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To construct degree 𝑛 extension field 𝔽𝑞𝑛 of a finite field 𝔽𝑞, take 𝔽𝑞𝑛 = 𝔽𝑞(𝛼)
where 𝑓 𝛼 = 0 and 𝑓(𝑥) is irreducible of degree 𝑛 in 𝔽𝑞[𝑥].

Extension fields

Example: for any prime 𝑝 ≡ 3 mod 4, can take 𝔽𝑝2 = 𝔽𝑝 𝑖 where 𝑖2 + 1 = 0



• Recall that every elliptic curve 𝐸 over a field 𝐾 with char 𝐾 > 3 can be 
defined by

𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏,

where  𝑎, 𝑏 ∈ 𝐾,  4𝑎3 + 27𝑏2 ≠ 0

• For any extension 𝐾′/𝐾, the set of 𝐾′-rational points forms a group with 
identity

• The 𝑗-invariant 𝑗 𝐸 = 𝑗 𝑎, 𝑏 = 1728 ⋅
4𝑎3

4𝑎3+27𝑏2
determines isomorphism 

class over ഥ𝐾

• E.g., 𝐸′: 𝑦2 = 𝑥3 + 𝑎𝑢2𝑥 + 𝑏𝑢3 is isomorphic to 𝐸 for all 𝑢 ∈ 𝐾∗

• Recover a curve from 𝑗: e.g., set 𝑎 = −3𝑐 and 𝑏 = 2𝑐 with 𝑐 = 𝑗/(𝑗 − 1728)

Elliptic Curves and 𝑗-invariants



Over 𝔽13, the curves 
𝐸1 ∶ 𝑦

2 = 𝑥3 + 9𝑥 + 8
and 

𝐸2 ∶ 𝑦
2 = 𝑥3 + 3𝑥 + 5

are isomorphic, since

𝑗 𝐸1 = 1728 ⋅
4⋅93

4⋅93+27⋅82
= 3 = 1728 ⋅

4⋅33

4⋅33+27⋅52
= 𝑗(𝐸2)

An isomorphism is given by 
𝜓 ∶ 𝐸1 → 𝐸2 ,         𝑥, 𝑦 ↦ 10𝑥, 5𝑦 ,
𝜓−1: 𝐸2 → 𝐸1, 𝑥, 𝑦 ↦ 4𝑥, 8𝑦 ,

noting that 𝜓 ∞1 = ∞2

Example



• The multiplication-by-𝑛 map: 
𝑛 ∶ 𝐸 → 𝐸, 𝑃 ↦ 𝑛 𝑃

• The 𝑛-torsion subgroup is the kernel of 𝑛
𝐸 𝑛 = 𝑃 ∈ 𝐸 ഥ𝐾 ∶ 𝑛 𝑃 = ∞

• Found as the roots of the 𝑛𝑡ℎ division polynomial 𝜓𝑛

• If char 𝐾 doesn’t divide 𝑛, then 
𝐸 𝑛 ≃ ℤ𝑛 × ℤ𝑛

Torsion subgroups



• Consider 𝐸/𝔽11: 𝑦
2 = 𝑥3 + 4 with #𝐸(𝔽11) = 12

• 3-division polynomial 𝜓3(𝑥) = 3𝑥4 + 4𝑥 partially
splits as 𝜓3 𝑥 = 𝑥 𝑥 + 3 𝑥2 + 8𝑥 + 9

• Thus, 𝑥 = 0 and 𝑥 = −3 give 3-torsion points.
The points (0,2) and (0,9) are in 𝐸 𝔽11 , but the 
rest lie in 𝐸(𝔽112)

• Write 𝔽112 = 𝔽11(𝑖) with 𝑖2 + 1 = 0. 
𝜓3 𝑥 splits over 𝔽112 as 
𝜓3 𝑥 = 𝑥 𝑥 + 3 𝑥 + 9𝑖 + 4 (𝑥 + 2𝑖 + 4)

• Observe 𝐸 3 ≃ ℤ3 × ℤ3 , i.e., 4 cyclic subgroups of order 3

Example (𝑛 = 3)



Subgroup isogenies

• Isogeny: morphism (rational map)
𝜙 ∶ 𝐸1 → 𝐸2
that preserves identity, i.e. 𝜙 ∞1 = ∞2

• Degree of (separable) isogeny is number of elements in kernel, 
same as its degree as a rational map

• Given finite subgroup 𝑮 ∈ 𝑬𝟏, there is a unique curve 𝑬𝟐 and 
isogeny 𝝓 ∶ 𝑬𝟏 → 𝑬𝟐 (up to isomorphism) having kernel 𝑮. Write 
𝑬𝟐 = 𝝓(𝑬𝟏) = 𝑬𝟏/〈𝑮〉. 



Subgroup isogenies: special cases

• Isomorphisms are a special case of isogenies where the kernel is trivial 
𝜙 ∶ 𝐸1 → 𝐸2,     ker 𝜙 = ∞1

• Endomorphisms are a special case of isogenies where the domain and co-
domain are the same curve 

𝜙 ∶ 𝐸1 → 𝐸1, ker 𝜙 = 𝐺,          |𝐺| > 1

• Perhaps think of isogenies as a generalization of either/both: isogenies allow 
non-trivial kernel and allow different domain/co-domain 

• Isogenies are *almost* isomorphisms



Velu’s formulas

Given any finite subgroup of 𝐺 of 𝐸, we may form a quotient isogeny 

𝜙: 𝐸 → 𝐸′ = 𝐸/𝐺

with kernel 𝐺 using Velu’s formulas

Example: 𝐸 ∶ 𝑦2 = (𝑥2 + 𝑏1𝑥 + 𝑏0)(𝑥 − 𝑎). The point (𝑎, 0) has order 2; 
the quotient of 𝐸 by 〈 𝑎, 0 〉 gives an isogeny 

𝜙 ∶ 𝐸 → 𝐸′ = 𝐸/〈 𝑎, 0 〉,
where 

𝐸′ ∶ 𝑦2 = 𝑥3 + − 4𝑎 + 2𝑏1 𝑥2 + 𝑏1
2 − 4𝑏0 𝑥

And where 𝜙 maps 𝑥, 𝑦 to 
𝑥3− 𝑎−𝑏1 𝑥2− 𝑏1𝑎−𝑏0 𝑥−𝑏0𝑎

𝑥−𝑎
,
x2− 2a x− b1a+b0 y

x−a 2



Velu’s formulas

Given curve coefficients 𝑎, 𝑏 for 𝐸, and all of the 𝑥-coordinates 𝑥𝑖 of the 
subgroup 𝐺 ∈ 𝐸, Velu’s formulas output 𝑎′, 𝑏′ for 𝐸′, and the map

𝜙 ∶ 𝐸 → 𝐸′,

𝑥, 𝑦 ↦
𝑓1 𝑥,𝑦

𝑔1 𝑥,𝑦
,
𝑓2 𝑥,𝑦

𝑔2 𝑥,𝑦



• Recall 𝐸/𝔽11: 𝑦
2 = 𝑥3 + 4 with #𝐸(𝔽11) = 12

• Consider 3 ∶ 𝐸 → 𝐸, the multiplication-by-3 
endomorphism

• 𝐺 = ker 3 , which is not cyclic

• Conversely, given the subgroup 𝐺,
the unique isogeny 𝜙 with ker 𝜙 = 𝐺 turns 
out to be the endormorphism 𝜙 = [3]

• But what happens if we instead take 𝐺 as one 
of the cyclic subgroups of order 3?

𝐺 = 𝐸[3]Example, cont.



Example, cont.  𝐸/𝔽11: 𝑦
2= 𝑥3 + 4

𝜙2

𝜙4

𝜙1

𝜙3

𝐸2/𝔽11: 𝑦
2= 𝑥3 + 5𝑥

𝐸4/𝔽112: 𝑦
2= 𝑥3 + (4𝑖 + 3)𝑥

𝐸1/𝔽11: 𝑦
2= 𝑥3 + 2

𝐸3/𝔽112: 𝑦
2= 𝑥3 + 7𝑖 + 3 𝑥



• Fact 1: 𝐸1 and 𝐸2 isomorphic iff 𝑗 𝐸1 = 𝑗(𝐸2)

• Fact 2: 𝐸1 and 𝐸2 isogenous iff #𝐸1 = #𝐸2 (Tate)

• Fact 3: 𝑞 + 1 − 2 𝑞 ≤ #𝐸 𝔽𝑞 ≤ 𝑞 + 1 + 2 𝑞 (Hasse)

Upshot for fixed 𝑞

𝑂 𝑞 isogeny classes
𝑂(𝑞) isomorphism classes

Isomorphisms and isogenies



• 𝐸/𝔽𝑞 with 𝑞 = 𝑝𝑛 supersingular iff 𝐸 𝑝 = {∞}

• Fact: all supersingular curves can be defined over 𝔽𝑝2

• Let 𝑆𝑝2 be the set of supersingular 𝑗-invariants

Supersingular curves

Theorem: #𝑆𝑝2 =
𝑝

12
+ 𝑏,   𝑏 ∈ {0,1,2}



• We are interested in the set of supersingular curves (up to isomorphism) 
over a specific field

• Thm (Mestre): all supersingular curves over 𝔽𝑝2 in same isogeny class

• Fact (see previous slides): for every prime ℓ not dividing 𝑝, there exists
ℓ + 1 isogenies of degree ℓ originating from any supersingular curve

The supersingular isogeny graph

Upshot: immediately leads to (ℓ + 1) directed regular graph 𝑋(𝑆𝑝2 , ℓ)



• Let 𝑝 = 241, 𝔽𝑝2 = 𝔽𝑝 𝑤 = 𝔽𝑝 𝑥 /(𝑥2 − 3𝑥 + 7)

• #𝑆𝑝2 = 20

• 𝑆𝑝2 = {93, 51𝑤 + 30, 190𝑤 + 183, 240, 216, 45𝑤 + 211, 196𝑤 +
105, 64, 155𝑤 + 3, 74𝑤 + 50, 86𝑤 + 227, 167𝑤 + 31, 175𝑤 + 237,
66𝑤 + 39, 8, 23𝑤 + 193, 218𝑤 + 21, 28, 49𝑤 + 112, 192𝑤 + 18}

E.g. a supersingular isogeny graph

Credit to Fre Vercauteren for example and pictures…



Supersingular isogeny graph for ℓ = 2:  𝑋(𝑆2412, 2)



Supersingular isogeny graph for ℓ = 3:  𝑋(𝑆2412, 3)



Rapid mixing property: Let 𝑆 be any subset of the vertices of the 
graph 𝐺, and 𝑥 be any vertex in 𝐺. A “long enough” random 

walk will land in 𝑆 with probability at least 
𝑆

2|𝐺|
.

Supersingular isogeny graphs are Ramanujan graphs

See De Feo, Jao, Plut (Prop 2.1) for precise formula describing what’s “long enough”
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SIDH: history

• 1999: Couveignes gives talk “Hard homogenous spaces” (eprint.iacr.org/2006/291) 

• 2006 (OIDH): Rostovsev and Stolbunov propose ordinary isogeny DH

• 2010 (OIDH break): Childs-Jao-Soukharev give quantum subexponential alg. 

• 2011 (SIDH): Jao and De Feo choose supersingular curves

Crucial difference: supersingular (i.e., non-ordinary) endomorphism ring             

is not commutative (resists 2010 attack) 

http://eprint.iacr.org/2006/291
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𝐸0 𝐸𝐴 = 𝐸0/〈𝐴〉

𝐸0/〈𝐵〉 = 𝐸𝐵 𝐸𝐴𝐵 = 𝐸0/〈𝐴, 𝐵〉

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′

params public private

𝐸’s are isogenous curves 

𝑃’s, 𝑄’s, 𝑅’s, 𝑆’s are points

SIDH: in a nutshell



𝐸0 𝐸𝐴 = 𝐸0/〈𝑃𝐴 + 𝑠𝐴 𝑄𝐴〉

𝐸0/〈𝑃𝐵 + 𝑠𝐵 𝑄𝐵〉 = 𝐸𝐵 𝐸𝐴𝐵 = 𝐸0/〈𝐴, 𝐵〉

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′

params public private

𝐸’s are isogenous curves 

𝑃’s, 𝑄’s, 𝑅’s, 𝑆’s are points

SIDH: in a nutshell

(𝜙𝐵(𝑃𝐴), 𝜙𝐵(𝑄𝐴)) = (𝑅𝐵 , 𝑆𝐵)

(𝑅𝐴, 𝑆𝐴) = (𝜙𝐴(𝑃𝐵), 𝜙𝐴(𝑄𝐵))

𝐸𝐴/〈𝑅𝐴 + 𝑠𝐵 𝑆𝐴〉 ≅ 𝐸0/〈𝑃𝐴 + 𝑠𝐴 𝑄𝐴 , 𝑃𝐵 + 𝑠𝐵 𝑄𝐵〉 ≅ 𝐸𝐵/〈𝑅𝐵 + 𝑠𝐴 𝑆𝐵〉

Key: Alice sends her isogeny evaluated at Bob’s generators, and vice versa



• Computing isogenies of prime degree ℓ at least 𝑂 ℓ , e.g., Velu’s
formulas need the whole kernel specified

• We (obviously) need exp. set of kernels, meaning exp. sized 
isogenies, which we can’t compute unless they’re smooth

• Here (for efficiency/ease) we will only use isogenies of degree ℓ𝑒

for ℓ ∈ {2,3}

• In SIDH: Alice does 2-isogenies, Bob does 3-isogenies

Exploiting smooth degree isogenies 



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃0

𝐸6 = 𝐸0/⟨𝑃0⟩



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃0

𝐸5 = 𝐸0/⟨[2]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃0
𝐸4 = 𝐸0/⟨[4]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃0

𝐸3 = 𝐸0/⟨[8]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃0

𝐸2 = 𝐸0/⟨[16]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[32]𝑃0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1 = 𝜙0(𝑃0)

𝑃0

𝑃1

𝜙0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1

𝜙0

𝐸6 = 𝐸1/⟨𝑃1⟩



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃1

𝜙0

𝐸5 = 𝐸1/⟨[2]𝑃1⟩

𝑃1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃1

𝜙0

𝐸4 = 𝐸1/⟨[4]𝑃1⟩

𝑃1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃1

𝜙0

𝐸3 = 𝐸1/⟨[8]𝑃1⟩

𝑃1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃1

𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)

𝑃1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)

𝑃1

𝑃2 = 𝜙1(𝑃1)

𝑃2

𝜙1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸2/⟨𝑃2⟩
𝑃2

𝜙1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸2/⟨[2]𝑃2⟩
𝑃2

𝜙1

[2]𝑃2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸2/⟨[4]𝑃2⟩
𝑃2

𝜙1

[4]𝑃2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸3 = 𝐸2/⟨[8]𝑃2⟩
= 𝜙2(𝐸2) 𝑃2

𝜙1

[8]𝑃2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸3 = 𝐸2/⟨[8]𝑃2⟩
= 𝜙2(𝐸2) 𝑃2

𝜙1

[8]𝑃2

𝑃3 = 𝜙2(𝑃2) 𝑃3

𝜙2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸3/⟨𝑃3⟩
𝜙1

𝑃3

𝜙2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸3/⟨[2]𝑃3⟩
𝜙1

𝑃3

𝜙2

[2]𝑃3



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3

𝑃4 = 𝜙3(𝑃3)

𝑃4

𝜙3



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸4/⟨[2]𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

[2]𝑃4



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸4/⟨[2]𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

[2]𝑃4

𝑃5 = 𝜙4(𝑃4)

𝑃5

𝜙4



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸5/⟨𝑃5⟩
𝜙1

𝜙2

𝜙3

𝑃5

𝜙4

𝜙5



Computing ℓ𝑒 degree isogenies

𝜙 ∶ 𝐸0 → 𝐸6

𝜙 = 𝜙5 ∘ 𝜙4 ∘ 𝜙3 ∘ 𝜙2 ∘ 𝜙1 ∘ 𝜙0

𝜙0
𝜙1

𝜙2
𝜙3

𝜙4
𝜙5

𝐸0 𝐸6



𝐸 𝐸′?



Claw algorithm

𝐸

𝐸′

Given 𝐸 and 𝐸′ = 𝜙(𝐸), with 𝜙 degree ℓ𝑒, find 𝜙



Claw algorithm

𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side



Claw algorithm

𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side



Claw algorithm

𝐸

𝐸′

… until you have all of them



Claw algorithm

𝐸

𝐸′

Now compute ℓ𝑒/2-isogenies on the other side



Claw algorithm

𝐸

𝐸′

… discarding them until you find a collision



Claw algorithm

𝐸

𝐸′

… discarding them until you find a collision



Claw algorithm

𝐸

𝐸′

… discarding them until you find a collision



Claw algorithm

𝐸

𝐸′

Collision will most likely be unique shortest path



Claw algorithm

𝐸

𝐸′

This path describes secret isogeny 𝜙 ∶ 𝐸 → 𝐸′



Claw algorithm: classical analysis

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes )

thus  𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical memory

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes    ), and 
there are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸 (the purple nodes    ) 

thus  𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical time 

• Best (known) attacks: classical 𝑂(𝑝1/4) and quantum 𝑂(𝑝1/6)

• Confidence: both complexities are optimal for a black-box claw attack



SIDH: security summary

• Setting: supersingular elliptic curves 𝐸/𝔽𝑝2 where 𝑝 is a large prime

• Hard problem: Given 𝑃, 𝑄 ∈ 𝐸 and 𝜙 𝑃 ,𝜙 𝑄 ∈ 𝜙(𝐸), compute 𝜙
(where 𝜙 has fixed, smooth, public degree) 

• Best (known) attacks: classical 𝑂(𝑝1/4) and quantum 𝑂(𝑝1/6)

• Confidence: above complexities are optimal for (above generic) claw attack



The curves and their security estimates

Target 

Security 

Level

Name

(SIKEp+

⌈log2 𝑝⌉)
(𝒆𝑨, 𝒆𝑩) 𝒌 𝟐𝒌−𝟏

𝐦𝐢𝐧

( 𝟐𝒆𝑨 , 𝟑𝒆𝟑) √𝟐𝒌
𝐦𝐢𝐧

(∛𝟐𝒆𝟐 , ∛𝟑𝒆𝟑)

NIST 1 SIKEp503 (250,159) 128 2127 2125 264 283

NIST 3 SIKEp761 (372,239) 192 2191 2186 296 2124

NIST 5 SIKEp964 (486,301) 256 2255 2238 2128 2159

𝑝 = 2𝑒𝐴3eB − 1

classical quantum



SIDH: summary

• Setting: supersingular elliptic curves 𝐸/𝔽𝑝2 where 𝑝 = 2𝑖3𝑗 − 1

• Parameters:

𝐸0/𝔽𝑝2 ∶ 𝑦
3 = 𝑥3 + 𝑥 with   #𝐸0 = 2𝑖3𝑗

2

𝑃𝐴, 𝑄𝐴 ∈ 𝐸0 2𝑖 and  𝑃𝐵, 𝑄𝐵 ∈ 𝐸0[3
𝑗]

• Public key generation (Alice):
𝑠 ∈ 0, 2𝑖

𝑆𝐴 = 𝑃𝐴 + 𝑠 𝑄𝐴
𝜙𝐴 ∶ 𝐸0 → 𝐸𝐴: = 𝐸0/⟨𝑆𝐴⟩

send  𝐸𝐴, 𝜙𝐴 𝑃𝐵 , 𝜙𝐴(𝑄𝐵) to Bob

• Shared key generation (Alice):
𝑆𝐴𝐵 = 𝜙𝐵 𝑃𝐴 + 𝑠 𝜙𝐵 𝑄𝐴 ∈ 𝐸𝐵

𝜙𝐴′ ∶ 𝐸𝐵 → 𝐸𝐴𝐵: = 𝐸𝐵/⟨𝑆𝐴𝐵⟩
𝑗𝐴𝐵 = 𝑗(𝐸𝐴𝐵)

𝐸0
𝐸1
𝐸2
𝐸3

𝐸𝐴

𝑆𝐴

𝐸𝐵
𝐸1′
𝐸2′
𝐸3′

𝐸𝐴𝐵

𝑆𝐴𝐵

𝐸0
𝐸𝐴 = 𝐸0/〈𝑆𝐴〉

𝐸0/〈𝑆𝐵〉 = 𝐸𝐵

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′



SIKE: Supersingular Isogeny Key Encapsulation

Friday’s talk: the current state-of-the-art



Questions?


