Isogeny-based cryptography: a gentle introduction to post-quantum ECC

Craig Costello

Microsoft ${ }^{\circ}$
Research

Part 1: Motivation

Previous talk: pre-quantum ECC

$P, k \mapsto[k] P$

This talk: post-quantum ECC

W. Castryck (GIF): "Elliptic curves are dead: long live elliptic curves" https://www.esat.kuleuven.be/cosic/?p=7404

Diffie-Hellman instantiations

\mathbb{Z}_{q}

Diffie-Hellman instantiations

	DH	ECDH	SIDH
Elements	integers g modulo prime	points P in curve group	curves E in isogeny class
Secrets	exponents x	scalars k	isogenies ϕ
computations	$g, x \mapsto g^{x}$	$k, P \mapsto[k] P$	$\phi, E \mapsto \phi(E)$
hard problem	given g, g^{x} find x	given $P,[k] P$ find k	given $E, \phi(E)$ find ϕ

Part 2:

Preliminaries
Motivation

Extension fields

To construct degree n extension field $\mathbb{F}_{q^{n}}$ of a finite field \mathbb{F}_{q}, take $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(\alpha)$ where $f(\alpha)=0$ and $f(x)$ is irreducible of degree n in $\mathbb{F}_{q}[x]$.

Example: for any prime $p \equiv 3 \bmod 4$, can take $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(i)$ where $i^{2}+1=0$

Elliptic Curves and j-invariants

- Recall that every elliptic curve E over a field K with $\operatorname{char}(K)>3$ can be defined by

$$
\begin{aligned}
& E: y^{2}=x^{3}+a x+b \\
& \quad \text { where } a, b \in K, 4 a^{3}+27 b^{2} \neq 0
\end{aligned}
$$

- For any extension K^{\prime} / K, the set of K^{\prime}-rational points forms a group with identity
- The j-invariant $j(E)=j(a, b)=1728 \cdot \frac{4 a^{3}}{4 a^{3}+27 b^{2}}$ determines isomorphism class over \bar{K}
- E.g., $E^{\prime}: y^{2}=x^{3}+a u^{2} x+b u^{3}$ is isomorphic to E for all $u \in K^{*}$
- Recover a curve from j : e.g., set $a=-3 c$ and $b=2 c$ with $c=j /(j-1728)$

Example

Over \mathbb{F}_{13}, the curves

$$
E_{1}: y^{2}=x^{3}+9 x+8
$$

and

$$
E_{2}: y^{2}=x^{3}+3 x+5
$$

are isomorphic, since

$$
j\left(E_{1}\right)=1728 \cdot \frac{4 \cdot 9^{3}}{4 \cdot 9^{3}+27 \cdot 8^{2}}=3=1728 \cdot \frac{4 \cdot 3^{3}}{4 \cdot 3^{3}+27 \cdot 5^{2}}=j\left(E_{2}\right)
$$

An isomorphism is given by

$$
\begin{array}{ll}
\psi: E_{1} \rightarrow E_{2}, & (x, y) \mapsto(10 x, 5 y) \\
\psi^{-1}: E_{2} \rightarrow E_{1}, & (x, y) \mapsto(4 x, 8 y)
\end{array}
$$

noting that $\psi\left(\infty_{1}\right)=\infty_{2}$

Torsion subgroups

- The multiplication-by-n map:

$$
n: E \rightarrow E, \quad P \mapsto[n] P
$$

- The n-torsion subgroup is the kernel of $[n]$

$$
E[n]=\{P \in E(\bar{K}):[n] P=\infty\}
$$

- Found as the roots of the $n^{\text {th }}$ division polynomial ψ_{n}
- If $\operatorname{char}(K)$ doesn't divide n, then

$$
E[n] \simeq \mathbb{Z}_{n} \times \mathbb{Z}_{n}
$$

Example $(n=3)$

- Consider $E / \mathbb{F}_{11}: y^{2}=x^{3}+4$ with $\# E\left(\mathbb{F}_{11}\right)=12$
- 3-division polynomial $\psi_{3}(x)=3 x^{4}+4 x$ partially splits as $\psi_{3}(x)=x(x+3)\left(x^{2}+8 x+9\right)$
- Thus, $x=0$ and $x=-3$ give 3 -torsion points. The points $(0,2)$ and $(0,9)$ are in $E\left(\mathbb{F}_{11}\right)$, but the rest lie in $E\left(\mathbb{F}_{11^{2}}\right)$
- Write $\mathbb{F}_{11^{2}}=\mathbb{F}_{11}(i)$ with $i^{2}+1=0$. $\psi_{3}(x)$ splits over $\mathbb{F}_{11^{2}}$ as
$\psi_{3}(x)=x(x+3)(x+9 i+4)(x+2 i+4)$

- Observe $E[3] \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, i.e., 4 cyclic subgroups of order 3

Subgroup isogenies

- Isogeny: morphism (rational map)

$$
\phi: E_{1} \rightarrow E_{2}
$$

that preserves identity, i.e. $\phi\left(\infty_{1}\right)=\infty_{2}$

- Degree of (separable) isogeny is number of elements in kernel, same as its degree as a rational map
- Given finite subgroup $\boldsymbol{G} \in \boldsymbol{E}_{\mathbf{1}}$, there is a unique curve $\boldsymbol{E}_{\mathbf{2}}$ and isogeny $\boldsymbol{\phi}: \boldsymbol{E}_{\mathbf{1}} \rightarrow \boldsymbol{E}_{2}$ (up to isomorphism) having kernel \boldsymbol{G}. Write $E_{2}=\phi\left(E_{1}\right)=E_{1} /\langle G\rangle$.

Subgroup isogenies: special cases

- Isomorphisms are a special case of isogenies where the kernel is trivial

$$
\phi: E_{1} \rightarrow E_{2,} \quad \operatorname{ker}(\phi)=\infty_{1}
$$

- Endomorphisms are a special case of isogenies where the domain and codomain are the same curve

$$
\phi: E_{1} \rightarrow E_{1}, \quad \operatorname{ker}(\phi)=G, \quad|G|>1
$$

- Perhaps think of isogenies as a generalization of either/both: isogenies allow non-trivial kernel and allow different domain/co-domain
- Isogenies are *almost* isomorphisms

Velu's formulas

Given any finite subgroup of G of E, we may form a quotient isogeny

$$
\phi: E \rightarrow E^{\prime}=E / G
$$

with kernel G using Velu's formulas

Example: $E: y^{2}=\left(x^{2}+b_{1} x+b_{0}\right)(x-a)$. The point $(a, 0)$ has order 2; the quotient of E by $\langle(a, 0)\rangle$ gives an isogeny

$$
\phi: E \rightarrow E^{\prime}=E /\langle(a, 0)\rangle,
$$

where

$$
E^{\prime}: y^{2}=x^{3}+\left(-\left(4 a+2 b_{1}\right)\right) x^{2}+\left(b_{1}^{2}-4 b_{0}\right) x
$$

And where ϕ maps (x, y) to

$$
\left(\frac{x^{3}-\left(a-b_{1}\right) x^{2}-\left(b_{1} a-b_{0}\right) x-b_{0} a}{x-a}, \frac{\left(\mathrm{x}^{2}-(2 \mathrm{a}) \mathrm{x}-\left(\mathrm{b}_{1} \mathrm{a}+\mathrm{b}_{0}\right)\right) \mathrm{y}}{(\mathrm{x}-\mathrm{a})^{2}}\right)
$$

Velu's formulas

Given curve coefficients a, b for E, and all of the x-coordinates x_{i} of the subgroup $G \in E$, Velu's formulas output a^{\prime}, b^{\prime} for E^{\prime}, and the map

$$
\begin{gathered}
\phi: E \rightarrow E^{\prime}, \\
(x, y) \mapsto\left(\frac{f_{1}(x, y)}{g_{1}(x, y)}, \frac{f_{2}(x, y)}{g_{2}(x, y)}\right)
\end{gathered}
$$

Example, cont.

$G=E[3]$

- Recall $E / \mathbb{F}_{11}: y^{2}=x^{3}+4$ with $\# E\left(\mathbb{F}_{11}\right)=12$
- Consider [3] : $E \rightarrow E$, the multiplication-by-3 endomorphism
- $G=\operatorname{ker}([3])$, which is not cyclic
- Conversely, given the subgroup G, the unique isogeny ϕ with $\operatorname{ker}(\phi)=G$ turns out to be the endormorphism $\phi=[3]$
- But what happens if we instead take G as one
 of the cyclic subgroups of order 3?

Example, cont. $E / \mathbb{F}_{11}: y^{2}=x^{3}+4$

Isomorphisms and isogenies

- Fact 1: E_{1} and E_{2} isomorphic iff $j\left(E_{1}\right)=j\left(E_{2}\right)$
- Fact 2: E_{1} and E_{2} isogenous iff $\# E_{1}=\# E_{2}$ (Tate)
- Fact 3: $q+1-2 \sqrt{q} \leq \# E\left(\mathbb{F}_{q}\right) \leq q+1+2 \sqrt{q}$ (Hasse)

Upshot for fixed q
$O(\sqrt{q})$ isogeny classes
$O(q)$ isomorphism classes

Supersingular curves

- E / \mathbb{F}_{q} with $q=p^{n}$ supersingular iff $E[p]=\{\infty\}$
- Fact: all supersingular curves can be defined over $\mathbb{F}_{p^{2}}$
- Let $S_{p^{2}}$ be the set of supersingular j-invariants

$$
\text { Theorem: } \# S_{p^{2}}=\left\lfloor\frac{p}{12}\right\rfloor+b, \quad b \in\{0,1,2\}
$$

The supersingular isogeny graph

- We are interested in the set of supersingular curves (up to isomorphism) over a specific field
- Thm (Mestre): all supersingular curves over $\mathbb{F}_{p^{2}}$ in same isogeny class
- Fact (see previous slides): for every prime ℓ not dividing p, there exists $\ell+1$ isogenies of degree ℓ originating from any supersingular curve

Upshot: immediately leads to $(\ell+1)$ directed regular graph $X\left(S_{p^{2}}, \ell\right)$

E.g. a supersingular isogeny graph

- Let $p=241, \mathbb{F}_{p^{2}}=\mathbb{F}_{p}[w]=\mathbb{F}_{p}[x] /\left(x^{2}-3 x+7\right)$
- $\# S_{p^{2}}=20$
- $S_{p^{2}}=\{93,51 w+30,190 w+183,240,216,45 w+211,196 w+$ $105,64,155 w+3,74 w+50,86 w+227,167 w+31,175 w+237$, $66 w+39,8,23 w+193,218 w+21,28,49 w+112,192 w+18\}$

Supersingular isogeny graph for $\ell=2: X\left(S_{241^{2}}, 2\right)$

Supersingular isogeny graph for $\ell=3: X\left(S_{241^{2}}, 3\right)$

Supersingular isogeny graphs are Ramanujan graphs

Rapid mixing property: Let S be any subset of the vertices of the graph G, and x be any vertex in G. A "long enough" random walk will land in S with probability at least $\frac{|S|}{2|G|^{\text {. }}}$.

See De Feo, Jao, Plut (Prop 2.1) for precise formula describing what's "long enough"

Part 1:
 Motivation

Part 2:

Preliminaries

Part 3:

SIDH

SIDH: history

- 1999: Couveignes gives talk "Hard homogenous spaces" (eprint.iacr.org/2006/291)
- 2006 (OIDH): Rostovsev and Stolbunov propose ordinary isogeny DH
- 2010 (OIDH break): Childs-Jao-Soukharev give quantum subexponential alg.
- 2011 (SIDH): Jao and De Feo choose supersingular curves

Crucial difference: supersingular (i.e., non-ordinary) endomorphism ring is not commutative (resists 2010 attack)

. WARNING

DO NOT BE DETERRED

 BY THE WORD SUPERSINGULAR
W. Castryck (GIF): "Elliptic curves are dead: long live elliptic curves" https://www.esat.kuleuven.be/cosic/?p=7404

SIDH: in a nutshell

SIDH: in a nutshell

params public private
E^{\prime} 's are isogenous curves $P^{\prime} \mathrm{s}, Q^{\prime} \mathrm{s}, R^{\prime} \mathrm{s}, S^{\prime}$ s are points

$E_{0} /\left\langle P_{B}+\left[s_{B}\right] Q_{B}\right\rangle=E_{B} \Longrightarrow E_{A B}=E_{0} /\langle A, B\rangle$
$\left(\phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)\right)=\left(R_{B}, S_{B}\right)$

Key: Alice sends her isogeny evaluated at Bob's generators, and vice versa

$$
E_{A} /\left\langle R_{A}+\left[s_{B}\right] S_{A}\right\rangle \cong E_{0} /\left\langle P_{A}+\left[s_{A}\right] Q_{A}, P_{B}+\left[s_{B}\right] Q_{B}\right\rangle \cong E_{B} /\left\langle R_{B}+\left[s_{A}\right] S_{B}\right\rangle
$$

Exploiting smooth degree isogenies

- Computing isogenies of prime degree ℓ at least $O(\ell)$, e.g., Velu's formulas need the whole kernel specified
- We (obviously) need exp. set of kernels, meaning exp. sized isogenies, which we can't compute unless they're smooth
- Here (for efficiency/ease) we will only use isogenies of degree ℓ^{e} for $\ell \in\{2,3\}$
- In SIDH: Alice does 2-isogenies, Bob does 3-isogenies

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{6}=E_{0} /\left\langle P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64 64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{0} /\left\langle[2] P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64 64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$
$E_{4}=E_{0} /\left\langle[4] P_{0}\right\rangle$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$
$E_{3}=E_{0} /\left\langle[8] P_{0}\right\rangle$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{2}=E_{0} /\left\langle[16] P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{1} & =E_{0} /\left\langle[32] P_{0}\right\rangle \\
& =\phi_{0}\left(E_{0}\right)
\end{aligned}
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64 64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{1} & =E_{0} /\left\langle[32] P_{0}\right\rangle \\
& =\phi_{0}\left(E_{0}\right)
\end{aligned}
$$

$$
P_{1}=\phi_{0}\left(P_{0}\right)
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{1} /\left\langle[2] P_{1}\right\rangle
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{4}=E_{1} /\left\langle[4] P_{1}\right\rangle
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{2} & =E_{1} /\left\langle[16] P_{1}\right\rangle \\
& =\phi_{1}\left(E_{1}\right)
\end{aligned}
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{2} /\left\langle\left[[2] P_{2}\right\rangle\right.
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{3} & =E_{2} /\left\langle[8] P_{2}\right\rangle \\
& =\phi_{2}\left(E_{2}\right)
\end{aligned}
$$

N

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{3} /\left\langle[2] P_{3}\right\rangle
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{4}=E_{3} /\left\langle[4] P_{3}\right\rangle
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

$$
\begin{gathered}
\phi: E_{0} \rightarrow E_{6} \\
\phi=\phi_{5} \circ \phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1} \circ \phi_{0}
\end{gathered}
$$

? ?

Claw algorithm

Given E and $E^{\prime}=\phi(E)$, with ϕ degree ℓ^{e}, find ϕ

Claw algorithm

Compute and store $\ell^{e / 2}$-isogenies on one side

Claw algorithm

Compute and store $\ell^{e / 2}$-isogenies on one side

Claw algorithm

Claw algorithm

Now compute $\ell^{e / 2}$-isogenies on the other side

Claw algorithm

This path describes secret isogeny $\phi: E \rightarrow E^{\prime}$

Claw algorithm: classical analysis

- There are $O\left(\ell^{e / 2}\right)$ curves $\ell^{e / 2}$-isogenous to E^{\prime} (the blue nodes O) thus $O\left(\ell^{e / 2}\right)=O\left(p^{1 / 4}\right)$ classical memory
- There are $O\left(\ell^{e / 2}\right)$ curves $\ell^{e / 2}$-isogenous to E^{\prime} (the blue nodes O), and there are $O\left(\ell^{e / 2}\right)$ curves $\ell^{e / 2}$-isogenous to E (the purple nodes $)$

$$
\text { thus } O\left(\ell^{e / 2}\right)=O\left(p^{1 / 4}\right) \text { classical time }
$$

- Best (known) attacks: classical $O\left(p^{1 / 4}\right)$ and quantum $O\left(p^{1 / 6}\right)$
- Confidence: both complexities are optimal for a black-box claw attack

SIDH: security summary

- Setting: supersingular elliptic curves $E / \mathbb{F}_{p^{2}}$ where p is a large prime
- Hard problem: Given $P, Q \in E$ and $\phi(P), \phi(Q) \in \phi(E)$, compute ϕ (where ϕ has fixed, smooth, public degree)
- Best (known) attacks: classical $O\left(p^{1 / 4}\right)$ and quantum $O\left(p^{1 / 6}\right)$
- Confidence: above complexities are optimal for (above generic) claw attack

The curves and their security estimates

$$
p=2^{e_{A}} 3^{\mathrm{e}_{\mathrm{B}}}-1
$$

Target Security Level	Name $(\mathrm{SIKEp+}$ $\left.\left\lceil\log _{2} p\right]\right)$	$\left(\boldsymbol{e}_{\boldsymbol{A}}, \boldsymbol{e}_{\boldsymbol{B}}\right)$	\boldsymbol{k}	$\mathbf{2}^{\boldsymbol{k}-\mathbf{1}}$	min $\left(\sqrt[\mathbf{2}^{\boldsymbol{e}_{\boldsymbol{A}}}]{ }, \sqrt{\mathbf{3}^{\boldsymbol{e}_{\mathbf{3}}}}\right)$	$\sqrt{\mathbf{2}^{\boldsymbol{k}}}$	min $\left(\sqrt[3]{\left.\mathbf{2}^{\boldsymbol{e}_{2}}, \sqrt[3]{\mathbf{3}^{\boldsymbol{e}_{\mathbf{3}}}}\right)}\right.$
NIST 1	SIKEp503	$(250,159)$	128	2^{127}	2^{125}	2^{64}	2^{83}
NIST 3	SIKEp761	$(372,239)$	192	2^{191}	2^{186}	2^{96}	2^{124}
NIST 5	SIKEp964	$(486,301)$	256	2^{255}	2^{238}	2^{128}	2^{159}

SIDH: summary

- Setting: supersingular elliptic curves $E / \mathbb{F}_{p^{2}}$ where $p=2^{i} 3^{j}-1_{E_{0} /\left\langle S_{B}\right\rangle=E_{B}}$
- Parameters:

$$
\begin{aligned}
& E_{0} / \mathbb{F}_{p^{2}}: y^{3}=x^{3}+x \text { with } \quad \# E_{0}=\left(2^{i} 3^{j}\right)^{2} \\
& P_{A}, Q_{A} \in E_{0}\left[2^{i}\right] \text { and } P_{B}, Q_{B} \in E_{0}\left[3^{j}\right]
\end{aligned}
$$

- Public key generation (Alice):

$$
\begin{gathered}
s \in\left[0,2^{i}\right) \\
S_{A}=P_{A}+[s] Q_{A} \\
\phi_{A}: E_{0} \rightarrow E_{A}:=E_{0} /\left\langle S_{A}\right\rangle \\
\text { send } E_{A}, \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right) \text { to Bob }
\end{gathered}
$$

- Shared key generation (Alice):

$$
\begin{gathered}
S_{A B}=\phi_{B}\left(P_{A}\right)+[s] \phi_{B}\left(Q_{A}\right) \in E_{B} \\
\phi_{A^{\prime}}: E_{B} \rightarrow E_{A B}:=E_{B} /\left\langle S_{A B}\right\rangle \\
j_{A B}=j\left(E_{A B}\right)
\end{gathered}
$$

Friday's talk: the current state-of-the-art
SIKE: Supersingular Isogeny Key Encapsulation

Microsoft ${ }^{\text { }}$

Research

Questions?

