
SIKE (in Round 2)

March 20, 2019
Oxford PQC Workshop

Oxford, UK

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil
Hess, David Jao, Brian Koziel, Geovandro Pereira, Brian LaMacchia, Patrick

Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev

• Smaller parameters: attacks are worse in practice

• Compression: even smaller public keys / ciphertexts

• New starting curve: a bit better

SIKE Round 2 updates

W. Castryck (GIF): https://www.esat.kuleuven.be/cosic/?p=7404

ECC vs. post-quantum ECC

https://www.esat.kuleuven.be/cosic/?p=7404

Alice 2𝑒-isogenies, Bob 3𝑓-isogenies

W. Castryck (GIF): https://www.esat.kuleuven.be/cosic/?p=7404

https://www.esat.kuleuven.be/cosic/?p=7404

Diffie-Hellman instantiations

DH ECDH SIDH/SIKE

Elements integers 𝑔 modulo

prime

points 𝑃 in curve

group

curves 𝐸 in

isogeny class

Secrets exponents 𝑥 scalars 𝑘 isogenies 𝜙

computations 𝑔, 𝑥 ↦ 𝑔𝑥 𝑘, 𝑃 ↦ 𝑘 𝑃 𝜙, 𝐸 ↦ 𝜙(𝐸)

hard problem given 𝑔, 𝑔𝑥

find 𝑥
given 𝑃, 𝑘 𝑃

find 𝑘
given 𝐸,𝜙(𝐸)

find 𝜙

𝑝 = 2𝑖 ⋅ 3𝑗 − 1

SIDH/SIKE setup

• Elements are supersingular elliptic curves over 𝔽𝑝2 (up to ≅)

• Roughly 𝑝/12 of them

• For any ℓ (not a multiple of 𝑝), set forms a (ℓ + 1)-regular
graph that is Ramanujan: edges are isogenies, ℓ ∈ {2,3} means
they’re 𝔽𝑝2-rational

• Easiest with an example…

Supersingular isogeny graph for ℓ = 2: 𝑋(𝑆2412, 2)

Supersingular isogeny graph for ℓ = 3: 𝑋(𝑆2412, 3)

• Maps 𝜙 ∶ 𝐸 → 𝐸′ that are (algebraic/geometric) morphisms

• Similar to (e.g.) multiplication-by-𝑛, except we land on a different curve

Cyclic subgroup isogenies

𝑥, 𝑦 ↦ (𝑥′, 𝑦′)

𝐸 𝑛 ≅ ℤ𝑛 × ℤ𝑛
Kernel of 𝑛
≅ ℤ𝑛 × ℤ𝑛

Degree is 𝑛2

Kernel of cyclic 𝑛-isogeny
≅ ℤ𝑛

Degree is 𝑛

E.g. Montgomery 2-isogeny

𝐸 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥

2 ∶ 𝐸 → 𝐸, 𝑥 ↦
𝑥2 − 1

2

4𝑥(𝑥2 + 𝐴𝑥 + 𝑥)

𝜙 ∶ 𝐸 → 𝐸′, 𝑥 ↦ 𝑥 ⋅
𝛼𝑥 − 1

𝑥 − 𝛼

𝐸′: 𝑦2 = 𝑥3 + 𝐴′𝑥2 + 𝑥

𝐸 2 = {𝑂𝐸 , (0,0), (𝛼, 0), 1/𝛼, 0 }

ker 2 = 𝐸[2]

ker 𝜙 = {𝑂𝐸 , 𝛼, 0 }

In practice we work entirely in ℙ1 , i.e., 𝑋: 𝑍 ↦ (𝑋′: 𝑍′), etc

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃0

𝐸6 = 𝐸0/⟨𝑃0⟩

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃0

𝐸5 = 𝐸0/⟨[2]𝑃0⟩

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃0
𝐸4 = 𝐸0/⟨[4]𝑃0⟩

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃0

𝐸3 = 𝐸0/⟨[8]𝑃0⟩

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃0

𝐸2 = 𝐸0/⟨[16]𝑃0⟩

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[32]𝑃0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1 = 𝜙0(𝑃0)

𝑃0

𝑃1

𝜙0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1

𝜙0

𝐸6 = 𝐸1/⟨𝑃1⟩

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃1

𝜙0

𝐸5 = 𝐸1/⟨[2]𝑃1⟩

𝑃1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃1

𝜙0

𝐸4 = 𝐸1/⟨[4]𝑃1⟩

𝑃1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃1

𝜙0

𝐸3 = 𝐸1/⟨[8]𝑃1⟩

𝑃1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃1

𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)

𝑃1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)

𝑃1

𝑃2 = 𝜙1(𝑃1)

𝑃2

𝜙1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸2/⟨𝑃2⟩
𝑃2

𝜙1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸2/⟨[2]𝑃2⟩
𝑃2

𝜙1

[2]𝑃2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸2/⟨[4]𝑃2⟩
𝑃2

𝜙1

[4]𝑃2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸3 = 𝐸2/⟨[8]𝑃2⟩
= 𝜙2(𝐸2) 𝑃2

𝜙1

[8]𝑃2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸3 = 𝐸2/⟨[8]𝑃2⟩
= 𝜙2(𝐸2) 𝑃2

𝜙1

[8]𝑃2

𝑃3 = 𝜙2(𝑃2) 𝑃3

𝜙2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸3/⟨𝑃3⟩
𝜙1

𝑃3

𝜙2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸3/⟨[2]𝑃3⟩
𝜙1

𝑃3

𝜙2

[2]𝑃3

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3

𝑃4 = 𝜙3(𝑃3)

𝑃4

𝜙3

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸4/⟨[2]𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

[2]𝑃4

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸4/⟨[2]𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

[2]𝑃4

𝑃5 = 𝜙4(𝑃4)

𝑃5

𝜙4

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸5/⟨𝑃5⟩
𝜙1

𝜙2

𝜙3

𝑃5

𝜙4

𝜙5

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

𝜙0

𝜙1

𝜙2

𝜙3

𝜙4

𝜙5

Optimal strategies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

𝜙0

𝜙1

𝜙2

𝜙3

𝜙4

𝜙5

Optimal strategies

𝑛2

→
𝑛 log𝑛

Computing ℓ𝑒 degree isogenies

𝜙 ∶ 𝐸0 → 𝐸6

𝜙 = 𝜙5 ∘ 𝜙4 ∘ 𝜙3 ∘ 𝜙2 ∘ 𝜙1 ∘ 𝜙0

𝜙0
𝜙1

𝜙2
𝜙3

𝜙4
𝜙5

𝐸0 𝐸6

𝐸 𝐸′?

Rest of talk: given 𝐸, 𝐸′, find path (of known length)…

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

Given 𝐸 and 𝐸′ = 𝜙(𝐸), with 𝜙 degree ℓ𝑒, find 𝜙

𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

… until you have all of them

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

Now compute ℓ𝑒/2-isogenies on the other side

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

Collision will most likely be unique shortest path

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

This path describes secret isogeny 𝜙 ∶ 𝐸 → 𝐸′

Claw algorithm: meet-in-the-middle

Claw algorithm: classical analysis

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes)

thus 𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical memory

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes), and
there are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸 (the purple nodes)

thus 𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical time

• Best (known) attacks: classical 𝑂(𝑝1/4) and quantum 𝑂(𝑝1/6)

• Confidence: both complexities are optimal for a black-box claw attack

The curves and their security estimates

Target

Security

Level

Name

(SIKEp+

⌈log2 𝑝⌉)
(𝒆𝑨, 𝒆𝑩) 𝒌 𝟐𝒌−𝟏

𝐦𝐢𝐧

(𝟐𝒆𝑨 , 𝟑𝒆𝟑) √𝟐𝒌
𝐦𝐢𝐧

(∛𝟐𝒆𝟐 , ∛𝟑𝒆𝟑)

NIST 1 SIKEp503 (250,159) 128 2127 2125 264 283

NIST 3 SIKEp761 (372,239) 192 2191 2186 296 2124

NIST 5 SIKEp964 (486,301) 256 2255 2238 2128 2159

𝑝 = 2𝑒𝐴3eB − 1

classical quantum

• Adj, Cervantes-Vázquez, Chi-Domínguez, Menezes, Rodríguez-Henríquez: On the cost
of computing isogenies between supersingular elliptic curves (ia.cr/2018/313)

• Jaques-Schanck: Quantum cryptanalysis in the RAM model: claw-finding attacks on SIKE
(ia.cr/2019/103)

• C-Longa-Naehrig-Renes-Virdia: Improved classical cryptanalysis of the computational
supersingular isogeny problem (ia.cr/2019/XXX)

Since submission…
cryptanalysis

compression

• Zanon, Simplicio Jr, Pereira, Doliskani, Barreto: Faster key compression for isogeny-based
cryptosystems (ia.cr/2017/1143)

• Models allow direct classical-quantum comparison: best known quantum
algorithms do not achieve significant advantage over classical

• (w.r.t. Tani and Grover) In certain attack scenarios classical security is the
limiting factor for achieving a specified security level

• “Our conclusion is that an adversary with enough memory to run Tani’s
algorithm with the query-optimal parameters could break SIKE faster by
using the classical control hardware to run vOW”

Jaques-Schanck (ia.cr/2019/103)

𝑓𝑛: 𝑆 → 𝑆
𝑥𝑖 ↦ 𝑥𝑖+1

van Oorschot-Wiener

Do not have enough memory to MitM, so run a deterministic function
that combines both sides into a set 𝑆

𝑓𝑛 : a half-sized isogeny + 𝜖

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′

𝐸′

can’t possibly store all these: fix 𝒘 as upper bound on #𝒙𝒊 storage

store fraction 𝟎 < 𝜽 ≪ 𝟏

• 𝑓𝑛 is a deterministic random function, different for each 𝐼𝑉 = 𝑛

• For a fixed 𝑛, each processor does the following:

- pick a random starting point 𝑥0
- produce trail 𝑥𝑖 = 𝑓𝑛(𝑥𝑖−1), for 𝑖 = 1,2…
- stop when 𝑥𝑑 is “distinguished” (1/𝜃).

if (𝑥𝑑 has not been seen yet) then
store triple 𝑥0, 𝑥𝑑 , 𝑑 and resample

else
if (collision not “golden”) then

overwrite previous triple 𝑥0, 𝑥𝑑 , 𝑑 and resample
else

vOW 𝑓𝑛: 𝑆 → 𝑆

Trails and collisions

some will be
longer than 1/𝜃

some will be
shorter than 1/𝜃

how long’s too
long?

how do we
check collisions?

and what does
check mean?

how should we
set 𝜃?

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′ ← 𝑓(𝑥0

′)

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′ ← 𝑓(𝑥0

′)

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 = 𝑓𝑛(𝑥0
′)

𝑥0 ≠ 𝑥0
′

DONE?

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 = 𝑓𝑛(𝑥0
′)

Nope! False alarm

• A random function 𝑓𝑛 ∶ 𝑆 → 𝑆 has many collisions, e.g., think
of the random function as a hash function (it kinda is anyway)

• We will encounter many of these before we hit the one we
want, i.e., the “golden collision”

• Much of the algorithm is spent walking, much is spent checking
useless annoying collisions

• Ideally there’ll be many paths that take us to the golden
collision…

Random collisions vs. the golden collision

• Even more annoying is that we have to restart the whole
algorithm, time and time again…

Random 𝑓𝑛: the good, the bad and the ugly…

𝑥0 𝑥0
′

𝑥0 𝑥0
′ 𝑥0 𝑥0

′

𝑓𝑔𝑜𝑜𝑑 𝑓𝑏𝑎𝑑 𝑓𝑢𝑔𝑙𝑦

vOW Complexity

𝑇 ≈ 2.5 𝑁3/𝑤 ⋅ 𝑡

• Analysis conducted by van Oorschot and Wiener

• Analysis confirmed (for CSSI) by Adj et al.

• Analysis re-confirmed (for CSSI) by Jaques-Schanck

• Analysis re-re-confirmed (for CSSI) by us

• 𝑇 = time taken to find golden collision

• 𝑁 = |𝑆| , the number of 𝑥𝑖, approx. 𝑝1/4

• 𝑤 = the maximum number of 𝑥𝑖 that can be stored.

• 𝑡 = the time taken to compute 𝑓𝑛 ∶ 𝑥𝑖 ↦ 𝑥𝑖+1 (i.e., half-sized isogeny+𝜖)

vOW security (𝑤 = 280)

NIST

level

Name (𝑒𝐴, 𝑒𝐵) log2(𝑁) 𝐥𝐨𝐠𝟐(𝐯𝐎𝐖) log2(𝑁) 𝐥𝐨𝐠𝟐(𝐯𝐎𝐖)

1 SIKEp434 (216,137) 107 𝟏𝟒𝟑 107 𝟏𝟒𝟒

3 SIKEp610 (305,192) 151 𝟐𝟏𝟎 150 𝟐𝟏𝟎

5 SIKEp751 (372,239) 185 𝟐𝟔𝟐 188 𝟐𝟔𝟖

2-torsion 3-torsion

𝐥𝐨𝐠𝟐(𝐯𝐎𝐖): count of number of x64 instructions required to mount vOW.
Intended as conservative lower-bound on the classical gate count.

Uncompressed SIKE

Round 1 Round 2

NIST

level

prime

(bits)

PK size

(bytes)

cycles (m)

(enc+dec)

prime

(bits)

PK size

(bytes)

Cycles (m)

(enc+dec)

1 503 378 30.7 434 326 21.9

3 751 564 88.5 610 458 52.8

5 964 723 - 751 564 88.5

Uncompressed vs. compressed SIKE

SIKE

Sec.

(NIST)

prime

(bits)

1 434

3 610

5 751

compressed

PK size

(bytes)

Cycles (m)

(enc+dec)

191 tbd.

268 tbd.

330 tbd.

uncompressed

PK size

(bytes)

Cycles (m)

(enc+dec)

326 21.9

458 52.8

564 88.5

questions?

