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• Smaller parameters: attacks are worse in practice

• Compression: even smaller public keys / ciphertexts

• New starting curve: a bit better

SIKE Round 2 updates



W. Castryck (GIF): https://www.esat.kuleuven.be/cosic/?p=7404

ECC vs. post-quantum ECC

https://www.esat.kuleuven.be/cosic/?p=7404


Alice 2𝑒-isogenies, Bob 3𝑓-isogenies

W. Castryck (GIF): https://www.esat.kuleuven.be/cosic/?p=7404

https://www.esat.kuleuven.be/cosic/?p=7404


Diffie-Hellman instantiations

DH ECDH SIDH/SIKE

Elements integers 𝑔 modulo

prime

points 𝑃 in curve 

group

curves 𝐸 in

isogeny class

Secrets exponents 𝑥 scalars 𝑘 isogenies 𝜙

computations 𝑔, 𝑥 ↦ 𝑔𝑥 𝑘, 𝑃 ↦ 𝑘 𝑃 𝜙, 𝐸 ↦ 𝜙(𝐸)

hard problem given 𝑔, 𝑔𝑥

find 𝑥
given 𝑃, 𝑘 𝑃

find 𝑘
given 𝐸,𝜙(𝐸)

find 𝜙



𝑝 = 2𝑖 ⋅ 3𝑗 − 1

SIDH/SIKE setup

• Elements are supersingular elliptic curves over 𝔽𝑝2 (up to ≅)

• Roughly 𝑝/12 of them

• For any ℓ (not a multiple of 𝑝), set forms a (ℓ + 1)-regular 
graph that is Ramanujan: edges are isogenies, ℓ ∈ {2,3} means 
they’re 𝔽𝑝2-rational

• Easiest with an example…



Supersingular isogeny graph for ℓ = 2:  𝑋(𝑆2412, 2)



Supersingular isogeny graph for ℓ = 3:  𝑋(𝑆2412, 3)



• Maps 𝜙 ∶ 𝐸 → 𝐸′ that are (algebraic/geometric) morphisms

• Similar to (e.g.) multiplication-by-𝑛, except we land on a different curve

Cyclic subgroup isogenies 

𝑥, 𝑦 ↦ (𝑥′, 𝑦′)

𝐸 𝑛 ≅ ℤ𝑛 × ℤ𝑛
Kernel of 𝑛
≅ ℤ𝑛 × ℤ𝑛

Degree is 𝑛2

Kernel of cyclic 𝑛-isogeny 
≅ ℤ𝑛

Degree is 𝑛



E.g. Montgomery 2-isogeny

𝐸 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥

2 ∶ 𝐸 → 𝐸, 𝑥 ↦
𝑥2 − 1

2

4𝑥(𝑥2 + 𝐴𝑥 + 𝑥)

𝜙 ∶ 𝐸 → 𝐸′, 𝑥 ↦ 𝑥 ⋅
𝛼𝑥 − 1

𝑥 − 𝛼

𝐸′: 𝑦2 = 𝑥3 + 𝐴′𝑥2 + 𝑥

𝐸 2 = {𝑂𝐸 , (0,0), (𝛼, 0), 1/𝛼, 0 }

ker 2 = 𝐸[2]

ker 𝜙 = {𝑂𝐸 , 𝛼, 0 }

In practice we work entirely in ℙ1 , i.e., 𝑋: 𝑍 ↦ (𝑋′: 𝑍′), etc



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃0

𝐸6 = 𝐸0/⟨𝑃0⟩



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃0

𝐸5 = 𝐸0/⟨[2]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃0
𝐸4 = 𝐸0/⟨[4]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃0

𝐸3 = 𝐸0/⟨[8]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃0

𝐸2 = 𝐸0/⟨[16]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[32]𝑃0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1 = 𝜙0(𝑃0)

𝑃0

𝑃1

𝜙0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1

𝜙0

𝐸6 = 𝐸1/⟨𝑃1⟩



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃1

𝜙0

𝐸5 = 𝐸1/⟨[2]𝑃1⟩

𝑃1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃1

𝜙0

𝐸4 = 𝐸1/⟨[4]𝑃1⟩

𝑃1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃1

𝜙0

𝐸3 = 𝐸1/⟨[8]𝑃1⟩

𝑃1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃1

𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)

𝑃1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)

𝑃1

𝑃2 = 𝜙1(𝑃1)

𝑃2

𝜙1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸2/⟨𝑃2⟩
𝑃2

𝜙1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸2/⟨[2]𝑃2⟩
𝑃2

𝜙1

[2]𝑃2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸2/⟨[4]𝑃2⟩
𝑃2

𝜙1

[4]𝑃2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸3 = 𝐸2/⟨[8]𝑃2⟩
= 𝜙2(𝐸2) 𝑃2

𝜙1

[8]𝑃2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸3 = 𝐸2/⟨[8]𝑃2⟩
= 𝜙2(𝐸2) 𝑃2

𝜙1

[8]𝑃2

𝑃3 = 𝜙2(𝑃2) 𝑃3

𝜙2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸3/⟨𝑃3⟩
𝜙1

𝑃3

𝜙2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸3/⟨[2]𝑃3⟩
𝜙1

𝑃3

𝜙2

[2]𝑃3



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3

𝑃4 = 𝜙3(𝑃3)

𝑃4

𝜙3



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸4/⟨[2]𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

[2]𝑃4



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸4/⟨[2]𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

[2]𝑃4

𝑃5 = 𝜙4(𝑃4)

𝑃5

𝜙4



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸5/⟨𝑃5⟩
𝜙1

𝜙2

𝜙3

𝑃5

𝜙4

𝜙5



𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

𝜙0

𝜙1

𝜙2

𝜙3

𝜙4

𝜙5

Optimal strategies



𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

𝜙0

𝜙1

𝜙2

𝜙3

𝜙4

𝜙5

Optimal strategies

𝑛2

→
𝑛 log𝑛



Computing ℓ𝑒 degree isogenies

𝜙 ∶ 𝐸0 → 𝐸6

𝜙 = 𝜙5 ∘ 𝜙4 ∘ 𝜙3 ∘ 𝜙2 ∘ 𝜙1 ∘ 𝜙0

𝜙0
𝜙1

𝜙2
𝜙3

𝜙4
𝜙5

𝐸0 𝐸6



𝐸 𝐸′?

Rest of talk: given 𝐸, 𝐸′, find path (of known length)…



Claw algorithm: meet-in-the-middle

𝐸

𝐸′

Given 𝐸 and 𝐸′ = 𝜙(𝐸), with 𝜙 degree ℓ𝑒, find 𝜙



𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

… until you have all of them

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

Now compute ℓ𝑒/2-isogenies on the other side

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

Collision will most likely be unique shortest path

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

This path describes secret isogeny 𝜙 ∶ 𝐸 → 𝐸′

Claw algorithm: meet-in-the-middle



Claw algorithm: classical analysis

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes )

thus  𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical memory

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes    ), and 
there are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸 (the purple nodes    ) 

thus  𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical time 

• Best (known) attacks: classical 𝑂(𝑝1/4) and quantum 𝑂(𝑝1/6)

• Confidence: both complexities are optimal for a black-box claw attack



The curves and their security estimates

Target 

Security 

Level

Name

(SIKEp+

⌈log2 𝑝⌉)
(𝒆𝑨, 𝒆𝑩) 𝒌 𝟐𝒌−𝟏

𝐦𝐢𝐧

( 𝟐𝒆𝑨 , 𝟑𝒆𝟑) √𝟐𝒌
𝐦𝐢𝐧

(∛𝟐𝒆𝟐 , ∛𝟑𝒆𝟑)

NIST 1 SIKEp503 (250,159) 128 2127 2125 264 283

NIST 3 SIKEp761 (372,239) 192 2191 2186 296 2124

NIST 5 SIKEp964 (486,301) 256 2255 2238 2128 2159

𝑝 = 2𝑒𝐴3eB − 1

classical quantum



• Adj, Cervantes-Vázquez, Chi-Domínguez, Menezes, Rodríguez-Henríquez: On the cost 
of computing isogenies between supersingular elliptic curves (ia.cr/2018/313)

• Jaques-Schanck: Quantum cryptanalysis in the RAM model: claw-finding attacks on SIKE 
(ia.cr/2019/103)

• C-Longa-Naehrig-Renes-Virdia: Improved classical cryptanalysis of the computational 
supersingular isogeny problem (ia.cr/2019/XXX)

Since submission…
cryptanalysis

compression

• Zanon, Simplicio Jr, Pereira, Doliskani, Barreto: Faster key compression for isogeny-based 
cryptosystems (ia.cr/2017/1143)



• Models allow direct classical-quantum comparison: best known quantum 
algorithms do not achieve significant advantage over classical

• (w.r.t. Tani and Grover) In certain attack scenarios classical security is the 
limiting factor for achieving a specified security level

• “Our conclusion is that an adversary with enough memory to run Tani’s
algorithm with the query-optimal parameters could break SIKE faster by 
using the classical control hardware to run vOW”

Jaques-Schanck (ia.cr/2019/103)



𝑓𝑛: 𝑆 → 𝑆
𝑥𝑖 ↦ 𝑥𝑖+1

van Oorschot-Wiener

Do not have enough memory to MitM, so run a deterministic function 
that combines both sides into a set 𝑆

𝑓𝑛 : a half-sized isogeny + 𝜖
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𝐸

𝐸′𝐸0
𝐸1



𝐸

𝐸′𝐸0
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𝐸

𝐸′

𝐸′

can’t possibly store all these: fix 𝒘 as upper bound on #𝒙𝒊 storage

store fraction 𝟎 < 𝜽 ≪ 𝟏



• 𝑓𝑛 is a deterministic random function, different for each 𝐼𝑉 = 𝑛

• For a fixed 𝑛, each processor does the following:

- pick a random starting point 𝑥0
- produce trail 𝑥𝑖 = 𝑓𝑛(𝑥𝑖−1), for 𝑖 = 1,2…
- stop when 𝑥𝑑 is “distinguished” (1/𝜃). 

if (𝑥𝑑 has not been seen yet) then
store triple 𝑥0, 𝑥𝑑 , 𝑑 and resample

else
if (collision not “golden”) then

overwrite previous triple 𝑥0, 𝑥𝑑 , 𝑑 and resample
else

vOW 𝑓𝑛: 𝑆 → 𝑆



Trails and collisions

some will be 
longer than 1/𝜃

some will be 
shorter than 1/𝜃

how long’s too 
long?

how do we 
check collisions?

and what does 
check mean?

how should we 
set 𝜃? 



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′ ← 𝑓(𝑥0

′ )

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′ ← 𝑓(𝑥0

′ )

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′ )



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′ )



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′ )



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′ )



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 = 𝑓𝑛(𝑥0
′ )

𝑥0 ≠ 𝑥0
′

DONE?



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 = 𝑓𝑛(𝑥0
′ )

Nope! False alarm



• A random function  𝑓𝑛 ∶ 𝑆 → 𝑆 has many collisions, e.g., think 
of the random function as a hash function (it kinda is anyway)

• We will encounter many of these before we hit the one we 
want, i.e., the “golden collision”

• Much of the algorithm is spent walking, much is spent checking 
useless annoying collisions

• Ideally there’ll be many paths that take us to the golden 
collision…

Random collisions vs. the golden collision



• Even more annoying is that we have to restart the whole 
algorithm, time and time again…

Random 𝑓𝑛: the good, the bad and the ugly…

𝑥0 𝑥0
′

𝑥0 𝑥0
′ 𝑥0 𝑥0

′

𝑓𝑔𝑜𝑜𝑑 𝑓𝑏𝑎𝑑 𝑓𝑢𝑔𝑙𝑦



vOW Complexity

𝑇 ≈ 2.5 𝑁3/𝑤 ⋅ 𝑡

• Analysis conducted by van Oorschot and Wiener

• Analysis confirmed (for CSSI) by Adj et al.

• Analysis re-confirmed (for CSSI) by Jaques-Schanck

• Analysis re-re-confirmed (for CSSI) by us 

• 𝑇 = time taken to find golden collision

• 𝑁 = |𝑆| , the number of 𝑥𝑖, approx. 𝑝1/4

• 𝑤 = the maximum number of 𝑥𝑖 that can be stored.

• 𝑡 = the time taken to compute 𝑓𝑛 ∶ 𝑥𝑖 ↦ 𝑥𝑖+1 (i.e., half-sized isogeny+𝜖) 



vOW security (𝑤 = 280)

NIST 

level

Name (𝑒𝐴, 𝑒𝐵) log2(𝑁) 𝐥𝐨𝐠𝟐(𝐯𝐎𝐖) log2(𝑁) 𝐥𝐨𝐠𝟐(𝐯𝐎𝐖)

1 SIKEp434 (216,137) 107 𝟏𝟒𝟑 107 𝟏𝟒𝟒

3 SIKEp610 (305,192) 151 𝟐𝟏𝟎 150 𝟐𝟏𝟎

5 SIKEp751 (372,239) 185 𝟐𝟔𝟐 188 𝟐𝟔𝟖

2-torsion 3-torsion

𝐥𝐨𝐠𝟐(𝐯𝐎𝐖): count of number of x64 instructions required to mount vOW. 
Intended as conservative lower-bound on the classical gate count. 



Uncompressed SIKE

Round 1 Round 2

NIST 

level

prime

(bits)

PK size

(bytes)

cycles (m)

(enc+dec)

prime

(bits)

PK size

(bytes)

Cycles (m)

(enc+dec)

1 503 378 30.7 434 326 21.9

3 751 564 88.5 610 458 52.8

5 964 723 - 751 564 88.5



Uncompressed vs. compressed SIKE

SIKE

Sec. 

(NIST) 

prime

(bits)

1 434

3 610

5 751

compressed

PK size

(bytes)

Cycles (m)

(enc+dec)

191 tbd.

268 tbd.

330 tbd.

uncompressed

PK size

(bytes)

Cycles (m)

(enc+dec)

326 21.9

458 52.8

564 88.5



questions?


