tariff Changes Tariff Changes Tariff Changes Tariff Changes
With CPTPP With The EU With CPTPP With The EU

Export Export Export Export Export Export Export Export
Events Revenues Events Revenues Events Revenues Events Revenues

(1) (2) (3) (4) (5) (6) (7) (8)

15.69% 29.93% 65.33% 83.08% 14.57% 28.89% 54.90% 79.58%

Note: The results in columns (1) to (4) are computed using our estimated model; those in columns (5) to (8) are computed
using the model described in Appendix F.7. The results in columns (1), (2), (5), and (6) report the impact of eliminating
Costa Rican export tariffs to all CPTPP members; those in columns (3), (4), (7), and (8) evaluate the impact of eliminating
tariffs with all EU members. Results aggregate predictions for all sample firms, the period 2022-37, and 200 draws of χi.

generates quantitatively different predictions from those of our estimated model, we also

evaluate the effect on Costa Rican exports of eliminating export tariffs to the EU.

As shown in columns (1) and (2) in Table 5, the estimated model predicts the number

of firm-year pairs with positive exports and total exports to CPTPP members to increase in

16% and 30%, respectively, when tariffs are brought to zero. Columns (5) and (6) show that

researchers using a model analogous to ours but in which cross-country complementarities

are assumed away would predict a growth in Costa Rican exports to CPTPP members only

slightly smaller than that predicted by our model. Furthermore, the model with comple-

mentarities predicts minimal export growth to non-CPTPP countries, matching thus closely

the zero export growth to these destinations predicted by the model without complemen-

tarities. The reason why the predictions of the models with and without complementarities

are so similar is that current CPTPP members exhibit small estimated complementarities

both with each other and with non-members. Thus, the growth in exports to any member

country has small spillovers on other countries.

When computing the impact of Costa Rica signing a PTA with the EU that sets its

export tariffs to zero in all member countries, the estimated model predicts the number of

export events and total exports to member countries to grow in 65% and 83%, respectively.

The re-estimated model without complementarities predicts these growth rates to be 55%

and 80%. Importantly, the model with complementarities differs from the model without

complementarities in that the former predicts significant export growth to countries that are

not EU members (thus, whose tariffs do not change in the counterfactual exercise) but that

are geographically close to some EU members, or that share a deep PTA with them; e.g., the

predicted export growth among the Balkan countries that do not belong to the EU is above

10%, the export growth in Great Britain, Switzerland, and Iceland, is close to 7%, and that
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in Lebanon and Tunisia is around 3%. The reason for the disparity in model predictions in

this case is that EU members exhibit strong complementarities between themselves and with

other countries and, thus, export growth to an EU member may have important spillovers

on other destinations. The model without complementarities assumes away these spillovers

and, thus, predicts smaller changes in exports to many destinations.

8 Conclusion

We solve a partial-equilibrium firm export dynamics model featuring cross-country comple-

mentarities. In our model, the firm has rational expectations and chooses every period the

bundle of export destinations that maximizes its expected discounted sum of profits. We

introduce an algorithm to solve the firm’s combinatorial dynamic discrete choice problem.

Our algorithm may be used more generally to solve single-agent dynamic entry problems

that exhibit complementarities in the entry decisions both across markets and over time.

Our estimates reveal substantial heterogeneity in complementarities across country pairs.

While certain countries (e.g., the US or China) appear isolated according to our estimates,

several groups of countries (the EU in particular) are closer to a single market than to

a collection of unconnected markets, questioning the standard definition of countries as

independent export markets.

We predict Costa Rica’s arm’s length exports are close to 5% larger due to the estimated

cross-country complementarities. We quantify the impact Brexit has on Costa Rican exports

to the UK and the EU as a result of both countries no longer sharing a deep PTA: although

trade barriers between Costa Rica and every foreign country are held constant in this exercise,

exports to the UK and the EU drop in 5% and 0.4%, respectively, illustrating that deep PTAs

may give rise to positive trade creation effects. Finally, we show that researchers that assume

away the presence of complementarities when predicting the impact of counterfactual changes

in trade policy will obtain predictions similar to those of our estimated model when the policy

changes affect isolated countries, and potentially quite different predictions when the policy

changes affect countries that exhibit important complementarities with other destinations.

Our paper is a step towards merging two literatures, the literature on firm export dy-

namics, which has a long tradition within international trade, and a more recent literature

exploring interdependencies across choices in firm decisions. Natural next steps are to allow

for additional sources of cross-choice interdependencies (e.g., increasing marginal production

costs), to study the impact of complementarities in dynamic general-equilibrium frameworks,

or to quantify the mechanisms that give rise to these complementarities.
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A Optimization Problem and Solution Algorithm

In Appendix A.1, we describe an optimization problem that covers that in equation (18). In
Appendix A.2, we propose a solution algorithm that covers that in Section 4 and Appendix
D.1, and state several of its properties if applied to the problems described in Appendix A.1.

A.1 Optimization Problem

To simplify the notation and without loss of generality, consider an agent born at period
“ 0. In every period t ě 0, this agent makes J simultaneous binary choices with the goal of
maximizing the expected discounted sum at birth of infinite per-period (static) payoffs.

Per-period payoffs in any t depend on a shock ωt that takes values in a set Ωt according
to a distribution Qtpωt|ωt´1, . . . , ω0q. We denote as zt “ tωt1u

t
t1“0 the history of shocks in all

periods t1 ď t, and as Zt “ ˆtt1“0Ωt1 the set of all possible period-t histories. We denote as
yjpz

tq P t0, 1u a generic choice at zt for alternative j, as ypztq P t0, 1uJ a generic vector of
choices at zt for all J alternatives, and as y P Y a generic vector of choices for all t ě 0, all
zt P Zt, and all alternatives:

Y “ ˆ8t“0,ztPZtt0, 1u
J . (A.1)

Considering only optimization problems where the solution exists and is unique, we can write

o “ argmax
yPY

Π0pyq, (A.2)

where Π0pyq is the agent’s objective function and o is the optimal choice for all t ě 0 and
all zt P Zt. Thus, using opztq to denote the agent’s optimal choice at zt, it holds

o “ topztqu8t“0,ztPZt . (A.3)

The following assumption establishes a list of conditions on Π0p¨q.

Assumption 1 Assume:

1. (Additive separability of static profits) The function Π0p¨q satisfies

Π0pyq “ π0pypz
0
q, 0J , ωpz

0
qq `

8
ÿ

t“1

δtE
“

πtpypz
t
q, ypzt´1

q, ωpztqq
‰

, (A.4)

where the expectation is over tztu8t“1, δ P p0, 1q and, for all t ě 0,

πtpypz
t
q, ypzt´1

q, ωpztqq “
J
ÿ

j“1

`

π̂jtpyjpz
t
q, yjpz

t´1
q, ωpztqq ` π̃jtpypz

t
q, ypzt´1

qq
˘

(A.5)

where π̂jt : t0, 1u ˆ t0, 1u ˆ Ωt ÝÑ RY t´8u and π̃jt : t0, 1u
J ˆ t0, 1uJ ÝÑ R.

2. (Supermodularity) For all t ě 0 and ωt P Ωt, πt is supermodular in pypztq, ypzt´1qq on
t0, 1uJ ˆ t0, 1uJ .
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3. (Inaction) For all j P r1, Js, t ě 0, and zt P Zt, D yjpz
tq P t0, 1u such that, defining the

set Xt ” t0, 1u ˆ Ωt, it holds that π̂jtpyjpz
tq, xq ě ´K for all x P Xt and a K P Rě0.

4. (Markov with finite state space) For all t ě 0, Ωt is finite and Qtpωt|ωt´1, . . . , ω0q “

Qtpωt|ωt´1q.

5. (Stationarity) There exists T such that, for all t ě T and all j P r1, Js, Ωt “ ΩT ,
Qtp¨q “ QT p¨q, π̂jt “ π̂jT and π̃jt “ π̃jT .

As shown in Appendix E.1, equating agents to firms and alternatives to potential export
destinations, the model described in Section 3 satisfies all restrictions in Assumption 1.

A.2 Solution Algorithm

We describe here an iterative algorithm that yields upper bounds on the solution to the
problem in equation (A.2) if the function Π0p¨q satisfies the restrictions listed in Assumption
1. An algorithm that yields lower bounds may be similarly formulated.

As a preliminary step, partition the J alternatives into U groups indexed by u. Denote
as Mu Ď t1, . . . , Ju the set of alternatives included in group u, and denote as M c

u the
complement of Mu. E.g., if J “ 4 and U “ 3, we can form the subsets M1 “ t1, 2u, M2 “ t3u,
and M3 “ t4u, and the corresponding complements are M c

1 “ t3, 4u, M c
2 “ t1, 2, 4u, and

M c
3 “ t1, 2, 3u. For each set Mu and each iteration n “ 1, 2, 3, . . . of the algorithm, we solve

ō
pnq
Mu
“ argmax

yMuPYMu

Π0pyMu
, ȳ
pnq
Mc
u
q, (A.6)

where yMu
is a generic vector of choices in every alternative in Mu, all periods t ě 0, and

every history zt that may be reached at t. The set YMu includes all feasible values of yMu
:

YMu “ ˆ
8
t“0,ztPZtt0, 1u

Ju ,

where Ju is Mu’s cardinality. The second argument of Π0p¨q in (A.6) is an upper bound on
the firm’s optimal choice in all alternatives not in Mu, all t ě 0, and all zt P Zt:

ȳ
pnq
Mc
u
“ tȳ

pnq
Mc
u
pztqu8t“0,ztPZt , with ȳ

pnq
Mc
u
pztq ě oMc

u
pztq for all t ě 0 and zt P Zt,

with oMc
u
pztq the vector of optimal choices at t and history zt in all alternatives not in Mu.

Solving the problem in equation (A.6) for any group u at any iteration n requires speci-
fying first the upper-bounds included in the vector

ȳ
pnq
Mc
u
.

For computational reasons, we set the upper bound corresponding to any country j, period
t, and history zt, to a value that does not vary across histories; i.e., we set

ȳ
pnq
j pz

t
q “ b̄

pnq
jt for all zt P Zt. (A.7)
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In the first iteration (i.e., for n “ 1), we set each of these upper bounds to its largest value
within the feasible choice set; i.e., for every j and t ě 0, we set

b̄
p1q
jt “ 1. (A.8)

In all subsequent iterations (for all n ą 1), we set

b̄
pnq
jt “ max

ztPZt
ō
pn´1q
j pztq, (A.9)

where ō
pn´1q
j pztq is the element for alternative j, period t, and history zt of the vector ō

pn´1q
Mu

for the set Mu including j. Equation (A.9) shows that, to compute the iteration-n upper
bound on the firm’s optimal choice in j at history zt, we use the outcome of the optimization
problem in equation (A.6) at iteration n´1 for the set Mu including j. Specifically, as shown
in equation (A.9), we assign to every j, t, and zt, the max of the outcomes obtained for j
and t across all zt P Zt.

Theorem 1 establishes properties of the algorithm defined in equations (A.6) to (A.9)

Theorem 1 Let b̄
pnq
jt be defined by equations (A.6) to (A.9), and let ojpz

tq be the element
of the vector o defined in equation (A.2) that corresponds to alternative j and history zt.
Then, for all j “ 1, . . . , J , t “ 1, 2, . . . , zt P Zt, and n “ 1, 2, 3, . . . , it holds that

1. b̄
pnq
jt ě ojpz

tq.

2. b̄
pnq
jt ď b̄

pn´1q
jt .

3. There exists N ă 8 such that b̄
pnq
jt “ b̄

pn´1q
jt for all n ě N .

Theorem 1 states that the values tb̄
pnq
jt u

J,8
j“1,t“0 computed according to equations (A.6) to

(A.9) are an upper bound on the firm’s optimal choice at every history, get tighter with
every iteration, and converge after a finite number of iterations. See Appendix E for a proof
of Theorem 1.

Property 3 of Theorem 1 does not imply that the upper bound defined by equations (A.6)
to (A.9) converges to the solution of the firm’s problem in equation (A.2). However, as the
partition of the J alternatives into U subgroups gets coarser, the upper bound defined by
equations (A.6) to (A.9) gets tighter. In the limiting case in which U “ 1 and, therefore,
Mu “ t1, 2, . . . , Ju, the problem in equation (A.6) coincides with that in equation (A.1).

The algorithms implemented in each of the steps described in Section 4 and Appendix
D.1 are special cases of the algorithm defined in equations (A.6) to (A.9). E.g., the algorithm
implemented in step 1 is a case in which: (a) U “ J and, for u “ 1, . . . , J , the set Mu is a
singleton; and (b) period t “ 0 corresponds to the birth year of the firm (i.e., t “

¯
ti). The

algorithm implemented in step 5 is a case in which: (a) U ă J , and for some u “ 1, . . . , U ,
the set Mu includes more than one country; and, (b) period t “ 0 corresponds to the first
period at which the upper and lower bounds computed in the previous step differ.
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B Additional Reduced-Form Results

B.1 Firm-level Data: Sample Descriptive Statistics

We provide here descriptive statistics for the firm-level data introduced in Section 2. In Table
B.1, we report information for every sample year on total manufacturing exports, total number of
exporting firms, and total number of foreign countries to which manufacturing firms exported in
the corresponding year. While the total number of exporters remained stable at a number between
approximately 400 and 450, and the total number of export destinations remained stable at around
90 destinations, the total export volume grew significantly in real terms between 2005 and 2015.

Table B.1: Aggregate Statistics

Years Total Exports Number of Number of
Exporters Destinations

2005 262,549.6 400 95
2006 303,344.6 415 96
2007 332,929.1 422 91
2008 371,202.9 419 91
2009 328,435.2 438 87
2010 347,235.1 432 96
2011 431,820.7 456 91
2012 479,806.0 459 90
2013 450,472.3 437 84
2014 494,083.5 436 84
2015 479,485.1 395 90

Notes: Total Exports are reported in thousands of 2013 US dollars.

In Table B.2, we report the mean and median domestic sales across all firms and across ex-
porters. As in datasets similar to ours, the distribution of domestic sales is skewed to the right

Table B.2: Firm-level Statistics

Years Domestic Sales Domestic Sales Exports Number of Destinations
(All Firms) (Exporters) (Exporters)

Average Median Average Median Average Median Average Median 95th/99th perc.

2005 684.4 119.4 3,312.0 822.9 656.4 63.4 3.38 2 10/17
2006 695.4 118.4 3,553.2 772.6 731.0 63.1 3.28 2 10/18
2007 782.4 131.7 3,864.6 904.3 788.9 63.7 3.35 2 10/16
2008 889.6 147.0 4,693.6 1,160.0 885.9 66.4 3.30 2 9/18
2009 839.1 126.4 4,682.5 1,033.4 749.9 43.4 3.19 2 10/18
2010 937.2 139.2 5,256.7 1,161.1 803.8 56.7 3.28 2 9/18
2011 1,031.9 147.4 5,601.4 1,201.7 947.0 56.3 3.25 2 9/19
2012 1,067.5 154.1 5,663.2 1,091.7 1,045.3 65.9 3.22 2 9/19
2013 1,098.9 158.1 5,922.9 1,178.6 1,030.8 78.2 3.35 2 10/17
2014 1,043.8 147.4 5,793.3 1,208.3 1,133.2 59.7 3.28 2 10/18
2015 1,166.0 155.8 6,809.5 1,566.5 1,213.9 80.5 3.62 2 11/20

Notes: Domestic sales and Exports are reported in thousands of 2013 US dollars. We measure domestic
sales by subtracting total export revenue (from the Customs dataset) from total revenue.
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(mean domestic sales are larger than median domestic sales), and exporters are larger on average
than non-exporters (mean domestic sales among exporters are larger than in the overall popu-
lation). We also report in Table B.2 mean and median export revenues. Consistently with the
fact that, between 2005 and 2015, total exports grew significantly while the number of exporters
remained roughly constant, mean export revenues also grew markedly during the same period.

The last three columns in Table B.2 describe the distribution of the number of export des-
tinations across firms. Three features are salient. First, it is very skewed: the difference in the
number of destinations between the median exporter and that at the 95th percentile is similar to
the difference between the exporter at the 95th percentile and that at the 99th percentile. Second,
some firms export to many destinations; the 95% percentile is close to 10, and the 99th percentile
oscillates between 17 and 20. Third, the distribution is stable over time.

The maps in Figure B.1 show the total number of export events (i.e., firm-year pairs with
positive exports) and the total volume of exports by destination, in both cases relative to the
corresponding magnitude in the US. Both maps show that the most popular destinations are
countries in North and Central America, followed by China, Australia, and countries in Europe. The
top 5 destinations by export revenue are the US, Guatemala, Panama, Nicaragua and Honduras.

Figure B.1: Export Activity by Destination Country During Period 2005-2015

(a) Total Number of Export Events
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(0.10,0.15]
(0.05,0.10]
(0.01,0.05]
[0.00,0.01]
0 or No Data

(b) Total Volume of Exports
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(0.05,0.10]
(0.01,0.05]
[0.00,0.01]
0 or No Data

Notes: Panel (a) shows the total number of firm-year pairs with positive exports relative to that in the
US. Panel (b) shows the total volume of manufacturing exports relative to that in the US.
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In Table B.3, we present the mean and percentiles of the distribution of annual firm-level exports
to several countries during 2005-2015. This distribution is disperse and skewed to the right.

Table B.3: Distribution of Export Sales in Several Markets

Country Average Percentile
5 25 50 75 95 99

United States 597.6 0.4 5.0 28.1 227.4 3,477.9 9,615.9
Panama 271.4 1.2 7.4 32.5 138.6 1,013.6 5,022.9
Germany 350.8 0.3 6.3 54.0 419.5 1,844.9 3,015.5
Nicaragua 209.8 1.2 8.7 37.6 134.5 879.5 3,013.9
Mexico 295.4 0.4 9.0 51.0 284.2 1,224.8 2,637.1
China 128.8 0.2 3.9 21.8 68.9 713.7 1,584.0

Notes: All numbers in this table are reported in thousands of 2013 dollars.

B.2 Geographical Distance

We measure the geographic distance ngjj1 between any two countries j and j1 as

ngjj1 ”
´

ÿ

kPj

ÿ

k1Pj1

popk
popj

popk1

popj1
pdistkk1q

´1
¯´1

, (B.1)

where k and k1 respectively index cities in countries j and j1, popk and popk1 denote k and k1

population, popj and popj1 denote the total population of the cities in countries j and j1 used to
calculate ngjj1 , and distkk1 is the distance between k and k1 in thousands of kilometers. In Figure
B.2, we present a histogram of the distance measure in equation (B.1) across country pairs.

Figure B.2: Histogram of Bilateral Geographic Distances
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Notes: The vertical axis indicates the number of country pairs whose geographical distance ngjj1 falls in
the corresponding bin. The horizontal axis denotes geographical distance in thousands of kilometers.

In Figure B.3, we represent in maps the geographical distance from Costa Rica (in Figure
B.3a), the United States (in Figure B.3b), France (in Figure B.3c) and China (in Figure B.3d),
respectively, to any other country of the world.
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Figure B.3: Geographical Distances From Certain Countries
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(d) From China

CHN
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Notes: Each panel indicates the geographical distance (computed using the expression in equation (B.1))
between a particular country (Costa Rica in panel (a), the US in panel (b), France in panel (c), and China
in panel (d)) and any other country in the world. Distances are reported in thousands of kilometers.

B.3 Linguistic Distance

We measure the linguistic distance nljj1 between any two countries j and j1 as

nljj1 ” max
!

0, 1´
K
ÿ

k“1

sjksj1k

)

, (B.2)

where sjk is the share of country j’s population that speak language k “ 1, . . . ,K. To obtain a list
of languages and information on the population shares sjk that speak a language k in a country j,
we use the Ethnologue dataset (see Desmet et al., 2012, for an application of Ethnologue data).

Ethnologue defines languages according to 15 aggregation levels; e.g., at the 1st level, all Indo-
European languages are considered the same language; at the 15th level, Spanish and Extremaduran
are distinct. We use the 9th level, the first one classifying Portuguese and Spanish as distinct.

Ethnologue provides information by country on the population share that speaks a language
as first language, and on the population share that speaks it as second language, but it does
not provide information on the distribution of second language speakers conditional on their first
language. The measure in equation (B.2) assumes a joint distribution of first and second languages
such that the linguistic distance between any two countries is minimized. To illustrate this, consider
a setting with only two languages, k1 and k2. In this setting, the probability that two individuals
i and i1 randomly selected from countries j and j1, respectively, speak a common language is:

P pp{i speaks k1} X {i1 speaks k1}q Y p{i speaks k2} X {i1 speaks k2}qq
“

P p{i speaks k1} X {i1 speaks k1}q ` P p{i speaks k2} X {i1 speaks k2}q´
P pp{i speaks k1} X {i1 speaks k1}q X p{i speaks k2} X {i1 speaks k2}qq.

Using the notation in equation (B.2), we can rewrite this expression as

P pp{i speaks k1} X {i1 speaks k1}q Y p{i speaks k2} X {i1 speaks k2}qq “
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sjk1sj1k1 ` sjk2sj1k2 ´ P pp{i speaks k1} X {i1 speaks k1}q X p{i speaks k2} X {i1 speaks k2}qq.

Thus, we can rewrite the probability that i and i1 do not speak a common language as

1´ sjk1sj1k1 ´ sjk2sj1k2 ` P pp{i speaks k1} X {i1 speaks k1}q X p{i speaks k2} X {i1 speaks k2}qq.

As the Ethnologue data does not contain information on the joint distribution of first and second
languages spoken within a country, we cannot compute

P pp{i speaks k1} X {i1 speaks k1}q X p{i speaks k2} X {i1 speaks k2}qq.

We can however obtain a lower bound LBjj1 on this probability as

LBjj1 “

"

0 if sjk1sj1k1 ´ sjk2sj1k2 ď 1,
sjk1sj1k1 ` sjk2sj1k2 ´ 1 if sjk1sj1k1 ` sjk2sj1k2 ą 1,

or, equivalently, LBjj1 “ maxt0, sjk1sj1k1 ` sjk2sj1k2 ´ 1u. We thus obtain a lower bound on the
probability that i and i1 do not speak a common language as

1´ sjk1sj1k1 ´ sjk2sj1k2 ` LBjj1 “ 1´ sjk1sj1k1 ´ sjk2sj1k2 `maxt0, sjk1sj1k1 ` sjk2sj1k2 ´ 1u

or, equivalently,

maxt0, 1´ sjk1sj1k1 ´ sjk2sj1k2u.

This expression corresponds to that in equation (B.2) for the case with two languages, k1 and k2.
In Figure B.4, we present a histogram of bilateral linguistic distances. For most country pairs, a

randomly selected resident of one of the two countries will not share any language with a randomly
selected resident of the other country. Thus, for most country pairs, their linguistic distance equals
one, which is the maximum possible value of the distance measure introduced in equation (B.2).

Figure B.4: Histogram of Bilateral Linguistic Distances
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Notes: The vertical axis indicates the number of country pairs whose linguistic distance nljj1 falls in the
corresponding bin. The horizontal axis denotes the corresponding linguistic distance.

In Figure B.5, we represent bilateral linguistic distance measures from Costa Rica (in Figure
B.5a), the US (in Figure B.5b), France (in Figure B.5c) and China (in Figure B.5d) to any other
country of the world.
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Figure B.5: Bilateral Linguistic Distances From Certain Origin Countries

(a) From Costa Rica

CRI
[0.0-0.1)
[0.1-0.2)
[0.2-0.3)
[0.3-0.4)
[0.4-0.5)
[0.5-0.6)
[0.6-0.7)
[0.7-0.8)
[0.8-0.9)
[0.9-1.0]

(b) From the United States
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(d) From China

CHN
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Notes: Each of the four panels in this figure indicate the linguistic distance (computed according to the
expression in equation (B.2)) between a particular country (Costa Rica in panel (a), the US in panel (b),
France in panel (c), and China in panel (d)) and any other country in the world.

The map in panel (a) reflects the large set of countries where Spanish is commonly spoken.
The map in panel (b) shows that, as a consequence of the popularity of English as second language
in many European countries, countries such as the Netherlands, Denmark, or Sweden, appear
linguistically close to the US. Interestingly, as panel (c) reveals, the popularity of English as second
language makes pairs of countries where none of them have English as official language (e.g., France
and Sweden, France and Denmark) linguistically close. Finally, panel (d) shows that China, whose
residents largely speak neither English nor Spanish, is linguistically isolated.

B.4 Measures of Regulatory Distance

In Figure B.6, we present a histogram of the regulatory distance measure introduced in equation
(1). As this figure reveals, most country pairs do not share any PTA containing a provision in at
least one of the policy areas listed in footnote 10.

Figure B.6: Histogram of Bilateral Distances in PTAs

0

5000

1.0e+04

1.5e+04

Nu
mb

er
 of

 C
ou

ntr
y P

air
s

0 .2 .4 .6 .8 1
PTA Distance between Pairs of Countries

Notes: The vertical axis indicates the number of country pairs whose distance najj1 falls in the corre-
sponding bin. The horizontal axis denotes the value of the corresponding distance measure.

In Figure B.7, we represent bilateral regulatory distances from Costa Rica (Figure B.7a), the
US (Figure B.7b), France (Figure B.7c) and China (Figure B.7d) to any other country of the world.
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Figure B.7: Bilateral Regulatory Distances From Certain Origin Countries
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(d) From China

CHN
All Areas
6 Areas
5 Areas
4 Areas
3 Areas
2 Areas
1 Area
No Areas/No FTA

Notes: Each of the four panels in this figure illustrate the countries with which Costa Rica (in panel (a)),
the United States (in panel (b)), France (in panel (c)), and China (in panel (d)) share in 2015 a PTA
containing provisions in at least one of the seven policy areas listed in footnote 10. If it does, it indicates
in how many of the seven areas the corresponding PTA contains some provision.

Panel (a) shows that Costa Rica has deep integration agreements with Canada, members of
the European Common Market, Panama, the Dominican Republic, and Peru, and more shallow
agreements with China, Chile, and other Central and North American countries. Panel (b) shows
the US has a deep PTA with Canada and Mexico (NAFTA), as well as with Colombia, Peru, Chile
and Australia (these four are bilateral trade agreements), and a more shallow agreement with
Central American countries (CAFTA). In the case of France, panel (c) illustrates that it has deep
PTAs not only with the other members of the European Common Market, but also with countries
in North America (Mexico), Central America (e.g., Guatemala, Honduras, or Costa Rica), South
America (e.g., Colombia, Peru, or Chile), Africa (e.g., Morocco, Tunisia, Egypt, or South Africa),
and Asia (South Korea). Panel (d) shows that China has deep trade integration agreements with
comparatively few and smaller countries (e.g., Iceland, Switzerland, Peru, or New Zealand).

In sum, Figure B.7 shows that countries differ in the number and identity of the potential trade
partners with whom they have signed deep PTAs. Furthermore, it is common for countries to sign
deep PTAs with other countries that are neither geographically nor linguistically close to them
(e.g., Costa Rica and China, the US and South Korea, or France and South Africa).

B.5 Correlation in Export Choices: Additional Results

To generate the variable Y g
ijt used to compute the results in Section 2.2, we set n̄g so that we

classify two countries as geographically close if their distance is less than 790 km, which is the 2.5
percentile of the distribution of distances across all country pairs. According to this threshold, e.g.,
Spain and Portugal, and France and Germany, are geographically close. Conversely, e.g., Spain and
Austria, or France and Denmark, are not. Analogously, we classify two countries as linguistically
close if the probability two randomly selected individuals from both countries speak a common
language is at least 0.89 (i.e., if nljj1 ă 0.11, where 0.11 is the 2.5 percentile of the distribution
of linguistic distances across all country pairs), and we classify two countries as regulatory close
if they are cosignatories of a PTA including provisions in at least four of the seven areas listed in
footnote 10 (i.e., if najj1t ă 0.43). According to these thresholds, e.g., Argentina and Spain (but not
France and Switzerland) are linguistically close; and all members of the EU, NAFTA, CAFTA, or
Mercosur are regulatory close to each other.
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Table B.4: Conditional Export Probabilities

Panel A: Panel B:
No Controls Controlling for Firm-Year Fixed Effects

(1) (2) (3) (4) (1) (2) (3) (4)

Y gijt 0.1904a 0.1345a 0.1529a 0.1217a

(0.0072) (0.0059) (0.0068) (0.0060)

Y lijt 0.1334a 0.0733a 0.1091a 0.0760a

(0.0057) (0.0038) (0.0050) (0.0041)

Y aijt 0.0825a 0.0297a 0.0517a 0.0222a

(0.0037) (0.0016) (0.0026) (0.0018)

Obs. 3,859,618 3,859,618

Panel C: Panel D:
Controlling for Sector-Country-Year Controlling for Sector-Country-Year

Fixed Effects & Firm-Year Fixed Effects

(1) (2) (3) (4) (1) (2) (3) (4)

Y gijt 0.1785a 0.1269a 0.1384a 0.1116a

(0.0069) (0.0057) (0.0065) (0.0057)

Y lijt 0.1277a 0.0706a 0.1013a 0.0721a

(0.0054) (0.0035) (0.0048) (0.0039)

Y aijt 0.0779a 0.0283a 0.0431a 0.0169a

(0.0035) (0.0015) (0.0025) (0.0017)

Obs. 3,859,618 3,859,618

Note: a denotes 1% significance. Standard errors clustered by firm. The dependent variable in all
specifications is a dummy that equals one if firm i exports to country j in year t. The covariates are
Y xijt “ 1t

ř

j1‰j 1tn
x
jj1 ď n̄xuyij1t ą 0u for x P tg, lu, and Y aijt “ 1t

ř

j1‰j 1tn
a
jj1t ď n̄auyij1t ą 0u, with

n̄g “ 1.153, n̄l “ 0.5 and n̄a “ 0.78.

In Table B.4, we present estimates analogous to those in Table 1 for alternative threshold values
n̄g, n̄l, and n̄a. Here, we set n̄g “ 1.153 (or 1,153 km), n̄l “ 0.5 and n̄a “ 0.78. The values of n̄g and
n̄l we use here equal the 5th percentile of the distribution of the corresponding distance measure
between any pair of countries in our sample; the value n̄a “ 0.72 is equivalent to characterizing as
deep any PTA that contains a provision in at least two of the seven areas listed in footnote 10.

A comparison of the estimates in tables 1 and B.4 reveals that, as we increase the set of countries
classified as being geographically or linguistically close to a destination j, or as being cosignatories
of a deep PTA with j, the impact that exporting to at least one of these countries has on the
probability of exporting to j decreases. For example, comparing the estimate of the coefficient on
Y g
ijt in column (4) of Panel D in Table 1 to that in Table B.4, we observe that the difference in the

predicted export probability to any given destination is 0.18 when comparing firms that export to
at least one country that is less than 790 km away from it to those that do not, but only 0.11 when
comparing firms that export to at least one country that is less than 1, 153 km away from it to
those that do not. This is consistent with the correlation in a firm’s export participation decisions
in any two countries decreasing in the geographical distance between both countries.

In Table B.5, we present estimates analogous to those in Table 1, but adding the lagged depen-
dent variable as an additional covariate. We observe that the point estimate of the coefficient on
the lagged dependent variable, yijt´1, is always statistically different from zero and economically
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Table B.5: Conditional Export Probabilities with Lagged Export Participation

Panel A: Panel B:
No Controls Controlling for Firm-Year Fixed Effects

(1) (2) (3) (4) (1) (2) (3) (4)

yijt´1 0.6529a 0.6821a 0.6809a 0.6411a 0.6469a 0.6697a 0.6754a 0.6411a

(0.0090) (0.0090) (0.0091) (0.0088) (0.0089) (0.0087) (0.0089) (0.0086)
Y gijt 0.0990a 0.0815a 0.0834a 0.0754a

(0.0036) (0.0034) (0.0037) (0.0035)

Y lijt 0.0574a 0.0303a 0.0430a 0.0278a

(0.0024) (0.0022) (0.0023) (0.0023)

Y aijt 0.0300a 0.0144a 0.0162a 0.0066a

(0.0011) (0.0008) (0.0009) (0.0008)

Obs. 3,353,236 3,353,236

Panel C: Panel D:
Controlling for Sector-Country-Year Controlling for Sector-Country-Year

Fixed Effects & Firm-Year Fixed Effects

(1) (2) (3) (4) (1) (2) (3) (4)

yijt´1 0.6387a 0.6638a 0.6634a 0.6411a 0.6319a 0.6506a 0.6567a 0.6269a

(0.0089) (0.0089) (0.0089) (0.0088) (0.0086) (0.0086) (0.0088) (0.0085)
Y gijt 0.0980a 0.0797a 0.0800a 0.0726a

(0.0037) (0.0034) (0.0037) (0.0035)

Y lijt 0.0594a 0.0322a 0.0434a 0.0290a

(0.0026) (0.0023) (0.0025) (0.0024)

Y aijt 0.0298a 0.0142a 0.0140a 0.0048a

(0.0011) (0.0008) (0.0010) (0.0008)

Obs. 3,353,236 3,353,236

Note: a denotes 1% significance. Standard errors are clustered by firm. The dependent variable is a
dummy that equals 1 if firm i exports to country j in year t, yijt. The covariates of interest are the
lagged dependent variable, yijt´1, Y xijt “ 1t

ř

j1‰j 1tn
x
jj1 ď n̄xuyij1t ą 0u for x P tg, lu, and Y aijt “

1t
ř

j1‰j 1tn
a
jj1t ď n̄auyij1t ą 0u, with n̄g “ 790 km, n̄l “ 0.11 and n̄a “ 0.43.

important. Holding everything else constant, the probability a firm exports to a destination in a
given year is approximately 65% larger if the firm also exported to the same destination in the
previous year. A comparison of the estimates of the coefficients on Y g

ijt, Y
l
ijt, and Y a

ijt, in tables 1
and B.5 shows that these estimates decrease when we control for the lagged dependent variable.
However, they all remain statistically significant at the 5% significance level.
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C Equation for Potential Export Revenues: Details

We derive the expression in equation (5) in three steps.

First Step. Assuming firm i’s marginal cost of selling in the home market h at period t is τhtwit,
and that the firm also faces at home a CES demand function with demand elasticity η, the revenue
firm i obtains in h at t is

riht “
” η

η ´ 1

τhtwit
Pht

ı1´η
Yht. (C.1)

Combining equations (3) and (C.1), we rewrite the potential export revenues of firm i in country
j at period t as a function of its revenue in the domestic market:

rijt “
”τijt
τht

Pht
Pjt

ı1´η Yjt
Yht

riht. (C.2)

Second Step. Substituting pτijtq
1´η in equation (C.2) by its expression in equation (4), we obtain

rijt “ exppξyyijt´1 ` ξ̌jt ` αs ` αa lnpasjtq ` ξw lnpwitq ` lnprihtqq, (C.3)

with

ξ̌jt “ ξjt ` p1´ ηq lnpPht{Pjtq ` lnpYjt{Yhtq ´ p1´ ηq lnpτhtq. (C.4)

Third Step. Taking the logarithm of both sides of equation (C.1) and rearranging terms, we obtain

lnpwitq “
1

1´ η
plnprihtq ´ lnpYhtqq ` lnpη ´ 1q ´ lnpηq ` lnpPhtq ´ lnpτhtq.

Plugging this equality into equation (C.3), we obtain equation (5) with αs “ ξs, αa “ ξa, and

αjt “ ξ̌jt ` ξwp´p1{p1´ ηqq lnpYhtq ` lnpη ´ 1q ´ lnpηq ` lnpPhtq ´ lnpτhtqq, (C.5a)

αr “ 1` ξw{p1´ ηq. (C.5b)
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D Solution Algorithm: Additional Details

D.1 Additional Steps

Step 2. Denote by τ the smallest t with ˇ̄yit ą ˇ
¯
y
it

. In this step, we tighten our bounds at τ . The
procedure differs from that in step 1 in that we now solve the problem in equation (21) only for
t “ τ at the state py̌iτ´1, ω̌iτ q, and we do so using constant upper bounds that condition on this
state. The new initial constant upper bounds equal the firm’s choices implied by the upper-bound
policies tō˚itp¨qutěti when the state at τ is py̌iτ´1, ω̌iτ q and the blocking shocks for all t ą τ equal
the smallest value in their support. Formally, the new initial constant upper bound for period τ is
ō˚iτ py̌iτ´1, ω̌iτ q, and, for all t ą τ , we compute these through the following iterative procedure

b̄
r0s
it1|τ “ ō˚it1pb̄

r0s
it1´1|τ , ωJq, for t1 “ τ ` 1, . . . , t, with initial value b̄

r0s
iτ |τ “ ō˚iτ py̌iτ´1, ω̌iτ q. (D.1)

Solving the problem in equation (21) with these new constant upper bounds, we obtain new upper-
bound policies for all t ě τ . As in step 1, we use these policies and a procedure analogous to that
in equation (D.1) to compute new constant upper bounds, which we use to solve again the problem
in equation (21) and obtain in this way new upper-bound policies. We implement this procedure
until convergence (see Appendix A), denoting as ō˚it|τ p¨q the resulting upper-bound policy for any

t ě τ . We use these policies, in combination with similarly computed lower-bound policies
¯
o˚it|τ p¨q,

to obtain bounds on the firm’s optimal choice at period τ at the path of interest:

ˇ̄yiτ |τ “ ō˚iτ |τ py̌iτ´1, ω̌iτ q, and ˇ
¯
y
iτ |τ

“
¯
o˚iτ |τ py̌iτ´1, ω̌iτ q. (D.2)

If these bounds coincide, they equal the optimal choice at τ at py̌iτ´1, ω̌iτ q. If so, we proceed to
the next period τ 1 at which the bounds computed in step 1 differ, implementing again the step 2
procedure to tighten the bounds at τ 1. If the bounds in equation (D.2) differ, we move to step 3.

Step 3. In this step, we tighten further the bounds at τ . For every country j for which the bounds
in equation (D.2) do not coincide, we solve a problem that differs from that in equation (21) in that,
for period τ ` 1 and a subset of countries M that does not include j, we condition on functional
(instead of constant) upper bounds. Specifically, for any j such that ˇ̄yijτ |τ ą ˇ

¯
y
ijτ |τ

, we compute

max
yijτ

!

yijτ puijτ py̌ijτ´1, ω̌ijτ q`

ÿ

j1‰j

ˇ̄yij1τ |τ pcjj1t ` cj1jtqq ` δEiτ Ṽijτ`1pyijτ , ωijτ`1, tωij1τ`1uj1PM q

)

, (D.3)

with

Ṽijτ`1pyijτ , ωijτ`1, tωij1τ`1uj1PM q “ max
yijτ`1

!

yijτ`1puijτ`1pyijτ , ωijτ`1q ` δEiτ`1V̄ijtτ`2pyijτ`1, ωijτ`2q

`
ÿ

j1PM

b̄ij1τ`1|τ pωij1τ`1qpcjj1τ`1 ` cj1jτ`1q `
ÿ

j1RM

1tj1 ‰ jub̄˚ij1τ`1|τ pcjj1τ`1 ` cj1jτ`1qq

)

. (D.4)

The function Ṽijtτ`2pyijτ`1, ωijτ`2q is country j’s value function when the firm’s choice in every
period t ě τ`2 and every country other than j is set to the constant upper bounds obtained in the
last iteration of the step 2 procedure. For every country j1 other than j, equation (D.4) imposes
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the upper bounds

b̄ij1τ`1|τ pωij1τ`1q “ ō˚ij1τ`1|τ p
ˇ̄yij1τ |τ , ωij1τ`1q, if j1 PM, (D.5a)

b̄˚ij1τ`1|τ “ ō˚ij1τ`1|τ p
ˇ̄yij1τ |τ , ¯

ωq, if j1 RM, (D.5b)

where ō˚ij1τ`1|τ p¨q and ˇ̄yij1τ |τ are computed in step 2. By definition, b̄ij1τ`1|τ pωij1τ`1q ď b̄˚ij1τ`1|τ .
Thus, the bounds computed in step 3 are tighter than those computed in step 2, and they will be
tighter the larger the set M . However, solving the problem in equation (D.3) requires computing an
expectation over the vector pωijτ`1, tωij1τ`1uj1PM q, a step that is computationally more complicated
the larger the set M . In our application, for a country j, we choose M as the 16 countries that are
geographically closer to j. If the step 3 upper and lower bounds do not coincide at py̌iτ´1, ω̌iτ q at
τ , we proceed to step 4.

Step 4. In this step, we tighten further the bounds at period τ . To do so, we solve an optimization
problem that differs from those solved in steps 1 to 3 in that, instead of computing policy functions
iteratively country by country, we do so for several countries simultaneously.

Consider a set M of countries for which the step 3 upper and lower bounds on the firm’s optimal
choices at the path of interest do not coincide at τ . For any t ě τ , define vectors yiMt and ωiMt

that, for t and all j PM , include the choice yijt and blocking shock ωijt, respectively. Define also

V̄iMτ`hpyiMτ`h´1, ωiMτ`hq “
ÿ

jPM

V̄ijτ`hpyijτ`h´1, ωijτ`hq, (D.6)

where V̄ijτ`hp¨q is the country j’s value function that results from equating the firm’s choice in all
periods t ě τ ` h and all countries other than j to the constant upper bounds obtained in the last
iteration of the step 2 procedure. In step 4, we solve for all t P rτ, τ ` h´ 1s the problem

V̄iMtpyiMt´1, ωiMtq “ max
yiMtPt0,1uM

!

ÿ

jPM

 

yijtpuijtpyijt´1, ωijtq `
ÿ

j1PM

yij1tcjj1t` (D.7)

ÿ

j1RM

1tj1 ‰ jub̄˚ij1τ |τ pcjj1t ` cj1jtqq
(

` δEitV̄iMt`1 pyiMt, ωiMt`1q

)

,

with b̄˚ij1τ |τ and V̄iMτ`hp¨q defined as in equations (D.5b) and (D.6), respectively. Solving this
problem is computationally more complicated the larger the set M and the horizon h are. If there
are less than ten countries for which the step 3 bounds at the state of interest at period τ differ,
we include them all in M . If there are more than ten countries for which the step 3 bounds differ,
we solve the problem in equation (D.7) repeatedly for different sets of countries, grouping together
in these sets those countries that are geographically close to each other. Concerning h, we solve
first the problem for h “ 1, and increase progressively its value until h “ 10.

Step 5. In this step, we tighten further the bounds at τ . We compute the firm’s optimal export paths
in a set M of countries fixing the firm’s choices in all countries not in M to constant upper bounds.
Specifically, we first solve the following period-T problem for every value of pyiMT´1, ωiMT q:

V̄iMT pyiMT´1, ωiMT q “ max
yiMT Pt0,1uM

!

ÿ

jPM

 

yijT puijT pyijT´1, ωijT q `
ÿ

j1PM

yij1T cjj1T` (D.8)

ÿ

j1RM

1tj ‰ j1ub̄˚ij1T |τ pcjj1T ` cj1jT qq
(

` δEiT V̄iMT`1 pyiMT , ωiMT`1q

)

.
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As this problem is stationary, we use value-function iteration to solve for the value function V̄iMT p¨q.
Given V̄iMT p¨q, we use backward induction to solve for the optimal policy in M for all t P rτ, T s.

If M includes all J foreign countries, the problem in equation (D.8) coincides with that in
equation (18) and, thus, its solution yields the firm’s optimal policy function. Solving the problem
in equation (18) for a large set M is computationally infeasible. In our application, we choose M
according to the following rules. If there are less than six countries for which step 4 upper and
lower bounds on the optimal choice at the path of interest at period τ differ, we include them all
in M . If there are more than six countries for which the step 4 bounds differ, we implement the
step 5 algorithm repeatedly for different sets of six countries grouping together countries that are
geographically close to each other.

Closing the algorithm. If there are countries for which the upper and lower bound on the optimal
choice at the path of interest at period τ differ after step 5, we assume the optimal choice is to not
export to those countries at τ at the state of interest.

D.2 Algorithm in a Two-Country and Three-Period Setting

We illustrate the mechanics of our algorithm in an example with two countries (A and B) and
three periods. We use trees to represent graphically all possible paths of ωijt. With the letters L
(with stands for low) and H (which stands for high), we denote the events in which the blocking
shock respectively equals the smallest,

¯
ω, and largest, ω̄, values in their support. E.g., in Figure

D.1, the orange path is one in which blocking shocks in A are low in all three periods while, in B,
these are low in periods 1 and 3, and high in period 2.

Figure D.1: Possible Paths of Fixed Cost Shocks
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Step 1. In Figure D.2, we illustrate the first iteration of step 1 of the algorithm (see Section 4).
The left panel illustrates the solution to the optimization problem in equation (21) for country A
when setting b̄iBt “ 1 for all three time periods; the right panel is analogous but for country B.
Using the notation in Section 4, Figure D.2 thus illustrates the upper-bound policy function

ō
r0s
it pyit´1, ωitq “ pō

r0s
iAtpyiAt´1, ωiAtq, ō

r0s
iBtpyiBt´1, ωiBtqq, for all t “ t1, 2, 3u. (D.9)

In all figures in this section, we use green to identify branches at which the firm exports, and
red to identify branches at which it does not. The left panel in Figure D.2 thus shows that,
conditional on the firm exporting to B in all periods and states (as reflected by the three green
segments under “Assuming that in country B. . . ”), the firm chooses not to export to A at t “ 1
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Figure D.2: Initial Upper-Bound Policy Functions
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regardless of whether ωiA1 is high or low (as reflected by the two red segments branching out from
the “Country A” label), and chooses to export to A at t “ 2 and t “ 3 if and only if ωiAt in the
corresponding period t is low (as reflected by the L-segments being green and the H-segments being
red). Similarly, the right panel in Figure D.2 shows that, if the firm exports to A in all periods and
states (as reflected by the three green segments under “Assuming that in country A. . . ”), the firm
chooses to export to B in any given period if and only if ωiBt in the corresponding period t is low
(as reflected by the L-segments being green and the H-segments being red).

In Figure D.3, we evaluate the upper-bound policy in equation (D.9), as represented in Figure
D.2, at the path of shocks in which these equal their lowest possible value in every country and
period (i.e., the path marked by thick lines in each tree’s top branch). Doing so, we obtain new
constant upper bounds on the firm’s choice in all countries and periods. E.g., as the upper-bound
policy represented in Figure D.2 prescribes the firm not to export to A at t “ 1 even ωiA1 “

¯
ω,

we update from one to zero the constant upper bound in A at t “ 1 (as reflected in the change in

Figure D.3: Updated Constant Upper Bounds
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color of the segment labeled “Update”). Using the notation in Section 4, it is thus the case that

pb̄
r1s
iA1, b̄

r1s
iA2, b̄

r1s
iA3q “ p0, 1, 1q and pb̄

r1s
iB1, b̄

r1s
iB2, b̄

r1s
iB3q “ p1, 1, 1q. (D.10)

We represent in Figure D.4 the new upper-bound policy function we obtain by solving again
the optimization problem in equation (21) but now conditioning on the constant upper bounds
illustrated at the bottom of Figure D.4, and listed in equation (D.10). Comparing figures D.2 and
D.4, we observe that the change in the constant upper bound in country A at period t “ 1 drives
a change in the upper-bound policy function in country B at t “ 1 at the low fixed cost shock
segment, whose color switches from green to red. As country B’s constant upper bounds in figures
D.2 and D.4 coincide, the upper-bound policy function in country A remains the same.

Figure D.4: Updated Upper-Bound Policy Functions
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In Figure D.5, we evaluate the updated upper-bound policy illustrated in Figure D.4 at the path
of shocks at which these equal their lowest possible value in every country and period, represented
in Figure D.3 by the thick lines in each tree’s top branch. Comparing figures D.3 and D.5, we
observe that the update in the upper-bound policy in Figure D.4 with respect to that in Figure
D.2 allows to update from one to zero the constant upper bound in B at t “ 1 (as reflected in the
change in color of the segment labeled “Update”). It is then the case that

pb̄
r2s
iA1, b̄

r2s
iA2, b̄

r2s
iA3q “ p0, 1, 1q and pb̄

r2s
iB1, b̄

r2s
iB2, b̄

r2s
iB3q “ p0, 1, 1q. (D.11)

Continuing with the iterative process, we solve again the optimization problem in equation (21)
but now conditioning on the updated constant upper bounds illustrated at the bottom of Figure
D.5 and listed in equation (D.11). The solution is an upper-bound policy identical to that obtained
in the previous iteration; i.e., that in Figure D.4. Intuitively, as the upper-bound policy in Figure
D.4 already prescribes the firm not to export to A at t “ 1, regardless of the value of ωiA1, the
update in the constant upper bound in B at t “ 1 does not change the upper-bound policy function
in A. Thus, after two iterations, the upper-bound policy function has converged. We represent this
upper-bound policy in Figure D.6.

We follow analogous steps to compute lower-bound policy functions. Assume for simplicity
the converged lower-bound policies prescribe the firm not to export to any country in any period
regardless of the value of ωijt for any j and t. The converged lower-bound policy thus corresponds
to that in Figure D.7.
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Figure D.5: Updated Constant Upper Bounds
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Figure D.6: Upper-Bound Policy Functions After Convergence
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Figure D.7: Lower-Bound Policy Functions After Convergence
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Figure D.8: Evaluating Upper-Bound Policy Functions at Path of Interest
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The final stage in step 1 of our algorithm is to evaluate the converged lower- and upper-bound
policy functions at a specific path of interest. Assume, e.g., this path is:

pω̂iA1, ω̂iA2, ω̂iA3q “ pω̄,
¯
ω,

¯
ωq and pω̂iB1, ω̂iB2, ω̂iB3q “ p

¯
ω, ω̄,

¯
ωq, (D.12)

where, as a reminder,
¯
ω and ω̄ are represented by L and H, respectively, in all figures.

Figure D.8 is identical to Figure D.6 except that the path of interest is highlighted. The colors
of the highlighted branches indicate the upper bounds on the firm’s optimal choices at the path of
interest; i.e.,

pˇ̄yiA1, ˇ̄yiA2, ˇ̄yiA3q “ p0, 1, 1q and pˇ̄yiB1, ˇ̄yiB2, ˇ̄yiB3q “ p0, 0, 1q. (D.13)

Similarly, given the converged lower-bound policy function in Figure D.7, the lower bounds on the
firm’s optimal choices at the path of interest are

pˇ
¯
y
iA1
, ˇ
¯
y
iA2
, ˇ
¯
y
iA3
q “ p0, 0, 0q and pˇ

¯
y
iB1

, ˇ
¯
y
iB2

, ˇ
¯
y
iB3
q “ p0, 0, 0q. (D.14)

The bounds coincide at t “ 1 for both countries; thus, the optimal choices at t “ 1 at the path of
interest are py̌iA1, y̌iB1q “ p0, 0q. At t “ 2, both bounds differ in their prescribed choice in A.

Step 2. In this step, we tighten the bounds at t “ 2. To do so, we first compute new constant
upper bounds that condition on the state of interest at t “ 2; i.e., we evaluate the policy function
in Figure D.6 along a path that, for j “ tA,Bu, sets ωijt “ ω̌ijt for t ď 2, and ωijt “

¯
ω for

t ą 2. In Figure D.9, we recover the upper-bound policy in Figure D.6, fade all branches that
cannot be reached from the state of interest at t “ 2 and mark with a wide line the relevant path.
Conditioning on the state of interest up to t “ 2 permits updating the constant upper bound in B
at t “ 2 (as reflected in the change in color of the segment labeled “Update” in Figure D.9). Using
the notation in Section 4, it then holds that

pb̄
r0s
iA2|2, b̄

r0s
iA3|2q “ p1, 1q and pb̄

r0s
iB2|2, b̄

r0s
iB3|2q “ p0, 1q. (D.15)

We represent in Figure D.10 the upper-bound policy function obtained by solving the opti-
mization problem in equation (21) for t ě 2 with the new constant upper bounds represented at
the bottom of Figure D.9 and listed in equation (D.15). Figure D.10 shows that the upper-bound
policy in A at t “ 2 is updated.
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Figure D.9: Initial Constant Upper Bounds That Condition on Path of Interest for t ď 2
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Figure D.10: Upper-Bound Policy Functions That Condition on Path of Interest for t ď 2

Country A

H

L

H

H

L

L

H

H

L

H

H

L

L

L

Assuming that in country B...

Country B

H

L

H

H

L

L

H

H

L

H

H

L

L

L

Assuming that in country A...

Update

Next, we evaluate the updated upper-bound policies in Figure D.10 along the path that, for
j “ tA,Bu, sets ωijt “ ω̌ijt for t ď 2 and ωijt “

¯
ω for t ą 2, represented in Figure D.11 by thick

lines. Comparing figures D.9 and D.11, we observe that the update in the upper-bound policy in
Figure D.10 relative to that in Figure D.8 allows us to update the constant upper bound in A at
t “ 2 (see the red segment over the label “Update” in Figure D.11). It is then the case that

pb̄
r1s
iA2|2, b̄

r1s
iA3|2q “ p0, 1q and pb̄

r1s
iB2|2, b̄

r1s
iB3|2q “ p0, 1q. (D.16)

Continuing with this iterative procedure, we solve again the problem in equation (21) for periods
t ě 2, but now conditioning on the new constant upper bounds in equation (D.16) (see also bottom
of Figure D.11). The solution to this problem yields upper-bound policy functions identical to those
obtained in the previous iteration. Intuitively, as the upper-bound policy in Figure D.10 already
prescribes the firm not to export to B at t “ 2 at the path of interest, the change in the constant
upper bound in A at t “ 2 does not change the upper-bound policy function. Thus, at this point,
the step 2 upper-bound policy function has converged; we represent it in Figure D.12.
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Figure D.11: Updated Constant Upper Bounds That Condition on Path of Interest for t ď 2
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Figure D.12: Upper-Bound Policies That Condition on Path for t ď 2 After Convergence
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We follow similar steps to compute a lower-bound policy function that conditions on the state
of interest at t “ 2. As the lower-bound policy that converged in step 1 (see Figure D.7) prescribe
the firm not to export to any country at any period or state, the resulting constant bounds are

p
¯
b
r0s
iA2|2,¯

b
r0s
iA3|2q “ p0, 0q and p

¯
b
r0s
iB2|2,¯

b
r0s
iB3|2q “ p0, 0q. (D.17)

Given these, the lower-bound policy cannot be updated further; we represent it in Figure D.13.
Evaluating the lower- and upper-bound policy functions in figures D.12 and D.13 at the path

of interest at period t “ 2, we obtain the following bounds on the firm’s optimal export choices

ˇ̄yiA2|2 “ ˇ
¯
y
iA2|2

“ 0 and ˇ̄yiB2|2 “ ˇ
¯
y
iB2|2

“ 0. (D.18)

As the bounds coincide, the firm’s choice at t “ 2 at the path of interest is py̌iA2, y̌iB2q “ p0, 0q.

Additional steps. At this point in the algorithm, we have computed the firm’s optimal choice at
the path of interest for t ď 2. However, the step 1 bounds, described in equations (D.13) and
(D.14) differ at the path of interest at t “ 3. Our algorithm proceeds by trying to tighten these
bounds. To do so, we first implement a step 2 procedure analogous to the one just described, but
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Figure D.13: Lower-Bound Policies That Condition on Path at t “ 2 After Convergence
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now conditioning on the state of interest at t “ 3. To save space, we do not describe here how the
step 2 algorithm is applied at t “ 3. It suffices to say that it is not successful at tightening further
the bounds on the firm’s optimal choice at the state of interest at t “ 3. Thus, we proceed to the
extra steps described in Appendix D.1. Specifically, computing the firm’s choice at the state of
interest at t “ 3 requires solving jointly for the firm’s optimal choices in A and B at this period.

D.3 Performance of the Algorithm

We present here summary statistics of the performance of the algorithm described in Section 4 and
Appendix D.1. For all 4,709 firms in the sample, all 74 foreign countries we use in our estimation,
13 periods, and 5 simulation draws of ωijt for each i, j and t, we measure at the end of each step of
the algorithm the percentage of all 22,650,290 (4, 709ˆ74ˆ13ˆ5) choices solved and the cumulated
running time (measured at Princeton University’s Della cluster using 44 processors with 20 GB of
memory per processor).

The statistics in Table D.1 are computed setting all parameter values to the baseline estimates
reported in tables F.3 and F.4 in Appendix F.6. Step 1 of the algorithm (see Section 4) runs in
slightly over two minutes, and provides the solution to 99.72% of the 22,650,290 choices considered.
The 0.28% of choices that remain unsolved after step 1 are concentrated in a few countries but
dispersed across firms and simulation draws; thus, the number of firms and draws whose choices in
every country and period are solved in step 1 is only 78.51%.

Steps 2 and 3 increase the overall share of choices solved to 99.85%, and the share of firms and
draws whose choices are completely solved to 93.07%. This is attained with a small cost in terms
of computing time, as step 3 is completed after less than 4 minutes of running time. In steps 4 and
5, we solve optimization problems that consider multiple countries simultaneously. These steps are
the slowest ones: approximately 70% of the 741 seconds it takes to run completely our algorithm
are spent in steps 4 and 5. These steps are however useful at raising the share of choices solved to
nearly 99.9%, and the share of firms and simulations entirely solved to nearly 96%.

The choices that remain unsolved after step 5 is finished are concentrated in countries that
share cross-country complementarities with a large set of other potential export destinations. E.g.,
of all unsolved choices, nearly 7% are for Mexico, close to 6.5% are for Belgium, between 5% and
6% correspond to The Netherlands and Germany, and between 4% and 5% correspond to Sweden
and France. These are all countries that share deep PTA (or regulatory proximity) with a number
of other countries larger than the cardinality of the sets of destinations that we solve jointly in
steps 4 and 5 of our algorithm.
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Table D.1: Performance of Algorithm at Baseline Estimates

Percentage of Percentage of Time
Firms Solved Choices Solved (in seconds)

Step 1 78.51% 99.72% 131
Step 2 82.74% 99.75% 163
Step 3 93.07% 99.85% 218
Steps 4 & 5 95.80% 99.89% 741

In Table D.2, we present statistics analogous to those presented in the last row of Table D.1,
but for alternative parameterizations in which we change the value of the model parameters one
at a time. Specifically, we present results for parameterizations in which we increase in 20% the
value of the parameter indicated in the column labeled “Parameter,” leaving all other parameters
at their baseline estimates.

The results in Table D.2 show the performance of the algorithm improves (i.e., the percentage
of firms and simulations for which all choices are solved increases, and the running time decreases)
as we increase the value of those parameters that have a positive impact on the gravity component
of fixed and sunk costs; i.e., the parameters entering the expressions in equations (7) and (12).
Conversely, the performance of the algorithm worsens as we increase the value of the parameters
that have a positive impact on the magnitude of the complementarities between countries (i.e.,
pγEx , ϕ

E
x q for x “ tg, l, au), and improves as we increase the value of the parameters that determine

the speed at which the complementarities between any two countries decay in the distance between
them (i.e., κEx for x “ tg, l, au). The performance of the algorithm varies very little with the value
of the parameters that determine the cross-country correlation in the fixed cost shock νijt; i.e.,
the parameters entering the expression in equation (10c). Finally, when we increase the standard
deviation of νijt or the probability that ωijt equals

¯
ω “ 0 (i.e., when we increase σν or p), the

performance of the algorithm worsens.

Table D.2: Performance of Algorithm at Estimates 20% Higher than Baseline Ones

Parameter
Percentage of Time

Parameter
Percentage of Time

Firms Solved (in seconds) Firms Solved (in seconds)

γF0 97.18% 606 κEl 96.03% 703
γFg 97.25% 479 γEa 91.28% 1256
γFl 95.89% 710 ϕEa 94.70% 935
γFa 96.21% 628 κEa 96.35% 647
γS0 96.77% 582 γNg 95.67% 795
γSg 96.59% 569 κNg 95.86% 742
γSl 95.80% 719 γNl 95.67% 687
γSa 95.96% 692 κNl 95.83% 689
γEg 93.27% 1119 γNa 95.77% 702
ϕEg 93.59% 1070 κNa 95.81% 686
κEg 97.33% 479 σν 93.88% 841
γEl 95.52% 790 p 82.29% 2841
ϕEl 95.65% 749

Note: The Percentage of Firms Solved and Time are measured after step 5 of the algorithm has concluded.
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E General Problem: Mapping to Model and Proofs

E.1 Mapping Between Framework in Appendix A.1 and Model

We show in this section that, equating agents to firms and alternatives to potential export desti-
nations, the model described in Section 3 satisfies all restrictions in Assumption 1.

As part of the first restriction, equation (A.4) assumes agents maximize the expected infinite-
horizon discounted sum of a sequence of static payoffs that exhibit one-period dependence. Equation
(A.5) restricts these payoffs to be additively separable across alternatives and, in every alternative
j, additively separable in the vector of shocks ωpztq and in the vector of choices in every alternative
other than j. Finally, the restriction that the domain of the functions π̂jt and π̃jt is finite and
that these never equal infinity in their domain implies both π̂jt and π̃jt are bounded from above.
Additionally, π̃jt is also bounded from below.

Our model satisfies the first restriction in Assumption 1. Specifically, equation (A.4) is satisfied
as equation (17) implies firms maximize the infinite-horizon expected discounted sum of static
profits. Equation (A.5) is also satisfied as equations (13) to (15) imply that model-implied static
profits are

πtpypz
tq, ypzt´1q, ωpztqq “

J
ÿ

j“1

tyjpz
tqujtpyjpz

t´1q, ωjpz
tqq `

J
ÿ

j1“1

yjpz
tqyj1pz

tqcjj1tu, (E.1)

where ωpztq equals a vector pω1pz
tq, . . . , ωJpz

tqq, cjj1t is defined in equation (9) for j1 ‰ j (with
cjjt “ 0), and ujt is defined in equation (14). Static profits may thus be written as in equation
(A.5) with

π̂jtpyjpz
tq, yjpz

t´1q, ωpztqq “ yjpz
tqpη´1 exppαyyjpz

t´1q ` αjt ` αs ` αa lnpasjtq ` αr lnprihtqq

´ pgjt ` νijt ` ωjpz
tqq ´ p1´ yjpz

t´1qqsjtq, (E.2a)

π̃jtpypz
tq, ypzt´1qq “

J
ÿ

j1“1

yjpz
tqyj1pz

tqcjj1t. (E.2b)

Finally, these model-implied functions π̂jt and π̃jt satisfy the restrictions on their domain and range
imposed in Assumption 1. Specifically, as yjpz

tq P t0, 1u, yjpz
t´1q P t0, 1u and ωjpz

tq P t0,8u for
all j and t, π̂jt and π̃jt are bounded from above for any realization of νjt as long as the parameter
space is finite.24

The second restriction in Assumption 1 imposes the function πt is supermodular on the sets of
choices at t ´ 1 and t. As these sets are finite, Corollary 2.6.1 in Topkis (1998) implies one can
prove πt is supermodular by proving it has increasing differences in ypztq and ypzt´1q. For any
alternative j and period t, we denote as Djt the change in πt when changing the value of the choice
in j at t, yjt, from zero to one. Given equations (E.1) and (E.2), the expression for Djt in the
model described in Section 3 is

Djt “ η´1 exppαyyjpz
t´1q ` αjt ` αs ` αa lnpasjtq ` αr lnprhtqq

´ pgjt ` νjt ` ωjpz
tqq ´ p1´ yjpz

t´1qqsjt `
ÿ

j1‰j

yj1pz
tqpcjj1t ` cj1jtq.

24As equation (E.2a) shows, the model-implied function π̂jt depends on ωpztq only through a scalar ωjpz
tq.

While this is not relevant for the algorithm’s theoretical properties (and, thus, is not imposed in Assumption
1), it is critical for its computational tractability.
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Since αy ě 0 and sjt ě 0 for every j and t, Djt is increasing in yjpz
t´1q. Since cjj1t ě 0 for any

j, j1, and t, Djt is also increasing in tyj1pz
tquj1‰j . Finally, Djt is invariant to yj1pz

t´1q if j1 ‰ j.
Thus, πt has increasing differences on the sets of export choices at t ´ 1 and t and, consequently,
πt is supermodular on these sets. The second restriction in Assumption 1 is thus satisfied by the
model described in Section 3.

The third restriction in Assumption 1 imposes that there exists a feasible strategy such that, if
chosen by the agent, the functions tπ̂jtuj entering static profits are bounded from below no matter
the value of the shock ωt. In the model in Section 3, not exporting to country j ensures π̂jt equals
zero; i.e., π̂jtp0, x, ωq “ 0 for any x P t0, 1u and ω P Ωt. Thus, the third restriction in Assumption
1 is satisfied.

The fourth restriction imposes Ωt is finite and the sequence of shocks tωjtutě0 is Markovian. In
the model in Section 3, Ωt includes only two elements and ωt is independent over time (see equation
(11)); thus, this fourth restriction is satisfied.

Finally, the fifth restriction imposes that the firm’s problem becomes stationary after a terminal
period T ; i.e., the functions tπ̂jtuj and tπ̃jtuj , the distribution of ωt, and the set Ωt become constant
at T . In the model described in Section 3, Ωt and the distribution of ωt are time-invariant, and
the functions π̂jt and π̃jt become constant at T for every country j. Thus, the fifth restriction in
Assumption 1 is satisfied.

E.2 Proof of Theorem 1: Preliminary Results

We prove here two preliminary results that we use in Appendix E.3 as part of the proof of Theorem 1.
First, we show that restrictions 1 and 2 in Assumption 1 imply that the solution to the optimization
problem in equation (A.6) for any given set of alternatives Mu is increasing in the second argument
of the objective function Π0; i.e., increasing in the upper bounds on the firm’s optimal choice in
every alternative not in Mu. Second, we show restrictions 1 and 3 to 5 in Assumption 1 imply there
exists a solution to the optimization problem in equation (A.6), and that it attains the maximum.
Additionally, we provide an algorithm to compute this solution. Finally, as a corollary, we show
the solution of the optimization problem in equation (A.2) exists and the maximum is attained.

In our proofs, we use Lemma 2.6.1 and Theorem 2.8.1 in Topkis (1998), which we re-state here.

Lemma E.1 (Topkis, 1998, Lemma 2.6.1) Suppose X is a lattice. Then,

1. If fpxq is supermodular on X and α ą 0, then αfpxq is supermodular on X.

2. If fpxq and gpxq are supermodular on X, then fpxq ` gpxq is supermodular on X.

3. If fkpxq is supermodular on X for k “ 1, 2, . . . and limkÑ8 fkpxq “ fpxq for each x P X,
then fpxq is supermodular on X.

Theorem E.1 (Topkis, 1998, Theorem 2.8.1) If X is a lattice, T is a partially ordered set, St is a
subset of X for each t in T , St is increasing in t on T , fpx, tq is supermodular in x on X for each t
in T , and fpx, tq has increasing differences in px, tq on X ˆT , then argmaxxPStfpx, tq is increasing
in t on tt : t P T, argmaxxPStfpx, tq is non-emptyu.

E.2.1 First Preliminary Result

We prove here that, for any set of alternatives Mu and iteration n, if it exists, the solution ō
pnq
Mu

to
the optimization problem in equation (A.6) is increasing in the set of upper bounds on alternatives
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not in Mu; i.e., the solution to the optimization problem in equation (A.6) is increasing in

ȳ
pnq
Mc
u
“ tȳ

pnq
Mc
u
pztqu8t“0,ztPZt , with ȳ

pnq
Mc
u
pztq ě oMc

u
pztq for all t ě 0 and zt P Zt.

The proof has two steps. First, we show the agent’s objective function according to equation (A.2),
Π0pyq, is supermodular in y on Y ; see equation (A.1) for the definition of Y . Second, we show this
implies that the solution to the optimization problem in equation (A.6) is increasing in the set of
upper bounds on alternatives not in Mu.

Lemma E.2 Assumption 1 implies Π0pyq is supermodular in y on Y .

Proof. The second restriction in Assumption 1 in Appendix A.1 states that, for every period t and
every feasible history zt, πtpypz

tq, ypzt´1q, ωpztqq is supermodular in pypztq, ypzt´1qq on t0, 1uJ ˆ
t0, 1uJ . Define π̌tpy, z

tq “ πtpypz
tq, ypzt´1q, ωpztqq, where, as indicated in Appendix A.1, y is a

generic vector of agent choices at every history zt P Zt and every period t ě 0. Therefore, π̌tp¨q
is identical to πtp¨q, but written as a function of the whole vector of choices in every period and
feasible history.

First, we show π̌tpy, z
tq is supermodular in y. Specifically, we show that, for all y1 P Y and

y2 P Y , it holds π̌tpy
1, ztq ` π̌tpy

2, ztq ď π̌tpy
1 _ y2, ztq ` π̌tpy

1 ^ y2, ztq, where the “join” _ takes
the maximum element by element, and the “meet” ^ takes the minimum element by element. To
prove this result, note that

π̌tpy
1, ztq ` π̌tpy

2, ztq “ πtpy
1pztq, y1pzt´1q, ωpztqq ` πtpy

2pztq, y2pzt´1q, ωpztqq

ď πtpy
1pztq _ y2pztq, y1pzt´1q _ y2pzt´1q, ωpztqq

` πtpy
1pztq ^ y2pztq, y1pzt´1q ^ y2pzt´1q, ωpztqq

“ π̌tpy
1 _ y2, ztq ` π̌tpy

1 ^ y2, ztq,

where the two equalities follow from the relationship between the functions πt and π̌t, and the in-
equality follows from the supermodularity of πtpy

1pztq, y1pzt´1q, ωpztqq in typztq, ypzt´1qu on t0, 1uJˆ
t0, 1uJ .

Second, we define a function Πτ
0pyq as the expected discounted sum of static profits between

periods t “ 0 and t “ τ , and show that the supermodularity of π̌tpy, z
tq in y on Y implies Πτ

0pyq is
supermodular in y on Y . As the set Ωt is finite for every period t (see restriction 4 in Assumption
1), we can write

Πτ
0pyq “ π0pypz

0q, 0J , ωpz
0qq `

τ
ÿ

t“1

ÿ

ztPZt

δtπtpypz
tq, ypzt´1q, ωpztqqPrpztq,

“ π̌0py, z
0q `

τ
ÿ

t“1

ÿ

ztPZt

δtπ̌tpy, z
tqPrpztq.

Since π̌tpy, z
tq is supermodular in y on Y for every period t and history zt, and the finite sum of

supermodular functions is supermodular (see part 2 of Lemma E.1), then Πτ
0pyq is supermodular

in y on Y .
Finally, noting restriction 1 in Assumption 1 implies Π0pyq “ limτÑ8Πτ

0pyq, we apply part 3 in
Lemma E.1 to conclude that the supermodularity of Πτ

0pyq in y on Y implies Π0pyq is supermodular
in y on Y . �
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Lemma E.3 Assumption 1 implies that, for every set of alternatives Mu and every iteration n of
the algorithm described in Appendix A.2, if the solution to the optimization problem in equation
(A.6) exists, it is increasing in the export strategy in every alternative not in Mu.

Proof. This lemma states that, if it exists, ō
pnq
Mu

is increasing in ȳ
pnq
Mu

. This lemma is implied by
Theorem E.1 and the supermodularity of Πpyq in y on Y . �

E.2.2 Second Preliminary Result

We prove here that, for every subset of alternatives Mu and iteration n, the solution ō
pnq
Mu

to the
optimization problem in equation (A.6) exists and the maximum is attained. Specifically, Lemma
E.4 below establishes the existence of the solution to the problem in equation (A.6), and that the
maximum is attained, for every t ě T ; that, is, for all periods after the terminal period T , when
the problem of the firm becomes stationary according to the restriction 5 in Assumption 1. Given
Lemma E.4, establishing the existence of the solution to the problem in equation (A.6), and that
the maximum is attained, for every 0 ď t ă T is straightforward by backward induction, as there
are a finite number of feasible choices.

For any set of alternatives Mu and any vector b̄Mc
u
P t0, 1uJ´Ju , we define the firm’s expected

discounted sum of static payoffs at T conditional on setting ȳMc
u
pztq “ b̄Mc

u
for all t ě T and all

zt P Zt as

ΠT

`

yMu
, b̄Mc

u
, ypzT´1q, ωpzT q

˘

“ πT
`

pyMupz
T q, b̄Mc

u
q, pyMupz

T´1q, yMc
u
pzT´1qq, ωpzT q

˘

`

8
ÿ

t“T`1

δt´TET
”

πT
`

pyMupz
tq, b̄Mc

u
q, pyMupz

t´1q, b̄Mc
u
q, ωpztq

˘

ı

,

where πT p¨q equals the payoff function in equation (A.5) for t “ T , ypzT´1q “ pyMupz
T´1q, yMc

u
pzT´1qq,

and yMu
includes a generic set of choices for all alternatives in Mu, all t ě T , and all zt P Zt. We

can then define the period-T value function

VTMu

`

b̄Mc
u
, ypzT´1q, ωpzT q

˘

“ sup
yMu

ΠT

`

yMu
, b̄Mc

u
, ypzT´1q, ωpzT q

˘

. (E.3)

Lemma E.4 For any set of alternatives Mu and any vector b̄Mc
u
P t0, 1uJ´Ju, Assumption 1 implies

the solution to the problem in equation (E.3) exists and the maximum is attained.

Proof. For any set of alternatives Mu and any vector b̄Mc
u
P t0, 1uJ´Ju , we define the payoff function

Π̌T

`

yMu
,b̄Mc

u
, ypzT´1q, ωpzT q

˘

“

ÿ

jPMu

π̂jT
`

yjpz
T q, yjpz

T´1q, ωpzT q
˘

`

J
ÿ

j“1

π̃jT
`

pyMupz
T q, b̄Mc

u
q, pyMupz

T´1q, yMc
u
pzT´1qq

˘

`

8
ÿ

t“T`1

δt´TET
”

ÿ

jPMu

π̂jT
`

yjpz
tq, yjpz

t´1q, ωpztq
˘

`

J
ÿ

j“1

π̃jT
`

pyMupz
tq, b̄Mc

u
q, pyMupz

t´1q, b̄Mc
u
q
˘

ı

,

and the associated value function

V̌TMu

`

b̄Mc
u
, ypzT´1q, ωpzT q

˘

“ sup
yMu

Π̌T

`

yMu
, b̄Mc

u
, ypzT´1q, ωpzT q

˘

. (E.4)
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The function Π̌T p¨q differs from ΠT p¨q in that Π̌T p¨q only includes those terms entering ΠT p¨q that
depend on yMu

. Thus, Π̌T p¨q and ΠT p¨q differ in a term that is invariant to the choice of yMu
and,

consequently, a vector yMu
will solve the optimization problem in equation (E.4) if and only if it

also solves the optimization problem in equation (E.3).
Restriction 1 in Assumption 1 implies the functions π̂jT p¨q and π̃jT p¨q are bounded from above.

As δ ă 1, we can then conclude that the value function V̌TMup¨q in equation (E.4) is bounded from
above. Restriction 3 in Assumption 1 implies there is a feasible value of the choice vector yMu

such
that π̂jT p¨q is bounded from below for all j PMu. As restriction 1 in Assumption 1 also implies that
the function π̃jT p¨q is bounded from below, we can then conclude that the value function V̌TMup¨q

in equation (E.4) is bounded from below. In sum, restrictions 1 and 3 in Assumption 1 imply that
V̌TMup¨q is bounded from above and from below.

Theorem 4.2 in Stokey et al. (1989) implies we can write V̌TMup¨q as the solution to the following
functional equation,

V̌TMupb̄Mc
u
, pyMu , yMc

u
q, ωq “

sup
y1Mu

!

ÿ

jPMu

π̂jT py
1
j , yj , ωq `

J
ÿ

j“1

π̃jT
`

py1Mu
, b̄Mc

u
q, pyMu , yMc

u
q
˘˘

` δE
“

V̌TMupb̄Mc
u
, py1Mu

, b̄Mc
u
q, ωq

‰

)

(E.5)

Since V̌TMup¨q is bounded from above and from below, equation (E.5) maps bounded functions
into bounded functions. Additionally, it also satisfies the monotonicity and discounting properties
of Blackwell’s sufficient conditions for a contraction of modulus δ. Therefore, there is a unique
bounded function V̌TMup¨q that solves the problem in equation (E.5); see Theorem 3.3 in Stokey
et al. (1989). Since the solution to the problem in equation (E.5) is unique, then it must also
be a solution to the sequence problem in equation (E.4). Furthermore, as the solution to the
sequence problems in equations (E.3) and (E.4) coincide, we can conclude that the solution to the
optimization problem in equation (E.3) exists. Finally, as the choice variable y1Mu

in equation (E.5)
may only take finitely many values, the maximum is attained. �

Lemma E.5 Assumption 1 implies the solution to the problem in equation (A.2) exists and the
maximum is attained.

Proof. It is an implication of Lemma E.4 when applied to the specific set Mu that includes all
possible alternatives; i.e., Mu “ t1, . . . , Ju. �

E.3 Proof of Theorem 1

E.3.1 Proof of Part 1 of Theorem 1

We prove part 1 of Theorem 1 by induction.

As the base case, note that, according to equation (A.8), b̄
p1q
jt “ 1 for all j “ 1, . . . , J and,

therefore,

b̄
pnq
jt ě ojpz

tq for n “ 1, j “ 1, . . . , J , t ě 0, and zt P Zt.

As the step case, suppose that, for some arbitrary n, b̄
pnq
jt ě ojpz

tq for all j “ 1, . . . , J , t ě 0,
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and zt P Zt. For any group of alternatives Mu, denote as

b̄
pnq
Mu

the vector that assigns the value of b̄
pnq
jt to every alternative j in Mu, every t ě 0, and every zt P Zt;

i.e.,

b̄
pnq
Mu
“ tȳ

pnq
j pztqu8t“0,ztPZt,jPMu

, with ȳ
pnq
j pztq “ b̄

pnq
jt for all t ě 0, all j PMu, and all zt P Zt.

Thus, b̄
pnq
Mu
ě oMu , where oMu is the vector containing the agent’s optimal choice for every j PMu,

every t ě 0, and every zt P Zt. For any alternative j and period t, equations (A.6) and (A.9)
further imply that

b̄
pn`1q
jt “ max

ztPZt
ō
pnq
j pztq,

where, for a set Mu including alternative j, ō
pnq
j pztq is the corresponding element of ō

pnq
Mu

, defined
as

ō
pnq
Mu
“ argmax

yMuPYMu

Π0pyMu
, b̄
pnq
Mc
u
q.

To prove that b̄
pn`1q
jt ě ojpz

tq for all j “ 1, . . . , J , t ě 0, and zt P Zt, it is thus enough to prove that

ō
pnq
Mu
ě oMu . (E.6)

For any group of destinations Mu, we can write oMu as

oMu “ argmax
yMuPYMu

Π0pyMu
,oMc

u
q. (E.7)

Lemma E.4 implies ō
pnq
Mu

and oMu exist, and Lemma E.3 implies ō
pnq
Mu
ě oMu . Thus, it holds that

b̄
pn`1q
jt ě ojpz

tq,

for all j “ 1, . . . , J , t ě 0, and zt P Zt. �

E.3.2 Proof of Part 2 of Theorem 1

We prove part 2 of Theorem 1 by induction.

As base case, note that equation (A.8) implies b̄
p1q
jt “ 1 for every alternative j and period t. As,

naturally,

ō
p1q
j pz

tq P t0, 1u

for every alternative j, period t ě 0, and history zt P Zt, it must be the case that b̄
p2q
jt , defined

according to equation (A.9), is also either 0 or 1 for every alternative j and period t. Consequently,

b̄
p2q
jt ď b̄

p1q
jt , for all j “ 1, . . . , J and t ě 0.
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As the step case, suppose that, for some arbitrary n, b̄
pnq
jt ď b̄

pn´1q
jt for all j “ 1, . . . , J and t ě 0.

Given the definition of ȳ
pnq
Mu

in equation (A.7), it is then the case that, for any set of alternatives
Mu, it holds that

y
pnq
Mu
ď y

pn´1q
Mu

. (E.8)

Given the definition of ō
pnq
Mu

in equation (A.6), Lemma E.4 guarantees ō
pnq
Mu

and ō
pn´1q
Mu

exist. Given
equations (A.6) and (E.8), Lemma E.3 implies that

ō
pnq
Mu
ď ō

pn´1q
Mu

.

Since, according to equation (A.9), b̄
pn`1q
jt “ maxztPZt ō

pnq
j pztq for every t, j, and zt, it then holds

that

b̄
pn`1q
jt ď b̄

pnq
jt ,

for all j “ 1, . . . , J , t ě 0, and zt P Zt. �

E.3.3 Proof of Part 3 of Theorem 1

As shown in the proof of Lemma E.4, Assumption 1 implies that, for any arbitrary iteration n,

b̄
pnq
jt “ b̄

pnq
jT for every alternative j and period t ě T ; this is a consequence of the agent’s optimization

problem becoming stationary after period T . Therefore, we can summarize the infinite set of upper
bounds

tb̄
pnq
jt u

J
j“1,těT

in a vector that belongs to the set t0, 1uJ ; i.e., in a vector with a finite number of coordinates. For
every period t ă T and an arbitrary iteration n, it is the case that

b̄
pnq
jt P t0, 1u

J .

Therefore, for any arbitrary iteration, computing the full set of upper-bounds tb̄
pnq
jt u

J
j“1,tě0 implies

computing the value of pT ` 1qJ unknowns, each of whom may equal either 0 or 1.
Part 2 of Theorem 1 indicates that, at every iteration n, the value of each of these upper bounds

either decreases or remains constant. As there is a finite number pT `1qJ of upper bounds to solve
for at each iteration n, and each of these upper bounds may equal either 0 or 1 (i.e., they are
bounded from below by 0), it must then be the case that these bounds converge in a finite number
of steps.
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F Estimation: Additional Details

F.1 Identification of Cross-Country Complementarities: Details

Consider a simplified version of the model described in Section 3 in which we impose the following
restrictions. First, there are only three foreign countries. Second, in terms of the parameters
entering the expression for potential export revenues in equation (5), assume that αy “ αa “ αr “ 0,
αs “ 0 for every s, and, for every period t, α1t “ α2t “ ᾱ “ 1.05 and α3t “ α3 “ 1.15. Third, in
terms of the fixed export costs determined in equations (6) to (11), assume that

fi1t “ γF0 ` νi1t ` ωi1t,

fi2t “ γF0 ´ yi3tc̄` νi2t ` ωi2t,

fi3t “ γF0 ´ yi2tc̄` νi3t ` ωi3t,

with γF0 “ 80, νijt drawn according to the distribution in equation (10) with σν “ 80 and, for all t,

ρ12t “ ρ13t “ 0, and ρ23t “ ρ̄,

and ωijt drawn according to the distribution in equation (11) with p “ 0.7. Fourth, in terms of the
sunk cost in equation (12), assume that, for every j P t1, 2, 3u and period t, sjt “ γ0

s “ 120.
In this setting, we first show how the values of the moments m1 and m2 in equation (25) change

as we change the value of the parameter determining the strength of the complementarities between
countries 2 and 3 (i.e., c̄), and the correlation coefficient in νijt between countries 2 and 3 (i.e., ρ̄).
To do so, given values of pc̄, ρ̄q, we simulate the model for 500 simulations of each of the 4,709 firms
in our sample, set T “ 120 and, to obtain results robust to initial conditions and the value of T ,
compute m1 and m2 using the information on yijt only for periods 50 ď t ď 64.

In Table F.1, we compute m1 and m2 for four different values of pc̄, ρ̄q. When setting pc̄, ρ̄q “
p0, 0q, we obtain m1 “ m2 “ 0. As countries 1 and 2 are identical in every respect except in their
potential complementarities with country 3, export probabilities in both countries must be equal
when the parameter that determines the strength of those complementarities is set to 0; i.e., when
c̄ “ 0. Similarly, as all firms are identical in every respect except in the fixed cost unobserved terms
νijt and ωijt, the within-firm covariance in export choices in countries 2 and 3 will equal zero when
the correlation in these unobserved terms for these two countries is zero; i.e., when ρ̄ “ 0.

In the second row in Table F.1, we study a case with complementarities between countries
2 and 3; specifically, we set c̄ “ 30. These complementarities increase the export probability in
country 2 (and in country 3), while they do not affect the export probability in country 1 (as
country 1 is isolated from any other potential export destination); therefore, m1 increases as c̄
increases. As c̄ ą 0, firms enjoy a reduction in fixed costs in country 2 if and only if they export
in the same period to country 3 (and vice versa); thus, an increase in c̄ makes firms more likely to
simultaneously export to countries 2 and 3 and, consequently, m2 also increases as c̄ increases.

In the third row in Table F.1, we study a case in which νijt is positively correlated in countries
2 and 3; specifically, we set ρ̄ “ 0.8. When there are no cross-country complementarities, the
within-firm correlation in fixed costs in countries 2 and 3 does not affect the (marginal) export
probability in any country; thus, m1 does not depend on the value of ρ̄ when c̄ “ 0. However, the
within-firm positive correlation in fixed costs in countries 2 and 3 increases the probability that
firms export simultaneously to those countries; thus, m2 increases in the value of ρ̄ when c̄ “ 0.

In the fourth row in Table F.1, we set c̄ and ρ̄ to positive values. When comparing the results
in the second and fourth rows, we observe that introducing a positive correlation in νijt between
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countries 2 and 3 in a setting with cross-country complementarities (i.e., when c̄ ą 0) affects not
only the probability firms export simultaneously to countries 2 and 3 (i.e., the value of m2) but
also the difference in the export probabilities to countries 2 and 3 (i.e., the value of m1).

In unreported results, we observe that the patterns in Table F.1 hold when we change the values
of c̄ and ρ̄ between different numbers, and when we set the size of country 3, α3, to different values.

Table F.1: Impact of Complementarities and Correlation in Unobservables on Moments

Parameters Moments

c̄ ρ̄ Eryi2t ´ yi1ts Cryi2t, yi3ts

0 0 0 0
Positive 0 0.15 0.05

0 Positive 0 0.02
Positive Positive 0.17 0.07

Note: by the label “Positive” in the first column, we denote
cases in which c̄ “ 30. By the label “Positive” in the second
column, we denote cases in which ρ̄ “ 0.8.

In Figure F.1, we perform a different exercise that more directly illustrates the capacity of m1

and m2 to identify the parameters c̄ and ρ̄. We simulate data from a “true” model in which we
set α3 “ ᾱ, c̄ “ 15, and ρ̄ “ 0.4, and we then compare how the values of moments m1 and m2

corresponding to the “true” model compare to those generated under alternative values of c̄ and ρ̄.
More specifically, the green dot represents the true values of c̄ and ρ̄, and the blue and orange lines
represent all values of pc̄, ρ̄q for which m1 and m2, respectively, equal their respective values in the
“true” model. The slope of the orange line, e.g., shows we can keep moment m2 at its true value as
we increase the value of the parameter ρ̄ if we simultaneously decrease the value of the parameter
c̄. The blue line indicates the same is true for moment m1. Thus, neither moment alone allows
to identify the parameter vector pρ̄, c̄q, but the fact that the orange and blue lines have different
slopes implies that both moments jointly identify pρ̄, c̄q.

In unreported results, we observe the patterns in Figure F.1 hold when we change the values of
c̄ and ρ̄ between different numbers, and when we set the size of country 3, α3, to different values.

Figure F.1: Impact of Complementarities and Correlation in Unobservables on Moments

Notes: The axis labeled “Correlation in Unobservables” includes values of the parameter ρ̄. The axis
labeled “Cross-country Complementarities” includes values of the parameter c̄. The green dot represents
the true values of the parameters c̄ and ρ̄; i.e., pc̄, ρ̄q “ p15, 0.4q. The blue and orange lines represent all
values of pc̄, ρ̄q for which m1 and m2, respectively, equal their respective values in the “true” model.
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F.2 Export Potential Measures

We define export potential in Appendix F.2.1. In Appendix F.2.2, we present summary statistics
on the gravity equation estimates used to compute these export potentials, on the resulting ex-
port potential measures, and on the aggregate export potential of the countries geographically or
linguistically close to each destination j, or that share a deep PTA with it. In Appendix F.2.3,
we present reduced-form evidence showing firm export choices in a destination correlate with the
aggregate export potential of the other countries that are geographically or linguistically close to
it, or that share a deep PTA with it.

F.2.1 Definiton and Estimation of Export Potential Measures

We use country-to-country sector-specific trade flows, and the distance measures in Section 2, to
compute measures of the export potential of Costa Rica in each sector, destination and year.25

Specifically, we first compute Poisson pseudo-maximum-likelihood estimates of the parameters of
the gravity equation

Xs
odt “ exppΨs

ot ` Ξsdt ` λ
s
gn

g
od ` λ

s
ln
l
od ` λ

s
an

a
odtq ` u

s
odt, (F.1)

where Xs
odt denotes the export volume from origin o to destination d in sector s and year t; Ψs

ot and
Ξsdt are sector-origin-year and sector-destination-year unobserved effects, respectively; ngod, n

l
od, and

naodt are the distance measures described in Section 2; λsg, λ
s
l , and λsl are sector-specific parameters;

and usodt is an unobserved term. Denoting parameter estimates with a hat, we measure Costa Rica’s
export potential in a sector s, destination j, and year t as

Esjt “ exppΞ̂sjt ` λ̂
s
gn

g
hj ` λ̂

s
ln
l
hj ` λ̂

s
an

a
hjtq, (F.2)

where nghj , n
l
hj , and nahjt denote distances between Costa Rica and country j.26

F.2.2 Gravity-Equation Estimates and Export Potential Measures: Statistics

In Figure F.2, we include boxplots summarizing the distribution across sectors of the parameter
estimates λ̂sg (in green), λ̂sl (in orange), and λ̂sa (in blue). The estimates of λsg are negative for
all sectors and centered around ´1. The estimates of λsl and λsa are also nearly always negative,
although they tend to be smaller in absolute value than the estimates of λsg.

In Figure F.3, we present boxplots summarizing the distribution across sectors and years of the
export potential measures Esjt for the ten destination countries with the largest (in Figure F.3a) and
smallest (in Figure F.3b) mean export potentials. The US is the country with the largest mean value
of Esjt. The distribution of Esjt for the US is actually distinctively different from that corresponding
to all other destinations, with the first quartile of the distribution for the US being similar to the
third quartile of the distribution of export potentials in Mexico, which is the country with the
second largest mean export potential. Other destinations with large mean export potentials are

25The BACI data by CEPII reports country-to-country trade flows at the HS-6 level; see Gaulier and
Zignago (2010) for details. Using a concordance provided by WITS (https://wits.worldbank.org/
product_concordance.html), we aggregate this product-level data to generate sector-level flows, with
sectors defined at the four-digit level according to ISIC Rev. 3. We use a concordance provided by
UNSD (https://unstats.un.org/unsd/classifications/Econ/ISIC.cshtml) to further convert the data
to four-digit sectors defined according to the ISIC Rev. 4.

26When estimating equation (F.1), we exclude observations in which Costa Rica is the origin or destination.
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Figure F.2: Estimates of Gravity Equation Parameters
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Notes: These boxplots represent the distribution of λ̂sg (geographic), λ̂sl (linguistic) and λ̂sa
(regulatory) across sectors.

countries that are geographically or linguistically close to Costa Rica (e.g., Panama, Colombia,
Venezuela, Spain), or countries that are large importers (e.g., Canada, Germany, Brazil, China).
As Figure F.3b shows, the ten destination countries with the smallest mean export potentials (e.g.,
Bhutan, the Central African Republic, Seychelles, or Burundi) are all small, distant from Costa
Rica geographically and linguistically, and do not share any PTA with Costa Rica.

Figure F.3: Export Potential - Distributions by Country for Top 10 Destinations
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Notes: These boxplots summarize the distribution of Esjt (see equation (F.2)) for the 10 destination
countries with the largest (Figure F.3a) and smallest (Figure F.3b) mean export potentials, where the
mean is computed across sectors and years in the period 2005-2015. Countries are listed according to
their alpha-3 ISO code.

In Figure F.4, we show a map displaying, for each country j, the mean value of Esjt across the
sectors and years in the sample. Most countries in North, Central, and South America, and in
Europe, are in the top three deciles. Also in the top three deciles are Australia, Russia, China
and India. On the contrary, most countries in Africa, several in South Asia, and the former Soviet
republics are in the bottom deciles.
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Figure F.4: Mean Export Potential by Destination Country

10th Decile
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No data

Notes: Map of the mean (across sectors and years in the period 2005-2015) Esjt by country.

For each foreign country j, sector s, and year t, we use the export potential measures Esjt of
countries other than j to construct the aggregate export potential of the countries geographically or
linguistically close to j, or that share a deep PTA with it. Denoting the aggregate export potential
of the countries that, e.g., are geographically close to a destination j as AEsjt,g, we compute it
as the sum of the sector- and year-specific export potentials of all countries whose geographical
distance to j is smaller than some threshold n̄g:

AEsjt,g “
ÿ

j1‰j

1tngjj1 ď n̄guE
s
j1t. (F.3)

We build similar measures for countries linguistically close to j, or cosignatories of a deep PTA
with j, denoted respectively as AEsjt,l and AEsjt,a. We use as thresholds n̄g “ 0.79, n̄l “ 0.11, or
n̄a “ 0.43.

We describe in Figure F.5 the mean (across sectors and years in the period 2005-2015) value of
AEsjt,g (panel (a)), AEsjt,l (panel (b)), and AEsjt,a (panel (c)), for every destination in the sample.

Our measure of the geographical distance between any two countries j and j1 is a weighted
average of the distances between cities located in j and j1. Large countries thus tend to be ge-
ographically isolated. This explains why the US, Canada, Russia, or China have a zero value of
AEsjt,g; these countries have no other country with whom their bilateral geographic distance is be-
low the threshold of 790 km we use in this figure to classify two countries as neighbors. Conversely,
as illustrated in Figure F.5a, countries located in Central America and in Central Europe have
many neighbors with relatively large export potentials. Thus, their value of AEsjt,g is large. The
aggregate export potential of neighbors is smaller for countries in Africa (which tend to have many
neighbors, but small in terms of their own export potential).

The map in Figure F.5b shows that countries with a large share of Spanish speakers (Spain
and several countries in South and Central America) and countries with a large share of English
speakers (countries such as Australia and the UK, in which English is an official language, but also
countries in which English is not an official language such as Germany or Denmark) exhibit large
values of AEsjt,l.

Finally, Figure F.5c shows that countries in the EU, NAFTA or CAFTA, and countries that
have deep PTAs with these blocs (e.g., Morocco and Australia) have large values of AEsjt,a.
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Figure F.5: Aggregate Export Potential Measures
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(c) Based on Common Membership in a Deep PTA
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Notes: Each panel displays the mean (across sectors and sample years) for each foreign country of the
aggregate export potential measures AEsjt,g (panel (a)), AEsjt,l (panel (b)), and AEsjt,a (panel (c)).
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F.2.3 Correlation Between Export Potential Measures and Export Choices

As illustrated in Section 5.2.1, if geographical or linguistic proximity, or common participation in
a deep PTA, are a source of cross-country complementarities in export participation decisions, a
firm’s export probability in a country j and year t will, all else equal, increase in the aggregate
market size of the countries geographically or linguistically close to j, or that share a deep PTA
with it. To test this implication, we use the aggregate export potential measures introduced above
as proxy for the aggregate market size of the countries close to j, and compute OLS estimates of a
regression of a dummy variable that equals one if firm i exports to country j in year t on flexible
functions of country j’s log export potential (introduced only as a control variable) and the log of
the aggregate export potential of the countries geographically or linguistically close to j, or that
share a deep PTA with it. Specifically, given the estimating equation

yijt “ hoplnpEsjtqq `
ÿ

x“tg,l,au

1tAEsjt,x ą 0uhxplnpAE
s
jt,xqq ` βit ` uijt, (F.4)

where hxp¨q for x “ to, g, l, au are cubic splines, and βit is a firm-year fixed effect, panels (a) to (d)
in Figure F.6 respectively show OLS estimates of the functions hop¨q, hgp¨q, hlp¨q, and hap¨q.

Figure F.6: Impact of Own and Neighbors’ Export Potential

(a) Own - hop¨q (b) Neighbors - Geography - hgp¨q

(c) Neighbors - Language - hlp¨q (d) Neighbors - Deep PTA - hap¨q

Notes: Panels (a), (b), (c), and (d) show the point estimate and 95% confidence intervals for the cubic
splines hop¨q, hgp¨q, hlp¨q, and hap¨q, respectively. The marks p25, p50, p75, and p90 correspond to the
25th, 50th, 75th, and 90th percentiles of the corresponding covariate; i.e., Esjt for panel (a), AEsjt,g for
panel (b), AEsjt,l for panel (c), and AEsjt,a for panel (d). Standard errors are clustered by country.

The estimates in Figure F.6 imply that the effect of a country’s own export potential as well
as the effect of the aggregate export potential of a country’s neighbors is highly non-linear, with
effects being generally not statistically different from zero until we reach the destination that is
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at the 75th percentile of the distribution of the corresponding variable. From the 75th percentile
onwards, the firm’s export probability in a destination increases in the destination’s own export
potential and in the aggregate export potential of the countries close to it.

F.3 List of Moment Conditions

As discussed in Section 5.2, our SMM estimator uses moments that take the form

1

M

M
ÿ

i“1

 

mkpy
obs
i , zi, xq ´

1

S

S
ÿ

i“1

mkpy
s
i pθq, zi, xq

(

“ 0, (F.5)

where yobsi includes the observed firm i’s export participation decisions in every country j and in
every sample period t in which the firm is active; zi includes all observed payoff-relevant variables
and all estimates computed in the first step of our estimation procedure (see Section 5.1); x in-
cludes the export potential measures in equation (F.2) for all foreign countries and sample periods;
and ysi pθq includes all model-implied export participation decisions for given values of zi and the
parameter vector θ, and a draw χsi from the distribution of χi conditional on zi. Specifically, we
can write zi, x, and χi as

zi ” pα̂y, α̂a, α̂r, β̂α, ρ̂α, σ̂α, β̂r, ρ̂r, σ̂r, tα̂jtu
J,t̄
j“1,t“

¯
t, α̂s, trihtu

t̄
t“ti , tastu

t̄
t“

¯
t, tpn

g
jj1 , n

l
jj1qu

J,J
j“1,j1“1,

tnajj1tu
J,J,t̄
j“1,j1“1,t“

¯
t, tpn

g
hj , n

l
hjqu

J
j“1, tn

a
hjtu

J,t̄
j“1,t“

¯
tq,

x “ tEsjtu
J,t̄
j“1,t“

¯
t,

χi ” ptαjtu
J,

¯
t´1

j“1,t“ti
, tαjtu

J,T
j“1,t“t̄`1

, trihtū
t´1
t“ti

, trihtu
T
t“t̄`1, tνijtu

J,T
j“1,t“ti

, tωijtu
J,t̄
j“1,t“ti

q, (F.6)

where s is i’s sector, t and t are the first and last sample years, ti is i’s birth year, and ti “ maxtt, tiu.
Each moment function mkp¨q is an average over foreign countries and periods of a function

m̃k,jtp¨q. Specifically, both for yi “ yobsi and for yi “ ysi pθq, it holds that

mkpyi, zi, xq ”
1

Jpt´ tiq

J
ÿ

j“1

t
ÿ

t“ti

m̃k,jtpyi, zi, xq. (F.7)

We use 89 moments as defined by equations (F.5) and (F.7). We classify them in three blocks.

The first block includes moments targeted to identify the parameters determining the level of fixed
and sunk costs as well as the impact on them of the distance between the firm’s home country and
each destination. Specifically, the first block of moments targets the identification of the parameters

pγF0 , γ
S
0 , tpγ

F
x , γ

S
x qux“tg,l,auq,

which enter the model through the expressions in equations (7) and (12). A first set of moments in
this block captures firms’ export participation choices by groups of destinations that differ in their
distances to the firm’s home country. More specifically, these moments are defined by the functions

m̃k,jtpy, z, xq “ yijt1tn
x1
hjt ă n̄x1u1tn

x2
hjt ă n̄x2un

x1
hjtn

x2
hjt, (F.8a)

m̃k,jtpy, z, xq “ yijt1tn
x1
hjt ě n̄x1u1tn

x2
hjt ă n̄x2un

x1
hjtn

x2
hjt, (F.8b)

m̃k,jtpy, z, xq “ yijt1tn
x1
hjt ă n̄x1u1tn

x2
hjt ě n̄x2un

x1
hjtn

x2
hjt, (F.8c)
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m̃k,jtpy, z, xq “ yijt1tn
x1
hjt ě n̄x1u1tn

x2
hjt ě n̄x2un

x1
hjtn

x2
hjt, (F.8d)

for px1, x2q in tpg, lq, pg, aq, pl, aqu. As a reminder, nghj , n
l
hj , and nahjt respectively denote the ge-

ographic, linguistic and regulatory distances between the firm’s home country h and the foreign
country j. The constants n̄x1 and n̄x2 are thresholds that split foreign countries into two groups
depending on whether their distance to the firm’s home market h is larger or smaller than the cor-
responding threshold; specifically, we set n̄g “ 6 (i.e., 6,000 km), n̄l “ 0.5, and n̄a “ 1. According
to these thresholds, we split countries roughly depending on whether they are in the Americas (in
which case nghj ă 6), on whether at least 50% of their population speak Spanish, and on whether
they have any sort of deep PTA with Costa Rica (in which case nahjt ă 1). E.g., the moment defined
by the function in equation (F.8a) for px1, x2q “ pg, lq is

1

M

M
ÿ

i“1

! 1

Jpt´ tiq

J
ÿ

j“1

t
ÿ

t“ti

pyobsijt ´
1

S

S
ÿ

i“1

ysijtpθqq1tn
g
hj ă 6u1tnlhj ă 0.5unghjn

l
hj

)

“ 0. (F.9)

For the foreign countries less than 6,000 km away from Costa Rica and with linguistic distance
to Costa Rica below 0.5, this moment captures the average (across firms, countries and periods)
difference between the observed firm choices and the average (across S simulated samples) choices
implied by our model. When computing this average, each observation is weighted by the product
of the geographic and linguistic distances of each destination to the firm’s home country.

A second set of moments still within this first block are defined by the following functions:

m̃k,jtpyi, zi, xq “ yijtyijt´11tn
x1
hjt ă n̄x1u1tn

x2
hjt ă n̄x2un

x1
hjtn

x2
hjt, (F.10a)

m̃k,jtpyi, zi, xq “ yijtyijt´11tn
x1
hjt ě n̄x1u1tn

x2
hjt ă n̄x2un

x1
hjtn

x2
hjt, (F.10b)

m̃k,jtpyi, zi, xq “ yijtyijt´11tn
x1
hjt ă n̄x1u1tn

x2
hjt ě n̄x2un

x1
hjtn

x2
hjt, (F.10c)

m̃k,jtpyi, zi, xq “ yijtyijt´11tn
x1
hjt ě n̄x1u1tn

x2
hjt ě n̄x2un

x1
hjtn

x2
hjt, (F.10d)

for px1, x2q in tpg, lq, pg, aq, pl, aqu. These functions differ from those in equation (F.8) in that they
do not depend on whether firms export to a country j at a period t (as captured by yijt) but on
whether they continue exporting at t to a country j to which it was exporting at t´ 1 (as captured
by yijtyijt´1). E.g., the moment defined to the function in equation (F.10a) for px1, x2q “ pg, lq is

1

M

M
ÿ

i“1

! 1

Jpt´ tiq

J
ÿ

j“1

t
ÿ

t“ti

pyobsijt y
obs
ijt´1 ´

1

S

S
ÿ

i“1

ysijtpθqy
s
ijt´1pθqq1tn

g
hj ă 6u1tnlhj ă 0.5unghjn

l
hj

)

“ 0.

The interpretation of this moment is analogous to that in equation (F.9), with the only difference
that it focuses in export survival events instead of export participation events.

Equations (F.8) and (F.10) list four moments each for each px1, x2q in tpg, lq, pg, aq, pl, aqu. Thus,
the first block of moments includes 24 moments in total.

The second block includes moments targeted to identify the parameters determining the strength of
the complementarities. That is, this block of moments targets the identification of the parameters

tpγEx , ψ
E
x , κ

E
x qux“tg,l,au,

which enter the model through the expression in equation (9). The functions defining the moments
included in this second block capture firms’ export probabilities by groups of destinations that
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differ in the aggregate export potential of the countries that are at a given geographical, linguistic,
or regulatory distance to them. A key variable in these moments is thus the aggregate export
potential of the countries that are within certain distance thresholds of each potential destination:

AEs,x2jt,x1
“

ÿ

j1‰j

1t
¯
nx2x1 ď nx1jj1t ă n̄x2x1uE

s
j1t, (F.11)

where the index x1 identifies the distance measure, and the index x2 identifies the distance interval
over which we are summing the export potential measures Esj1t. The index x1 takes values in the
set tg, l, au, with, e.g., x1 “ g denoting the geographical distance in equation (B.1). The index x2

takes values in the set t1, 2, 3u, and it determines the distance thresholds according to the following
rules. For the case in which x1 “ g, the distance thresholds are

p
¯
nx2g , n̄

x2
g q “

$

&

%

p0, 426q if x2 “ 1,
p426, 790q if x2 “ 2,
p790, 1153q if x2 “ 3.

(F.12)

For the case in which x1 “ l, the distance thresholds are

p
¯
nx2l , n̄

x2
l q “

$

&

%

p0, 0.01q if x2 “ 1,
p0.01, 0.11q if x2 “ 2,
p0.11, 0.50q if x2 “ 3.

(F.13)

Finally, for the case in which x1 “ a, the distance thresholds are

p
¯
nx2a , n̄

x2
a q “

$

’

&

’

%

p0, 1
7q if x2 “ 1,

p1
7 ,

3
7q if x2 “ 2,

p3
7 ,

6
7q if x2 “ 3.

(F.14)

Then, e.g., the variables AEs,1jt,g, AE
s,2
jt,g, and AEs,3jt,g denote the aggregate export potential in sector

s and year t of all countries j1 other than j that are less than 426 km away from j, between 426
km and 790 km away from j, and between 790 km and 1153 km away from j, respectively. Given
AEs,x2jt,x1

for x1 “ tg, l, au and x2 “ t1, 2, 3u, the moments in this second block are defined by

m̃k,jtpyi, zi, xq “ yijt1tn
x1
hjt ă n̄x1u1tAE

s,x2
jt,x1

“ 0u, (F.15a)

m̃k,jtpyi, zi, xq “ yijt1tn
x1
hjt ă n̄x1u1t0 ă AEs,x2jt,x1

ď p66pAE
s,x2
jt,x1

qu, (F.15b)

m̃k,jtpyi, zi, xq “ yijt1tn
x1
hjt ă n̄x1u1tp66pAE

s,x2
jt,x1

q ă AEs,x2jt,x1
u, (F.15c)

m̃k,jtpyi, zi, xq “ yijt1tn
x1
hjt ě n̄x1u1tAE

s,x2
jt,x1

“ 0u, (F.15d)

m̃k,jtpyi, zi, xq “ yijt1tn
x1
hjt ě n̄x1u1t0 ă AEs,x2jt,x1

ď p66pAE
s,x2
jt,x1

qu, (F.15e)

m̃k,jtpyi, zi, xq “ yijt1tn
x1
hjt ě n̄x1u1tp66pAE

s,x2
jt,x1

q ă AEs,x2jt,x1
u, (F.15f)

where p66p¨q is the 66th percentile of the random variable in parenthesis. For any x1 “ tg, l, au,
nx1hjt denotes the corresponding distance between the firm’s home country h and destination j, and
n̄x1 is a threshold we use to split destinations into two groups depending on whether their distance
to the home market is larger or smaller than the corresponding threshold; we set n̄g “ 6, n̄l “ 0.5,
and n̄a “ 1, which are the same thresholds we use to define the moments in equations (F.8) and
(F.10). E.g., the moment given by the function in equation (F.15a) for px1, x2q “ pg, 1q is
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ysijtpθqq1tn
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hj ă 6u1tAEs,1jt,g “ 0u

)

“ 0. (F.16)

This moment captures, for those foreign countries that are less than 6,000 km away from Costa
Rica and have no country closer than 426 km to them, the difference between the export probability
in the observed sample and the average export probability across S simulated samples. Similarly,
the moment given by the function in equation (F.15b) for px1, x2q “ pg, 1q is

1

M

M
ÿ

i“1

! 1

Jpt´ tiq

J
ÿ

j“1

t
ÿ

t“ti

pyobsijt ´
1

S

S
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i“1

ysijtpθqq1tn
g
hj ă 6u1t0 ă AEs,1jt,g ď p66pAE

s,1
jt,gqu

)

“ 0.

This moment captures, for foreign countries that are less than 6,000 km away from Costa Rica
and have countries located less than 426 km away from them whose aggregate export potential is
positive but below its 66th percentile, the difference between the export probability in the observed
sample and the average export probability across S simulated samples.

Equation (F.15) lists six moments for each x1 in tg, l, au and each x2 in t1, 2, 3u. Thus, this
block could include 54 moments in total. However, two of these 54 moments select empty subsets
of countries. As a result, the second block includes 52 moments in total.

The third block includes moments that aim to identify the parameters of the distribution of the
unobserved (to the researcher) terms νit and ωit. That is, this block targets the identification of

pσν , p, tpγ
N
x , κ

N
x qux“tg,l,auq,

which enter the model through the expressions in equations (10) and (11). To help identify the
variance of the fixed cost shock νijt, σ

2
ν , we use moments defined by the following two functions

m̃k,jtpyi, zi, xq “ yijt
ÿ

i1‰i

yi1jt1tQprihtq “ Qpri1htqu, (F.17a)

m̃k,jtpyi, zi, xq “ 1t
ÿ

j“1

yijt ą 0u, (F.17b)

where Qp¨q : R` Ñ t1, 2, 3, 4u is a function that maps the firm’s domestic revenue to its corre-
sponding quartile. The moment defined by the function in equation (F.17a) captures, on average
across periods and pairs of firms i and i1 whose domestic sales belong to the same quartile of the
distribution, the similarity in the sets of export destinations. The function in equation (F.17b)
captures whether firm i is an exporter at period t. These two moments help identify σν .

With the aim of identifying p, we use moments defined by the following two functions

m̃k,jtpyi, zi, xq “ yijtp1´ yijt´1qyijt´2 ` yijtp1´ yijt´1qp1´ yijt´2qyijt´3, (F.18a)

m̃k,jtpyi, zi, xq “ p1´ yijtqyijt´1p1´ yijt´2q ` p1´ yijtqyijt´1yijt´2p1´ yijt´3q. (F.18b)

The function in equation (F.18a) captures short (lasting one or two periods) spells outside of an
export market. The function in equation (F.18b) captures short export spells. As firms have perfect
foresight on all payoff-relevant variables other than the shock ωijt, short-lived transitions in and
out of a market will be mostly driven by unexpected realizations of this fixed cost shock. The
functions in equation (F.18) measure the frequency with which these short-lived spells take place.
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Finally, with the aim of identifying tpγNx , κ
N
x qux“tg,l,au, we use moments defined by the functions

mkpy, z, xq “ yijt

J
ÿ

j1“1

yij1t1tyijt´1 “ yij1t´1u1tQpEijtq “ QpEij1tqu1t
¯
nx2x1 ď nx1jj1t ă n̄x2x1u (F.19)

for any x1 in tg, l, au and any x2 in t1, 2, 3u, where Qp¨q : R` Ñ t1, 2, 3, 4u is a function that maps
a country’s export potential into its corresponding quartile. For any x1 in tg, l, au and any x2 in
t1, 2, 3u, the thresholds

¯
nx2x1 and n̄x2x1 are determined as in equations (F.12) to (F.14). E.g., the

moment built using the function in equation (F.19) for px1, x2q “ pg, 1q captures, on average across
firms and periods, the frequency with which firms simultaneously export to any two countries j and
j1 in which they had the same export status in the previous period (as imposed by the condition
that yijt´1 and yij1t´1 should coincide), that have similar export potentials (as imposed by the
condition that Eijt and Eij1t should fall in the same quartile), and that are less than 426 km apart.
Loosely, the function in equation (F.19) for px1, x2q “ pg, 1q captures the correlation in firm choices
across countries of similar market size that are geographically close to each other.

The function in equation (F.19) for px1, x2q “ pg, 2q is analogous to that for px1, x2q “ pg, 1q,
differing only in that, instead of focusing on pairs of countries that are less than 426 km apart, it
focuses on pairs of countries whose bilateral distance is larger than 426 km and smaller than 790
km. Similarly, the function in equation (F.19) for px1, x2q “ pg, 3q focuses on pairs of countries
whose bilateral distance is larger than 790 km and smaller than 1,153 km. Thus, the functions in
equation (F.19) for x1 “ g and all three possible values of x2 allow us to identify the parameters
determining the correlation between νijt and νij1t as a function of the geographical distance between
countries j and j1.

Equations (F.17) and (F.18) list two moments each. Equation (F.19) lists one moment for each
x1 in tg, l, au and each x2 in t1, 2, 3u. Thus, the third block includes 13 moments in total.

F.4 Additional Details on SMM Estimator

We provide here additional details on two aspects of our SMM estimator. In Appendix F.4.1, we
describe how we compute the vector of simulated choices ysi pθq that enter the moment conditions;
see equation (26). In Appendix F.4.2, we describe how we compute our SMM estimates given the
vector of moment conditions.

F.4.1 Computing Vector of Simulated Choices

Given a value of the vector θ of fixed and sunk cost parameters, we describe here the steps we
follow to compute each of the moment conditions we use in our estimation.

First step. For each firm i in the sample, we take S “ 5 draws of the vector of unobserved
payoff-relevant variables χi defined in equation (F.6). Specifically, for each draw, we implement
the following procedure.

First, if we observe firm i in the first sample year, t, then we treat its birth year,
¯
ti, as unknown,

and we draw it randomly from the empirical distribution of firm ages in Costa Rica in 2010, as
reported in World Bank (2012). If we do not observe firm i in t, then we assume its birth year
coincides with the first year it appears in the sample. The firm’s birth year is thus observed, and
not randomly drawn, in this case.27

27A firm is in our dataset as long as it has positive domestic sales, regardless of whether it exports.
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Second, we simulate lnprihtq for every out-of-sample period in which the firm is active; i.e., for
all t in r

¯
ti,

¯
tqYpt̄, T s. If

¯
ti ă

¯
t, we simulate plnprih

¯
tiq, . . . , lnprih

¯
tqq from a jointly normal distribution

as determined by the corresponding AR(1) process for lnprihtq specified in Section 3.3, conditioning
on the firm’s observed domestic sales in the first sample year, rih

¯
t, as terminal condition, and on

the the unconditional mean of this process as initial condition. To simulate plnpriht̄q, . . . , lnprihT qq,
we first draw T ´ t̄` 1 independent standard normal variables, which we then multiply by σr. We
then use these draws of eriht for every t in rt̄ ` 1, T s, together with the firm’s observed domestic
sales in the last sample year, riht̄, to generate values of the firm’s log domestic sales for every t in
rt̄` 1, T s. In this case, lnpriht̄q operates as an initial condition of the corresponding process.

Third, we draw firm i’s fixed cost shocks νijt and ωijt for every country j “ 1, . . . , J and every
t in r

¯
ti, T s. To obtain these draws of νijt, we first draw JpT ´

¯
ti` 1q independent standard normal

random variables, which we then multiply by the Cholesky decomposition of the variance matrix
in equation (10). To obtain these draws of ωijt, we first draw JpT ´

¯
ti ` 1q independent random

variables distributed uniformly between 0 and 1; we then set ωijt “
¯
ω if the draw corresponding to

country j and period t is smaller than the parameter p introduced in equation (11), and ωijt “ ω̄
otherwise.

Fourth, for each country j, we draw αjt for every t between the earliest birth year in the
corresponding simulated sample and the initial sample year, and for every t between the last
sample year and the terminal period; i.e., for all t in rminit

¯
tiu,

¯
tq Y pt̄, T s. We simulate αjt for all t

in rminit
¯
tiu,

¯
tq from a jointly normal distribution as determined by the corresponding AR(1) process

for αjt specified in Section 3.3, conditioning on the unconditional mean of this process as initial
condition, and on the observed value of αjt in the first sample year, αj

¯
t, as terminal condition. To

simulate pαjt̄`1, . . . , αjT q, we first draw T ´ t̄ ` 1 independent standard normal variables, which
we then multiply by σα. We then use these draws of eαjt for every t in rt̄` 1, T s, together with the
value of αjt observed in the last sample year, αjt̄, to generate values of αjt for every t in rt̄` 1, T s.
In this case, αjt̄ operates as an initial condition of the corresponding AR(1) process.

Second step. For each firm i in the sample, we use the S draws of χi generated according to the
procedure described above, the vector zi of observed payoff-relevant variables, and a value of the
parameter vector θ, to compute the vector of model-implied firm i’s optimal choices ysi pθq for all
s “ 1, . . . , S simulated samples. We do so implementing the algorithm described in Section 4.

F.4.2 Computing SMM Estimates

Denote the vector of moment conditions as Mpyobs, Z, x; θq “ pm1py
obs, Z, x; θq, . . . ,mKpy

obs, Z, x; θqq1

where

mkpy
obs, Z, x; θq “

1

M

M
ÿ

i“1

! 1

Jpt´ tiq

J
ÿ

j“1

t
ÿ

t“ti

 

mkpy
obs
i , zi, xq ´

1

S

S
ÿ

i“1

mkpy
s
i pθq, zi, xq

(

)

,

with yobs “ tyobsi uMi“1 and Z “ tziu
M
i“1. Given Mpyobs, Z, x; θq and a K ˆK positive semi-definite

matrix W , we compute our SMM estimate of θ as the solution to the following problem

min
θ

Mpyobs, Z, x; θqWMpyobs, Z, x; θq1. (F.20)

To solve this problem numerically, we use a two-step algorithm: first, we use the TikTak global
optimizer proposed in Arnoud et al. (2019) with 5,000 starting points, using BOBYQA as the local
optimizer; second, we polish the outcome of the global optimizer using a Subplex local optimizer.
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In practice, we compute a two-stage SMM estimate. In the first stage, we obtain estimates of θ,
which we denote as θ̂1, minimizing the objective function in equation (F.20) for a diagonal weight
matrix W “W1 in which every diagonal element k “ 1, . . . ,K equals

W1,k “
1

pmobs
k pyobs, Z, xqq2

, with m
obs
k pyobs, Z, xq ”

1

M

M
ÿ

i“1

! 1

Jpt´ tiq

J
ÿ

j“1

t
ÿ

t“ti

mkpy
obs
i , zi, xq

)

.

In the second stage, we obtain estimates of θ, which we denote as θ̂2, minimizing the function
in equation (F.20) for a diagonal weight matrix W “ W2 in which every diagonal element k “
1, . . . ,K equals W2,k “ pV̂kpy

obs, Z, x; θ̂1qq
´1, with V̂kpy

obs, Z, x; θ̂1q the clustered-robust variance of

the moment Mkpy
obs, Z, x; θ̂1q, with each cluster defined as a firm-year combination (see Section

11 in Hansen and Lee, 2019, for details). We present heteroskedasticity-robust, clustered at the
firm-year level, and clustered at the firm level, standard error estimates. We compute each of these
applying the formulas in Section 11 of Hansen and Lee (2019), with the adjustment for simulation
noise in Gourieroux et al. (1993).

F.5 Alternative Simulation Draws

We evaluate here the sensitivity of our estimates of the vector θ of fixed and sunk cost parameters
to the set of S “ 5 draws of χi (see equation (F.6)) we use to compute those estimates. We take 50
independent sets of 5 draws of χi and, for each of them, we compute a new SMM estimate of θ. For
each parameter in θ, we compute a non-parametric density of the estimates obtained in the 50 sets
of simulations, and report in Table F.2 the mode of this density as well as our baseline estimate;
see Table F.4 for our baseline estimates. Our baseline estimates are generally close to the mode of
the distribution of the estimates obtained for different draws of χi, the only exception being the
estimate of γFg , which is 25% smaller than the mode of the density of the corresponding estimates.

Table F.2: Sensitivity of Baseline SMM Estimates to Alternative Simulation Draws

Parameters
Baseline Alternative

Parameters
Baseline Alternative

Estimates Estimates Estimates Estimates

γF0 62.92 63.53 κEl 5.40 5.53

γFg 13.11 17.68 γEa 3.32 3.29

γFl 4.14 2.79 ϕEa 1.21 1.26

γFa 29.28 28.99 κEa 6.85 6.68

γS0 114.76 115.09 γNg 0.64 0.66

γSg 19.95 19.88 κNg 0.05 0.10

γSl 0.23 0.26 γNl 0.15 0.15

γSa 21.83 21.07 κNl 4.54 4.60

γEg 9.83 10.79 γNa 0.06 0.06

ϕEg 1.96 1.98 κNa 2.61 2.57

κEg 6.02 6.03 σν 80.04 79.98

γEl 0.98 1.06 p 0.72 0.72
ϕEl 2.74 2.76

Note: the number in the “Baseline Estimates” column is the estimate reported in Table F.4;
that in the “Alternative Estimates” column is the mode of the non-parametric density of the
estimates obtained when reestimating our model using 50 alternative sets of draws of χsi .
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F.6 Estimation Results: Additional Details

F.6.1 First-step Estimates: Potential Export Revenue Parameters

In Table F.3, we present estimates of the parameters affecting export revenues; see Section 3.3.

Table F.3: Estimates of Potential Export Revenue Parameters and Their Process

Potential Export Revenue Process for Country- and Year- Process for Log
Parameters Specific Rev. Shifter Domestic Sales

Parameter
Estimate

Parameter
Estimate

Parameter
Estimate

(Standard Error) (Standard Error) (Standard Error)

αy 1.856a βα,g -0.117b ρr 0.857a

(0.066) (0.037) (0.012)
αa -3.832a βα,l -0.047 σr 0.865

(0.066) (0.071)
αr 0.285a βα,a -0.109

(0.041) (0.079)
βα,gdp 0.079a

(0.019)
ρα 0.686a

(0.059)
σα 0.630

Observations 13,293 Observations 467 Observations 43,300

Note: a denotes significance at 1%, b denotes significance at 5%. In parenthesis, standard error estimates. The
results for Potential Export Revenue Parameters include country-year and sector fixed effects, and standard errors
are heteroskedasticity robust. The results for Process for Country- and Year-Specific Rev. Shifter include no fixed
effects, and standard errors are clustered by country. The results for Process for Log Domestic Sales include fixed
effects for the firm’s sector and province of location, and standard errors are clustered by firm.

In Figure F.7, we present box plots summarizing the distribution of the estimated values of
αjt across all sample periods for several specific countries. Specifically, panels (a) and (b) contain
information for the 15 countries with the largest and smallest median estimates of αjt, respectively.

Figure F.7: Estimates of Country- and Year-Specific Export Revenue Shifters
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(b) Bottom-15 Destinations
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Note: In both figures, countries are identified by their ISO 3166-1 alpha-3 code, and ordered in the horizontal axis by
their distance to Costa Rica. For each country, the corresponding box plot represents (from top to bottom) the max, third
quartile, median, first quartile and min of the estimated values of αjt across all sample periods. Panel (a) displays box-plots
of the estimates of tαjtut for the 15 countries with the largest median estimates. Panel (b) displays analogous information
for the 15 countries with the lowest median estimates.
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F.6.2 Second-Step Estimates: Fixed and Sunk Costs Parameters

In Table F.4, we present estimates of the parameters entering fixed and sunk costs; see Section 3.4.

Table F.4: SMM Estimates of Fixed and Sunk Cost Parameters

Parameter
Estimate

Parameter
Estimate

(Standard Errors) (Standard Errors)

γF0 62.92a κEl 5.40
(1.11)(1.34)(2.77) (6.05)(7.84)(19.56)

γFg 13.11a γEa 3.32a

(0.38)(1.17)(3.43) (0.04)(0.04)(0.06)
γFl 4.14a ϕEa 1.21

(0.99)(1.71)(4.71) (0.52)(0.73)(1.51)
γFa 29.28a κEa 6.85a

(0.78)(0.62)(1.09) (1.02)(1.48)(3.18)
γS0 114.76a γNg 0.64a

(3.18)(3.09)(6.03) (0.00)(0.00)(0.01)
γSg 19.95a κNg 0.05a

(0.92)(1.10)(2.80) (0.00)(0.00)(0.01)
γSl 0.23 γNl 0.15a

(3.56)(4.43)(8.36) (0.00)(0.00)(0.01)
γSa 21.83a κNl 4.54a

(1.04)(0.83)(1.46) (0.29)(0.31)(0.50)
γEg 9.83a γNa 0.06a

(2.33)(2.85)(6.42) (0.01)(0.01)(0.01)
ϕEg 1.96a κNa 2.61a

(0.50)(0.66)(1.55) (0.00)(0.00)(0.00)
κEg 6.02a σν 80.72a

(0.28)(0.49)(0.66) (0.51)(0.79)(2.05)
γEl 0.98a p 0.72a

(0.08)(0.07)(0.11) (0.00)(0.00)(0.00)
ϕEl 2.74

(2.88)(3.79)(7.16)

Note: a denotes significance at 1%. In parenthesis, robust standard errors, standard errors
clustered by firm-year, and standard errors clustered by firm, respectively. Displayed markers of
statistical significance are determined on the basis of the standard errors clustered by firm-year.

In Figure F.8, for the case of the US, China, Germany and Spain, we plot the value of cjj1t{gjt
multiplied by 100 for all other destinations j1.

Figure F.8: Estimated Static Complementarities
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(c) Germany
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Note: In Panels (a), (b), (c) and (d) we illustrate, for the cases of the US, China, Germany, and Spain, respectively, the
percentage reduction in fixed costs of exporting to these countries if the firm simultaneously also exports to each of the
other possible export destinations.

In Figure F.9, for the case of the US, China, Germany and Spain, we plot the value of ρjj1t for
all other destinations j1.

Figure F.9: Estimated Pairwise Correlation Coefficients in Fixed Cost Shocks
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(d) Spain
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Note: In Panels (a), (b), (c) and (d) we illustrate, for the cases of the US, China, Germany, and Spain, respectively, the
correlation coefficient in the fixed cost shock νijt between the corresponding country and every other country in the world.
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F.7 Model Without Cross-Country Complementarities

We present here the estimates of a model analogous to that in Section 3 except for the restriction
that the term in equation (9) equals zero for all countries and periods. Fixed and sunk costs in this
restricted model thus only depend on the parameters θR ” pγ

F
0 , γ

S
0 , σν , p, tpγ

F
x , γ

N
x , κ

N
x , γ

S
x qux“tg,l,auq.

In this restricted model, the estimation approach in Section 6.1 is still valid; thus, the estimates
of the demand elasticity and the parameters entering potential export revenues coincide with those
described in Section 6.1. To estimate θR, we follow an approach analogous to that in Section 5.2,
using the same moments described in Section F.3. We present in Table F.5 the resulting estimates.

Table F.5: Fixed and Sunk Cost Parameter Estimates; Model Without Complementarities

Parameter
Estimate

Parameter
Estimate

(Standard Errors) (Standard Errors)

γF0 35.81a γNg 0.64a

(4.78)(7.93)(19.89) (0.01)(0.01)(0.01)
γFg 4.97a κNg 0.04a

(0.41)(0.75)(1.77) (0.00)(0.00)(0.01)
γFl 0.96 γNl 0.18a

(2.64)(3.87)(9.59) (0.03)(0.03)(0.07)
γFa 6.32 κNl 0.38

(3.62)(6.05)(16.11) (0.52)(0.70)(1.59)
γS0 70.70a γNa 0.10a

(6.17)(9.24)(21.09) (0.01)(0.01)(0.03)
γSg 36.21a κNa 0.42a

(0.22)(0.31)(0.31) (0.05)(0.04)(0.10)
γSl 0.16 σν 41.59a

(5.25)(9.93)(25.32) (0.76)(1.33)(3.36)
γSa 27.39a p 0.65a

(4.48)(8.92)(24.36) (0.00)(0.00)(0.00)

Note: a denotes significance at 1%. In parenthesis, robust standard errors, standard errors
clustered by firm-year, and standard errors clustered by firm, respectively. Markers of statis-
tical significance are determined on the basis of the standard errors clustered by firm-year.

Figure F.10 is analogous to Figure 1. The mean fixed cost function implied by the estimates in
Table F.5 is smaller than the estimated mean fixed cost function for single-destination exporters

Figure F.10: Fixed and Sunk Cost Parameter Estimates; Model Without Complementarities
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(b) Sunk Export Costs
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distance to Costa Rica. The vertical axis indicates the estimated cost in thousands of 2010 USD.
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displayed in panel (a) of Figure 1 for our general model with complementarities. This is to be
expected, as the estimated mean fixed export costs in the restricted model without cross-country
complementarities likely approximate a weighted average of the mean fixed export costs faced by
different firms depending on their export bundles, with weights given by the frequency with which
different export bundles are observed in the data.

F.8 Model With Permanent Unobserved Heterogeneity

We present here the estimates of a model analogous to that in Section 3 with the only difference
that the fixed cost term νijt introduced in equation (6) is not assumed to be independent over time
but, instead, it is assumed to be permanent over time. That is, instead of assuming that νijt KK νijt1

for t ‰ t1 (as imposed in the model described in Section 3 according to equation (10b)), we assume
instead that νijt “ νij . We present in Table F.6 the resulting estimates of all model parameters.

Table F.6: Estimates of Fixed and Sunk Cost Parameters in Model With νijt “ νij

Parameter
Estimate

Parameter
Estimate

(Standard Errors) (Standard Errors)

γF0 87.07a κEl 4.54
(0.57)(0.74)(1.79) (1.29)(2.99)(7.71)

γFg 28.13a γEa 5.83a

(0.27)(0.32)(0.74) (0.50)(0.72)(1.82)

γFl 0.12 ϕEa 1.30
(0.77)(1.43)(4.02) (0.16)(0.28)(0.76)

γFa 31.33a κEa 7.01a

(0.99)(1.56)(3.69) (0.33)(0.46)(1.10)

γS0 106.31a γNg 0.83a

(1.32)(1.71)(4.05) (0.31)(0.54)(1.43)

γSg 10.58a κNg 0.11a

(0.77)(1.00)(2.37) (0.00)(0.00)(0.01)

γSl 0.31 γNl 0.04a

(2.36)(2.93)(6.76) (0.00)(0.00)(0.01)

γSa 33.78a κNl 4.60a

(1.92)(3.47)(9.40) (0.51)(0.68)(1.62)

γEg 10.52a γNa 0.06a

(0.04)(0.05)(0.10) (0.01)(0.01)(0.01)

ϕEg 2.57a κNa 2.30a

(0.16)(0.20)(0.41) (0.45)(0.66)(1.75)

κEg 9.11a σν 79.79a

(0.28)(0.37)(0.79) (0.00)(0.00)(0.01)

γEl 1.34a p 0.67a

(0.11)(0.14)(0.31) (0.00)(0.00)(0.00)

ϕEl 3.48
(1.12)(1.41)(2.93)

Note: a denotes significance at 1%. In parenthesis, robust standard errors, standard errors
clustered by firm-year, and standard errors clustered by firm, respectively. Displayed markers
of statistical significance are determined using the standard errors clustered by firm-year.

Figure F.11 is analogous to Figure 1. The sunk cost function implied by the estimates in
Table F.6, displayed in panel (b) in Figure F.11, is smaller than the estimated sunk cost function
displayed in panel (b) of Figure 1. There is a clear intuition for the negative impact that allowing
for constant-over-time unobserved heterogeneity in fixed export costs has on the estimated sunk
costs. This persistent heterogeneity in fixed export costs generates persistence in the firm’s export
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status in any given destination. As a result, in the presence of persistent unobserved heterogeneity
in fixed export costs, the estimated sunk costs need not be as large as in our baseline model in
order to match the observed persistence in firms’ export status in a destination.

The estimated mean fixed cost function for single-destination exporters displayed in panel (a)
of Figure F.11 is above the corresponding mean fixed cost function displayed in panel (a) of Figure
1. That is, in any given destination country, the estimated mean fixed export costs are larger
in the model with persistent unobserved heterogeneity in fixed costs than in the model in which
this heterogeneity is assumed to be independent over time. Intuitively, in order to rationalize the
observed export entry patterns, the estimated fixed export costs must be larger in the model with
smaller estimated sunk export costs.

Figure F.11: Fixed and Sunk Costs Estimates in Model With νijt “ νij
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(b) Sunk Export Costs
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Note: In both figures, countries are identified by their ISO 3166-1 alpha-3 code, and placed in the horizontal axis by their
distance to Costa Rica. The vertical axis indicates the estimated cost in thousands of 2010 USD.

F.9 Goodness of Fit

We present in Figure F.12 two plots that compare the observed share of firms in the sample that
export to each possible destination country to the corresponding export probability predicted by
our estimated model.

In panel (a), we present a scatter plot where each dot corresponds to a potential destination
country, the coordinate in the horizontal axis corresponds to the model-predicted export probability,
and the coordinate in the vertical axis corresponds to the observed share of firms exporting to the
corresponding destination country. When regressing the observed export shares on the model-
predicted export probabilities, we observe that the estimate of the regression constant equals zero,
and the estimate of the regression slope equals 0.95. The R2 for this regression is 0.86.

In panel (b), we list all possible destination countries in the horizontal axis and, for each of them,
we display both the predicted export probability observed in the data (in orange diamonds) and
that predicted by our estimate model (in blue circles). As the figure illustrates, the predicted export
probabilities in our model align relatively well with the observed export probabilities observed in
the data. Some of the largest mismatches are observed for Panama and Nicaragua; for these two
countries, the model under-predicts the share of firms exporting to it. Panama and Nicaragua
are the only two destination countries that share a border with Costa Rica and, consequently,
the mismatch between observed and predicted export probabilities may be due to the impact that
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sharing a border with the firm’s home country has on the fixed and sunk export costs the firm faces
when exporting to it.

Figure F.12: Goodness-of-Fit Measures of Export Probabilities by Country
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(b) Differences in Export Probabilities
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Note: Panel (a) shows a scatter plot of the model predicted export shares by destination country (in the horizontal
axis) against its observed value (in the vertical axis). The regression estimates and R2 displayed on top of the
figure are unrestricted. Panel (b) displays, for each possible destination country (listed in the horizontal axis), the
predicted export probability observed in the data (in orange diamonds) and that predicted by our estimate model
(in blue circles).
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G Properties of Model With Complementarities

G.1 Impact of Complementarities Across Destinations

We consider here a simplified version of the model in Section 3 with the goal of understanding the
role complementarities play in determining firm choices. We impose on the model in Section 3 the
following restrictions: (a) there are two markets, A and B; (b) for both markets, the fixed cost
gravity term gjt and sunk costs sjt are constant over time; (c) the complementarity term in fixed
costs cABt is constant over time; (d) ωijt “ 0 for every i, j and t; (e) αy “ 0 and all determinants
of export revenues are constant over time, implying rijt is constant over time for every i and j.

Dropping the t subscript from all constant variables, and denoting the complementarities be-
tween markets A and B as c, firm i solves the following optimization problem at t “ 0:

max
tyjtujt

ÿ

tě0

 

δtpyiAtπiA ´ p1´ yiAt´1qsA ` yiBtπiB ´ p1´ yiBt´1qsB ` yiAtyiBtcq
(

(G.1)

where, for any j, πij “ η´1rij ´ gj ´ νij is the potential export profits of firm i in j net of all
components of fixed costs other than the complementarity term. As no firm can export before the
first period of activity, it holds that yiAt´1 “ yiBt´1 “ 0 when t “ 0.

We consider two cases: one in which c “ 0, and one in which c ą 0. We keep all throughout
the assumption that sunk export costs are lower in country B than in country A; i.e., sB ă sA.

Case 1: no complementarities. In this case, c “ 0 and the firm’s export decision is independent
across countries. As the problem in equation (G.1) is stationary, a firm exports to any country
j “ tA,Bu at any period t ě 0 if and only if πij ě π̄jp0q, for π̄jp0q ” p1´ δqsj . Thus, as shown in
panel (a) in Figure G.1, firms with πiA ă π̄A and πiB ě π̄B export only to B; firms with πiA ě π̄A
and πiB ă π̄B export only to A; and, firms with πiA ě π̄A and πiB ě π̄B export to both countries.
Consistently with the parametrization that sB ă sA, the plot in panel (a) of Figure G.1 assumes
that π̄Bp0q ă π̄Ap0q.

Case 2: positive complementarities. In this case, c ą 0 and the firm’s export decision is not
independent across countries. Conditional on exporting to country j1 ‰ j, exporting to j is optimal
if and only if πij ě π̄jp1q with π̄jp1q “ p1´βqsj ´ 2c. Note that π̄jp1q ă π̄jp0q for any c ą 0. Panel

Figure G.1: Export Choices Models With and Without Complementarities
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(b) in Figure G.1 illustrates the new exporters that emerge when c becomes positive. These new
exporters are of two kinds. First, “natural exporters” to one of the markets (i.e., firms that export
to one of the markets even when c “ 0) and that, as complementarities become more important
(i.e, as the value of c increases), start exporting to the other one. These are firms whose value of
pπiA, πiBq falls in the orange and blue areas in panel (b). Second, firms that do not export when
c “ 0, but export to both markets when c increases. These are firms whose value of pπiA, πiBq falls
in the green area in panel (b).

Panel (b) in Figure G.1 shows how a firm i, depending on the values of pπiA, πiBq, changes its
set of destinations when c switches from being equal to zero to being positive. How the share of
firms exporting to either country changes as we change the value of c depends on the distribution of
pπiA, πiBq. In Figure G.2, we show how export shares change as we change the value of c when, for
j “ tA,Bu, πij is normally distributed with mean µ (common in both markets) and variance equal
to 1. We further assume that πiA and πiB are independent of each other. We impose values of µ,
δ, sA and sB such that, when c “ 0, the export share to A equals 2%, and the export share to B
equals 20%. Thus, we can characterize markets A and B as being “small” and “large”, respectively.

We extract several conclusions from Figure G.2. First, when comparing the export shares for
positive values of c to those for c “ 0, both the absolute and the relative increase in the export
share is larger in the “small” export market (i.e., country A) than in the large one (i.e., country
B). More specifically, when measuring the change in export shares as the value of c switches from
zero to one, we observe that the percentage point increase in export shares in markets A and B is
21 pp. and 13 pp., respectively, and the relative increase in export shares in markets A and B is
11.5 (which equals 23%/2%) and 1.65 (which equals 33%/20%), respectively. Second, the reason
for the larger impact of changes in c on export shares in A than in B is that there are many more
firms that exported only to B in the case with c “ 0 and add market A as export destination when
c increases, than there are firms that exported only to A in the case with c “ 0 and add market B
as export destination when c increases; i.e., the probability that pπiA, πiBq is in the orange area in
panel (b) of Figure G.1 is larger than the probability that it is in the blue area in the same graph.

Figure G.2: Export Share and Cross-Country Complementarities
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Note: In panel (a), for each value of c, “Total” denotes the share of firms that export to A at that value of c; “Always
exporters” denotes the share of firms that export to A at that value of c and also export to A when c “ 0; “Neighbor
exporters” denotes the share of firms that export to A at that value of c, do not export to A when c “ 0, and export to B
when c “ 0; and “New exporters” denotes the share of firms that export to A at that value of c and export neither to A
nor to B when c “ 0. The interpretation of the labels for panel (b) is analogous.
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G.2 Clusters of Countries

We illustrate in Figure G.3 the clusters of countries we use when computing the results in Table 3.
Given a fixed number of countries, we determine which countries to assign to each cluster following
von Luxburg (2007). This procedure relies on an adjacency matrix between any two countries,
which we compute using the formula in equation (9) and our estimates of tpγEx , ψ

E
x , κ

E
x qux“tg,l,au,

and uses spectral clustering in order to categorize countries into groups.

Figure G.3: Alternative Clusters

(a) 2 Clusters
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No Data

(b) 3 Clusters
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(c) 50 Clusters
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(d) Continents as Clusters
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No Data

Note: the figures in the four panels illustrate the clusters of countries we use when computing the results in Table 3.
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