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Part 1: Motivation



Previous talk: pre-quantum ECC
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\ GIF: Wouter Castryck



This talk: post-quantum ECC

W. Castryck (GIF): “Elliptic curves are dead: long live elliptic curves” https://www.esat.kuleuven.be/cosic/?p=7404



https://www.esat.kuleuven.be/cosic/?p=7404
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Diffie-Hellman instantiations

DH ECDH SIDH
Elements integers g modulo | points P in curve curves E in
orime group isogeny class
Secrets exponents x scalars k Isogenies ¢
computations g,x — g* k,P — [k]P ¢,E - ¢p(E)
hard problem given g, g* given P, [k]P given E, ¢(E)
find x find k find ¢




Part 2: Preliminaries



Fxtension fields

To construct degree n extension field Fgn of a finite field Fy, take Fyn = Fg(a)
where f(a) = 0 and f(x) is irreducible of degree n in F, [x].

Example: for any prime p = 3 mod 4, can take F 2 = F,,(i) where i* + 1 =0




Elliptic Curves and j-invariants

 Recall that every elliptic curve E over a field K with char(K) > 3 can be
defined by

E:y?=x34ax+b,
where a,b € K, 4a3 + 27b% = 0

- For any extension K'/K, the set of K'-rational points forms a group with
identity
4a3
a3+27b

« The j-invariant j(E) = j(a,b) = 1728 - "
class over K

> determines isomorphism

« Eg, E": y? =x3+ au®x + bu? isisomorphic to E for allu € K*

« Recover acurve fromj:eqg, seta=—-3cand b =2c withc =j/(j — 1728)



Example

Over [Fy3, the curves
E;:y*=x34+9x+8

and
E,:y?=x34+3x+5
are isomorphic, since
4.93 433

j(Ey) = 1728 - 4-93427.82 3= 1728 4-33+427-52 = J(E2)

An isomorphism is given by
Y By - E;, (x,y) » (10x, 5y),
Yy~ LE, > E (x,y) » (4x,8y),
noting that yY(co;) = oo,



Torsion subgroups

 The multiplication-by-n map:
n:E->E, P - |n|P

» The n-torsion subgroup is the kernel of [n]
Eln]={P € E(K): [n]P = oo}

» Found as the roots of the nt" division polynomial i,

« |f char(K) doesn't divide n, then
E[n] = Z, X Z,



Example (n = 3)

Consider E/F11:y% = x3 + 4 with #E(F{;) = 12

3-division polynomial 3 (x) = 3x* + 4x partially
splits as P53 (x) = x(x + 3)(x? + 8x + 9)

Thus, x = 0 and x = —3 give 3-torsion points.
The points (0,2) and (0,9) are in E(IF;4), but the
rest lie in E (F;42)

(24 + 7,10¢)

Write ;2 = Fy, (i) with i +1 = 0.
P3(x) splits over FFy ;2 as
3 (x) = x(x +3)(x + 9i + ) (x + 2i + 4)

(9i 4 7,10i)

Observe E|3| =~ Z. X Z,,ie., 4 cyclic subgroups of order 3



Subgroup isogenies

* [sogeny:. morphism (rational map)
¢ : Ey = Ep

that preserves identity, i.e. ¢(004) = oo,

» Degree of (separable) isogeny is number of elements in kernel,
same as its degree as a rational map

» Given finite subgroup G € E4, there is a unique curve E, and
isogeny ¢ : Eq; = E, (up to isomorphism) having kernel G. Write

E, = ¢(E1) = E1/(G).



Subgroup isogenies: special cases

e [somorphisms are a special case of isogenies where the kernel is trivial
¢ : Ey > E;  ker(¢p) = oo,

« Endomorphisms are a special case of isogenies where the domain and co-
domain are the same curve
¢:E1_)E1, ker(¢):G, |G|>1

* Perhaps think of isogenies as a generalization of either/both: isogenies allow
non-trivial kernel and allow different domain/co-domain

* [sogenies are *almost* isomorphisms



Velu's formulas

Example: E : y% = (x% + byx + bg)(x — a). The point (a, 0) has order 2;
the quotient of E by ((a, 0)) gives an isogeny
¢ : E - E" =E/{(a0))
where
E':y2=x3+(—(4a+ 2by))x? + (b? — 4by)x

And where ¢ maps (x,y) to
x3—(a—by)x?—(bya—bg)x—bgya (XZ—(Za)X—(b1a+bo))Y
x—a ’ (x—a)2




Velu's formulas

Given curve coefficients a, b for E, and all of the x-coordinates x; of the
subgroup G € E, Velu's formulas output a’, b’ for E’, and the map

¢: E—>E,

fl(x'.Y) fz(x;Y)
(,y) = (gl<x,y> ' g2<x,y))




« Consider [3] : E = E, the multiplication-by-3

« G = ker(]|3]), which is not cyclic

-Xample, cont,

Recall E/Fq11:v% = x3 + 4 with #E(F{,) = 12

endomorphism

« Conversely, given the subgroup G, (2i +7,104)

the unique isogeny ¢ with ker(¢) = G turns
out to be the endormorphism ¢ = [3]

« But what happens if we instead take G as one

of the cyclic subgroups of order 37



Fxample, cont. E/Fqq: y*= x> + 4

E;/Fiq: y*= x>+ 5x

Ei/Fi: y?=x3+2 ¢

1\1

P,

(2i + 7, 104)

b3
/ (9i + 7,10i)

Es/F 2 y4=x3+ (7i + 3)x
o E,/F 2: y*= x>+ (4i + 3)x



[somorphisms and isogenies

e Fac
e Fac

1. Ey and E, isomorphic it j(Ey) = j(E,)
' 2. E; and E, isogenous iff #E; = #E, (late)

e Fac

3.

1-2q <#E(F,) <q

Upshot for fixed g

1

0(+/q) isogeny classes

0(q) isomorphism classes

2+/q (Hasse)



Supersingular curves

» E/F, with q = p™ supersingular iff E[p] = {oo}
- Fact: all supersingular curves can be defined over [,

+ Let S,z be the set of supersingular j-invariants




The supersingular isogeny graph

« We are interested in the set of supersingular curves (up to isomorphism)
over a specific field

» Thm (Mestre): all supersingular curves over IF,2 in same isogeny class

» Fact (see previous slides): for every prime £ not dividing p, there exists
£ + 1 isogenies of degree £ originating from any supersingular curve

Upshot: immediately leads to (£ + 1) directed regular graph X(S,2, ¥)



E.g. a supersingular isogeny graph

» Letp =241, F2 = Fp[w] = Fp[x]/(x* — 3x + 7)
« #S,2 = 20

+ S,z =1{93, 51w + 30, 190w + 183, 240, 216, 45w + 211, 196w +

105, 64, 155w + 3, 74w + 50, 86w + 227, 167w + 31, 175w + 237,
66w + 39, 8, 23w + 193, 218w + 21, 28, 49w + 112, 192w + 18}

Credit to Fre Vercauteren for example and pictures...



Supersingular isogeny graph for € = 2. X(S,442,2)



Supersingular isogeny graph for € = 3. X(S,442,3)




Supersingular isogeny graphs are Ramanujan graphs

See De Feo, Jao, Plut (Prop 2.7) for precise formula describing what's “long enough”



Part 3. SIDH



SIDH: history

1999: Couveignes gives talk "Hard homogenous spaces” (eprint.iacrorg/2006/297)

2006 (OIDH): Rostovsev and Stolbunov propose ordinary isogeny DH

2010 (OIDH break): Childs-Jao-Soukharev give quantum subexponential alg.

2011 (SIDH): Jao and De Feo choose supersingular curves

Crucial difference: supersingular (i.e., non-ordinary) endomorphism ring
IS not commutative (resists 2010 attack)


http://eprint.iacr.org/2006/291

DO NOT BE DETERRED
BY THE WORD

SUPERSINGULAR




Bob

W. Castryck (GIF): “Elliptic curves are dead: long live elliptic curves” https://www.esat.kuleuven.be/cosic/?p=7404



https://www.esat.kuleuven.be/cosic/?p=7404

SIDH: in a nutshell

params private
Ep———t sy = Eo/(A)
E’s are isogenous curves ‘0 _
P’s, Q's, R’s, S’'s are points
Pp g
& ba’

Eo/(By=F," > Eup = Eo/(A, B)




SIDH: in a nutshell

params private ¢A

. Eq vEy = Eo/(Ps + |541Q4)
s are isogenous curves ! i

P's, Q's, R's, S's are points ( ) = (P, (Pg),d4(05))

Pp D5

Pa’

Eo/(Ps + [sgl0p) = of ’ EAB = Eo/(4, B)

(Pp(Pa), P5(Q4)) = ( )

Key: Alice sends her isogeny evaluated at Bob's generators, and vice versa
[(Ra+ [splSs) 2 Eo/(Pa+ [salQa,Pp + IsplQp) = En/(Rs + [s4]55)



Exploiting smooth degree isogenies

« Computing isogenies of prime degree ¢ at least 0(£), e.qg., Velu's
formulas need the whole kernel specitied

« We (obviously) need exp. set of kernels, meaning exp. sized
isogenies, which we can’t compute unless they're smooth

« Here (for efficiency/ease) we will only use isogenies of degree £¢
for £ € {2,3}

« In SIDH: Alice does 2-isogenies, Bob does 3-isogenies



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Fp) E |

Ee = Eo/(Fp)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64

64 elements in its kemel

ker(¢p) = (Pp)

Es = Ey/{[2]P)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Fp) E |

Ey = Eo/{[4]P)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Fp) E |

E; = Ey/{[8]F)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Fp) E |

E, = Ey/{[16]P,)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Fp) E |

Ey = Eo/(|32]F)
= ¢o(Ep)

[32]Po



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64

64 elements in its kemel

ker(¢p) = (Pp)

Ey = Eo/(|32]F)
= ¢o(Ep)

Py = ¢o(Fo)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

E¢ = E1/(Py)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

Es = E1 /(|2]Py)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

E, = E; /{[4]P1)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

E; = E1 /(|8]Py)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

E, = E; /{[16]P;)
= ¢1(E71)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

E, = E; /{[16]P;)
= ¢1(E71)

P, = ¢,(P1)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

Ee = E5/(P;)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

Es = E; /{[2]P;)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

E, = E5 /{[4]P,)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

E; = E> /([8]Py)
= ¢, (E3)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

E; = E> /([8]Py)
= ¢, (E3)

Py = ¢,(P,)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

E¢ = E3/(Ps3)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

Es = E3/{[2]P5)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

E, = E3/([4]P5)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

E, = E3/([4]P5)

Py = ¢3(P3)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

Es = Ey/([2]Py)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

Es = Ey/([2]Py)

Ps = ¢4 (Py)



Computing €€ degree isogenies
(suppose £ = 2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Pp)

E¢ = Es/(Ps)



Computing ¢ degree isogenies
¢ : Eg — Eg
® = @soPyopzodyodgoy

Po P, Py
P1 R

Ps






Claw algorithm

Given E and E' = ¢(E), with ¢ degree #¢, find ¢



Claw algorithm

Compute and store £¢/2-isogenies on one side



Claw algorithm

Compute and store £¢/2-isogenies on one side



Claw algorithm

... until you have all of them



Claw algorithm

Now compute £¢/2-isogenies on the other side ®



Claw algorithm

.. discarding them until you find a collision. ®



Claw algorithm

.. discarding them until you find a collision. ®



Claw algorithm

.. discarding them until you find a collision. ®



Claw algorithm

Collision will most likely be unigue shortest path ®



Claw algorithm

This path describes secret isogeny ¢ : E — E’



Claw algorithm: classical analysis

* There are 0(£¢/?) curves £¢/2-isogenous to E’ (the blue nodes @)

thus 0(£¢/?) = 0(p*/*) classical memory

» There are 0(£¢/?) curves £¢/2-isogenous to E' (the blue nodes @), and
there are 0(£%/2) curves £¢/?-isogenous to E (the purple nodes @)

thus 0(£¢/?) = 0(p'/*) classical time

» Best (known) attacks: classical O(p'/*) and quantum 0 (p1/®)
» Confidence: both complexities are optimal for a black-box claw attack



SIDH: security summary

* Setting: supersingular elliptic curves E/IF,2 where p is a large prime

 Hard problem: Given P,Q € E and ¢(P), ¢(Q) € ¢(E), compute ¢
(where ¢ has fixed, smooth, public degree)

» Best (known) attacks: classical 0(p*/*) and quantum 0 (p'/®)

» Confidence: above complexities are optimal for (above generic) claw attack



The curves and their security estimates

p = 2°43°B — 1
Target Name min min
Security | (SIKEp+ | (eg,ep) | k [2k71 | /2e4 \[3e3) V2K | (¥/2¢2,/3¢3)
Level [log, n])
NIST 1 | SIKEp503 (250,159)|128 2127 | 2125 |64 283
NIST 3 SIKEp761 (372,239)|192 |21 2186 296 2124
NIST 5 SIKEp964 (486,301)|256 [22°° 2238 2128 2159

guantum




Eu—d?aq—» = Eo/{(Sa)

SIDH: summary

d)}
» Setting: supersingular elliptic curves E/F,2 where p = 213/ =1 o _ b
* Parameters: ,
Eo/Fz:y®=x3+x with #E,=(2'3/)
Pa, Q4 € Eo[2!| and Py, Qp € Eo[3/]

» Public key generation (Alice): |
s €]0,2%)
Sa =Py +[5s]Q4
$a: Eq = Egr= Eo/(54)
send Ey, ¢a(Pg), $a(Qp) to Bob

» Shared key generation (Alice):
Sap = ¢p(Py) + [s]l¢pp(Q4) € Ep
Gart Ep = Egpi= Ep/{SaB)
Jap = J(Eap)



Friday’s talk: the current state-of-the-art
SIKE: Supersingular Isogeny Key Encapsulation

: 1
UNIVERSITE DE W/

;ﬁ;[ules l\ﬁlll\fLEIﬁEY%E% i -{EXAS
amazon NSTRUMENTS
Microsoft Radboud University %
%, VU &
Research
E&U
FLORIDA ATLANTIC
UNIVERSITY

s T

S




Questions?

w..{;} Alice

- Y
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Bob
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