Isogeny-based cryptography: a gentle introduction to post-quantum ECC

Craig Costello

Microsoft®
Research

Part 1: Motivation

Part 2: Preliminaries

Part 3: SIDH

Previous talk: pre-quantum ECC

GIF: Wouter Castryck

This talk: post-quantum ECC

W. Castryck (GIF): "Elliptic curves are dead: long live elliptic curves" https://www.esat.kuleuven.be/cosic/?p=7404

Diffie-Hellman instantiations

Diffie-Hellman instantiations

	DH	ECDH	SIDH
Elements	integers <i>g</i> modulo prime	points P in curve group	curves <i>E</i> in isogeny class
Secrets	exponents x	scalars <i>k</i>	isogenies $oldsymbol{\phi}$
computations	$g, x \mapsto g^x$	$k, P \mapsto [k]P$	$\phi, E \mapsto \phi(E)$
hard problem	given g, g^x find x	given <i>P</i> ,[<i>k</i>] <i>P</i> find <i>k</i>	given $E, \phi(E)$ find ϕ

Part 1: Motivation

Part 2: Preliminaries

Part 3: SIDH

Extension fields

To construct degree n extension field \mathbb{F}_{q^n} of a finite field \mathbb{F}_{q^r} take $\mathbb{F}_{q^n} = \mathbb{F}_q(\alpha)$ where $f(\alpha) = 0$ and f(x) is irreducible of degree n in $\mathbb{F}_q[x]$.

Example: for any prime $p \equiv 3 \mod 4$, can take $\mathbb{F}_{p^2} = \mathbb{F}_p(i)$ where $i^2 + 1 = 0$

Elliptic Curves and j-invariants

• Recall that every elliptic curve E over a field K with ${\rm char}(K)>3$ can be defined by

$$E: y^2 = x^3 + ax + b$$
, where $a, b \in K$, $4a^3 + 27b^2 \neq 0$

- For any extension K'/K, the set of K'-rational points forms a group with identity
- The j-invariant $j(E)=j(a,b)=1728\cdot \frac{4a^3}{4a^3+27b^2}$ determines isomorphism class over \overline{K}
- E.g., E': $y^2 = x^3 + au^2x + bu^3$ is isomorphic to E for all $u \in K^*$
- Recover a curve from j: e.g., set a = -3c and b = 2c with c = j/(j-1728)

Example

Over \mathbb{F}_{13} , the curves

$$E_1: y^2 = x^3 + 9x + 8$$

and

$$E_2: y^2 = x^3 + 3x + 5$$

are isomorphic, since

$$j(E_1) = 1728 \cdot \frac{4 \cdot 9^3}{4 \cdot 9^3 + 27 \cdot 8^2} = 3 = 1728 \cdot \frac{4 \cdot 3^3}{4 \cdot 3^3 + 27 \cdot 5^2} = j(E_2)$$

An isomorphism is given by

$$\psi: E_1 \to E_2$$
, $(x,y) \mapsto (10x,5y)$, $\psi^{-1}: E_2 \to E_1$, $(x,y) \mapsto (4x,8y)$,

noting that $\psi(\infty_1) = \infty_2$

Torsion subgroups

• The multiplication-by-*n* map:

$$n: E \to E$$
, $P \mapsto [n]P$

• The *n*-torsion subgroup is the kernel of [n] $E[n] = \{P \in E(\overline{K}) : [n]P = \infty\}$

ullet Found as the roots of the n^{th} division polynomial ψ_n

• If char(K) doesn't divide n, then $E[n] \simeq \mathbb{Z}_n \times \mathbb{Z}_n$

Example (n = 3)

- Consider E/\mathbb{F}_{11} : $y^2=x^3+4$ with $\#E(\mathbb{F}_{11})=12$
- 3-division polynomial $\psi_3(x) = 3x^4 + 4x$ partially splits as $\psi_3(x) = x(x+3)(x^2+8x+9)$
- Thus, x=0 and x=-3 give 3-torsion points. The points (0,2) and (0,9) are in $E(\mathbb{F}_{11})$, but the rest lie in $E(\mathbb{F}_{11}^2)$
- Write $\mathbb{F}_{11^2} = \mathbb{F}_{11}(i)$ with $i^2 + 1 = 0$. $\psi_3(x)$ splits over \mathbb{F}_{11^2} as $\psi_3(x) = x(x+3)(x+9i+4)(x+2i+4)$

• Observe $E[3] \simeq \mathbb{Z}_3 \times \mathbb{Z}_3$, i.e., 4 cyclic subgroups of order 3

Subgroup isogenies

• Isogeny: morphism (rational map)

$$\phi: E_1 \to E_2$$
 that preserves identity, i.e. $\phi(\infty_1) = \infty_2$

• Degree of (separable) isogeny is number of elements in kernel, same as its degree as a rational map

• Given finite subgroup $G \in E_1$, there is a unique curve E_2 and isogeny $\phi : E_1 \to E_2$ (up to isomorphism) having kernel G. Write $E_2 = \phi(E_1) = E_1/\langle G \rangle$.

Subgroup isogenies: special cases

• Isomorphisms are a special case of isogenies where the kernel is trivial $\phi: E_1 \to E_2$, $\ker(\phi) = \infty_1$

• Endomorphisms are a *special case of isogenies* where the domain and codomain are the same curve

$$\phi: E_1 \to E_1$$
, $\ker(\phi) = G$, $|G| > 1$

 Perhaps think of isogenies as a generalization of either/both: isogenies allow non-trivial kernel and allow different domain/co-domain

Isogenies are *almost* isomorphisms

Velu's formulas

Given any finite subgroup of G of E, we may form a quotient isogeny

$$\phi: E \to E' = E/G$$

with kernel G using Velu's formulas

Example: $E: y^2 = (x^2 + b_1 x + b_0)(x - a)$. The point (a, 0) has order 2; the quotient of E by $\langle (a,0) \rangle$ gives an isogeny

$$\phi: E \to E' = E/\langle (a,0) \rangle,$$

where

$$E': y^2 = x^3 + (-(4a + 2b_1))x^2 + (b_1^2 - 4b_0)x$$

And where
$$\phi$$
 maps (x,y) to
$$\left(\frac{x^3-(a-b_1)x^2-(b_1a-b_0)x-b_0a}{x-a}, \frac{\left(x^2-(2a)x-(b_1a+b_0)\right)y}{(x-a)^2}\right)$$

Velu's formulas

Given curve coefficients a, b for E, and **all** of the x-coordinates x_i of the subgroup $G \in E$, Velu's formulas output a', b' for E', and the map

$$\phi: E \to E',$$

$$(x,y) \mapsto \left(\frac{f_1(x,y)}{g_1(x,y)}, \frac{f_2(x,y)}{g_2(x,y)}\right)$$

Example, cont.

- Recall E/\mathbb{F}_{11} : $y^2 = x^3 + 4$ with $\#E(\mathbb{F}_{11}) = 12$
- Consider [3] : $E \rightarrow E$, the multiplication-by-3 endomorphism
- $G = \ker([3])$, which is not cyclic
- Conversely, given the subgroup G, the unique isogeny ϕ with $\ker(\phi) = G$ turns out to be the endormorphism $\phi = [3]$
- But what happens if we instead take *G* as one of the cyclic subgroups of order **3**?

G = E[3]

Example, cont. E/\mathbb{F}_{11} : $y^2 = x^3 + 4$

Isomorphisms and isogenies

- Fact 1: E_1 and E_2 isomorphic iff $j(E_1) = j(E_2)$
- Fact 2: E_1 and E_2 isogenous iff $\#E_1 = \#E_2$ (Tate)
- Fact 3: $q+1-2\sqrt{q} \le \#E\big(\mathbb{F}_q\big) \le q+1+2\sqrt{q}$ (Hasse)

Upshot for fixed q $O(\sqrt{q}) \text{ isogeny classes}$ O(q) isomorphism classes

Supersingular curves

- E/\mathbb{F}_q with $q=p^n$ supersingular iff $E[p]=\{\infty\}$
- Fact: all supersingular curves can be defined over \mathbb{F}_{p^2}
- Let S_{p^2} be the set of supersingular j-invariants

Theorem:
$$\#S_{p^2} = \left[\frac{p}{12}\right] + b$$
, $b \in \{0,1,2\}$

The supersingular isogeny graph

- We are interested in the set of supersingular curves (up to isomorphism) over a specific field
- Thm (Mestre): all supersingular curves over \mathbb{F}_{p^2} in same isogeny class
- Fact (see previous slides): for every prime ℓ not dividing p, there exists $\ell+1$ isogenies of degree ℓ originating from any supersingular curve

Upshot: immediately leads to $(\ell + 1)$ directed regular graph $X(S_{p^2}, \ell)$

E.g. a supersingular isogeny graph

• Let
$$p = 241$$
, $\mathbb{F}_{p^2} = \mathbb{F}_p[w] = \mathbb{F}_p[x]/(x^2 - 3x + 7)$

•
$$\#S_{p^2} = 20$$

• $S_{p^2} = \{93, 51w + 30, 190w + 183, 240, 216, 45w + 211, 196w + 105, 64, 155w + 3, 74w + 50, 86w + 227, 167w + 31, 175w + 237, 66w + 39, 8, 23w + 193, 218w + 21, 28, 49w + 112, 192w + 18\}$

Credit to Fre Vercauteren for example and pictures...

Supersingular isogeny graph for $\ell=2$: $X(S_{241^2},2)$

Supersingular isogeny graph for $\ell=3$: $X(S_{241^2},3)$

Supersingular isogeny graphs are Ramanujan graphs

Rapid mixing property: Let S be any subset of the vertices of the graph G, and x be any vertex in G. A "long enough" random walk will land in S with probability at least $\frac{|S|}{2|G|}$.

See De Feo, Jao, Plut (Prop 2.1) for precise formula describing what's "long enough"

Part 1: Motivation

Part 2: Preliminaries

Part 3: SIDH

SIDH: history

- 1999: Couveignes gives talk "Hard homogenous spaces" (eprint.iacr.org/2006/291)
- 2006 (OIDH): Rostovsev and Stolbunov propose ordinary isogeny DH
- 2010 (OIDH break): Childs-Jao-Soukharev give quantum subexponential alg.
- 2011 (SIDH): Jao and De Feo choose supersingular curves

Crucial difference: supersingular (i.e., non-ordinary) endomorphism ring is not commutative (resists 2010 attack)

DO NOT BE DETERRED BY THE WORD SUPERSINGULAR

SIDH: in a nutshell

params public private

E's are isogenous curves P's, Q's, R's, S's are points

SIDH: in a nutshell

params public private

E's are isogenous curves P's, Q's, R's, S's are points

Key: Alice sends her isogeny evaluated at Bob's generators, and vice versa

$$E_A/\langle R_A + [s_B]S_A \rangle \cong E_0/\langle P_A + [s_A]Q_A$$
, $P_B + [s_B]Q_B \rangle \cong E_B/\langle R_B + [s_A]S_B \rangle$

Exploiting smooth degree isogenies

- Computing isogenies of prime degree ℓ at least $O(\ell)$, e.g., Velu's formulas need the whole kernel specified
- We (obviously) need exp. set of kernels, meaning exp. sized isogenies, which we can't compute unless they're smooth
- Here (for efficiency/ease) we will only use isogenies of degree ℓ^e for $\ell \in \{2,3\}$
- In SIDH: Alice does 2-isogenies, Bob does 3-isogenies

$$\phi : E_0 \to E_6$$

$$\phi = \phi_5 \circ \phi_4 \circ \phi_3 \circ \phi_2 \circ \phi_1 \circ \phi_0$$

E

E'

Given E and $E' = \phi(E)$, with ϕ degree ℓ^e , find ϕ

Compute and store $\ell^{e/2}$ -isogenies on one side

Compute and store $\ell^{e/2}$ -isogenies on one side

... until you have all of them

This path describes secret isogeny $\phi: E \to E'$

Claw algorithm: classical analysis

• There are $O(\ell^{e/2})$ curves $\ell^{e/2}$ -isogenous to E' (the blue nodes \bigcirc)

thus
$$O(\ell^{e/2}) = O(p^{1/4})$$
 classical memory

• There are $O(\ell^{e/2})$ curves $\ell^{e/2}$ -isogenous to E' (the blue nodes \bigcirc), and there are $O(\ell^{e/2})$ curves $\ell^{e/2}$ -isogenous to E (the purple nodes \bigcirc)

thus
$$O(\ell^{e/2}) = O(p^{1/4})$$
 classical time

- Best (known) attacks: classical $O(p^{1/4})$ and quantum $O(p^{1/6})$
- Confidence: both complexities are optimal for a black-box claw attack

SIDH: security summary

• Setting: supersingular elliptic curves E/\mathbb{F}_{p^2} where p is a large prime

• Hard problem: Given $P,Q \in E$ and $\phi(P),\phi(Q) \in \phi(E)$, compute ϕ (where ϕ has fixed, smooth, public degree)

- Best (known) attacks: classical $O(p^{1/4})$ and quantum $O(p^{1/6})$
- Confidence: above complexities are optimal for (above generic) claw attack

The curves and their security estimates

$$p = 2^{e_A}3^{e_B} - 1$$

Target Security Level	Name (SIKEp+ $\lceil \log_2 p \rceil$)	(e_A, e_B)	k	2^{k-1}	$\min_{(\sqrt{2^{e_A}},\sqrt{3^{e_3}})}$	$\sqrt{2^k}$	min $(\sqrt[3]{2^{e_2}}, \sqrt[3]{3^{e_3}})$
NIST 1	SIKEp503	(250,159)	128	2^{127}	2^{125}	264	283
NIST 3	SIKEp761	(372,239)	192	2 ¹⁹¹	2^{186}	296	2 ¹²⁴
NIST 5	SIKEp964	(486,301)	256	2 ²⁵⁵	2 ²³⁸	2 ¹²⁸	2 ¹⁵⁹

classical quantum

SIDH: summary

- Setting: supersingular elliptic curves E/\mathbb{F}_{p^2} where $p=2^i3^j-1$ $E_0/\langle S_B\rangle=E_B$ Φ_A'
- Parameters:

$$E_0/\mathbb{F}_{p^2}: y^3 = x^3 + x$$
 with $\#E_0 = (2^i 3^j)^2$
 $P_A, Q_A \in E_0[2^i]$ and $P_B, Q_B \in E_0[3^j]$

• Public key generation (Alice):

$$s \in \left[0, 2^i\right)$$
 $S_A = P_A + \left[s\right]Q_A$
 $\phi_A: E_0 \to E_A: = E_0/\langle S_A \rangle$
send E_A , $\phi_A(P_B)$, $\phi_A(Q_B)$ to Bob

Shared key generation (Alice):

$$S_{AB} = \phi_B(P_A) + [s]\phi_B(Q_A) \in E_B$$

$$\phi_{A'}: E_B \to E_{AB}: = E_B/\langle S_{AB} \rangle$$

$$j_{AB} = j(E_{AB})$$

Friday's talk: the current state-of-the-art SIKE: Supersingular Isogeny Key Encapsulation

Questions?

