SIKE (in Round 2)

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, David Jao, Brian Koziel, Geovandro Pereira, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev

Microsorr

ST-QUENTIN-EN-YVELINES

Texas
INSTRUMENTS

March 20, 2019
Oxford PQC Workshop Oxford, UK

UNIVERSITYOF WATERLOO

SIKE Round 2 updates

- Smaller parameters: attacks are worse in practice
- Compression: even smaller public keys / ciphertexts
- New starting curve: a bit better

ECC
 vs.
 post-quantum ECC

Alice 2^{e}-isogenies, Bob 3^{f}-isogenies

Diffie-Hellman instantiations

	DH	ECDH	SIDH/SIKE
Elements	integers g modulo prime	points P in curve group	curves E in isogeny class
Secrets	exponents x	scalars k	isogenies ϕ
computations	$g, x \mapsto g^{x}$	$k, P \mapsto[k] P$	$\phi, E \mapsto \phi(E)$
hard problem	given g, g^{x} find x	given $P,[k] P$ find k	given $E, \phi(E)$ find ϕ

SIDH/SIKE setup

$$
p=2^{i} \cdot 3^{j}-1
$$

- Elements are supersingular elliptic curves over $\mathbb{F}_{p^{2}}($ up to $\cong)$
- Roughly $p / 12$ of them
- For any ℓ (not a multiple of p), set forms a $(\ell+1)$-regular graph that is Ramanujan: edges are isogenies, $\ell \in\{2,3\}$ means they're $\mathbb{F}_{p^{2}}$-rational
- Easiest with an example...

Supersingular isogeny graph for $\ell=2: X\left(S_{241^{2}}, 2\right)$

Supersingular isogeny graph for $\ell=3: X\left(S_{241^{2}}, 3\right)$

Cyclic subgroup isogenies

- Maps $\phi: E \rightarrow E^{\prime}$ that are (algebraic/geometric) morphisms

$$
(x, y) \mapsto\left(x^{\prime}, y^{\prime}\right)
$$

- Similar to (e.g.) multiplication-by-n, except we land on a different curve
Kernel of $[n]$
$\cong \mathbb{Z}_{n} \times \mathbb{Z}_{n}$

Degree is n^{2}

$$
E[n] \cong \mathbb{Z}_{n} \times \mathbb{Z}_{n}
$$

E.g. Montgomery 2-isogeny

$$
\begin{aligned}
& E: y^{2}=x^{3}+A x^{2}+x \quad E^{\prime}: y^{2}=x^{3}+A^{\prime} x^{2}+x \\
& E[2]=\left\{O_{E},(0,0),(\alpha, 0),(1 / \alpha, 0)\right\} \\
& \text { [2]: } E \rightarrow E, \\
& x \mapsto \frac{\left(x^{2}-1\right)^{2}}{4 x\left(x^{2}+A x+x\right)} \\
& \operatorname{ker}([2])=E[2] \\
& \phi: E \rightarrow E^{\prime}, \\
& x \mapsto x \cdot\left(\frac{\alpha x-1}{x-\alpha}\right) \\
& \operatorname{ker}(\phi)=\left\{O_{E},(\alpha, 0)\right\}
\end{aligned}
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{6}=E_{0} /\left\langle P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64 64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{0} /\left\langle[2] P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64 64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$
$E_{4}=E_{0} /\left\langle[4] P_{0}\right\rangle$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{3}=E_{0} /\left\langle[8] P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)
 $\phi: E_{0} \rightarrow E_{6}$ is degree 64

64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{2}=E_{0} /\left\langle[16] P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{1} & =E_{0} /\left\langle[32] P_{0}\right\rangle \\
& =\phi_{0}\left(E_{0}\right)
\end{aligned}
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64 64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{1} & =E_{0} /\left\langle[32] P_{0}\right\rangle \\
& =\phi_{0}\left(E_{0}\right)
\end{aligned}
$$

$$
P_{1}=\phi_{0}\left(P_{0}\right)
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{1} /\left[[2] P_{1}\right\rangle
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{4}=E_{1} /\left\langle[4] P_{1}\right\rangle
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{2} & =E_{1} /\left\langle[16] P_{1}\right\rangle \\
& =\phi_{1}\left(E_{1}\right)
\end{aligned}
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{2} /\left\langle\left[[2] P_{2}\right\rangle\right.
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{3} & =E_{2} /\left\langle[8] P_{2}\right\rangle \\
& =\phi_{2}\left(E_{2}\right)
\end{aligned}
$$

N

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{3} & =E_{2} /\left\langle[8] P_{2}\right\rangle \\
& =\phi_{2}\left(E_{2}\right)
\end{aligned}
$$

$$
P_{3}=\phi_{2}\left(P_{2}\right)
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{3} /\left[[2] P_{3}\right\rangle
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{4}=E_{3} /\left\langle[4] P_{3}\right\rangle
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Optimal strategies

Optimal strategies

Computing ℓ^{e} degree isogenies

$$
\begin{gathered}
\phi: E_{0} \rightarrow E_{6} \\
\phi=\phi_{5} \circ \phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1} \circ \phi_{0}
\end{gathered}
$$

Rest of talk: given E, E^{\prime}, find path (of known length)...
?
E^{\prime}

Claw algorithm: meet-in-the-middle

Given E and $E^{\prime}=\phi(E)$, with ϕ degree ℓ^{e}, find ϕ

Claw algorithm: meet-in-the-middle

Compute and store $\ell^{e / 2}$-isogenies on one side

Claw algorithm: meet-in-the-middle

Compute and store $\ell^{e / 2}$-isogenies on one side

Claw algorithm: meet-in-the-middle

Claw algorithm: meet-in-the-middle

Claw algorithm: meet-in-the-middle

Claw algorithm: meet-in-the-middle

discarding them until you find a collision

Claw algorithm: meet-in-the-middle

Claw algorithm: meet-in-the-middle

Claw algorithm: meet-in-the-middle

This path describes secret isogeny $\phi: E \rightarrow E^{\prime}$

Claw algorithm: classical analysis

- There are $O\left(\ell^{e / 2}\right)$ curves $\ell^{e / 2}$-isogenous to E^{\prime} (the blue nodes O) thus $O\left(\ell^{e / 2}\right)=O\left(p^{1 / 4}\right)$ classical memory
- There are $O\left(\ell^{e / 2}\right)$ curves $\ell^{e / 2}$-isogenous to E^{\prime} (the blue nodes O), and there are $O\left(\ell^{e / 2}\right)$ curves $\ell^{e / 2}$-isogenous to E (the purple nodes $)$

$$
\text { thus } O\left(\ell^{e / 2}\right)=O\left(p^{1 / 4}\right) \text { classical time }
$$

- Best (known) attacks: classical $O\left(p^{1 / 4}\right)$ and quantum $O\left(p^{1 / 6}\right)$
- Confidence: both complexities are optimal for a black-box claw attack

The curves and their security estimates

$$
p=2^{e_{A}} 3^{\mathrm{e}_{\mathrm{B}}}-1
$$

Target Security Level	Name $(\mathrm{SIKEp+}$ $\left.\left\lceil\log _{2} p\right]\right)$	$\left(\boldsymbol{e}_{\boldsymbol{A}}, \boldsymbol{e}_{\boldsymbol{B}}\right)$	\boldsymbol{k}	$\mathbf{2}^{\boldsymbol{k}-\mathbf{1}}$	min $\left(\sqrt[\mathbf{2}^{\boldsymbol{e}_{\boldsymbol{A}}}]{ }, \sqrt{\mathbf{3}^{\boldsymbol{e}_{\mathbf{3}}}}\right)$	$\sqrt{\mathbf{2}^{\boldsymbol{k}}}$	min $\left(\sqrt[3]{\left.\mathbf{2}^{\boldsymbol{e}_{2}}, \sqrt[3]{\mathbf{3}^{\boldsymbol{e}_{\mathbf{3}}}}\right)}\right.$
NIST 1	SIKEp503	$(250,159)$	128	2^{127}	2^{125}	2^{64}	2^{83}
NIST 3	SIKEp761	$(372,239)$	192	2^{191}	2^{186}	2^{96}	2^{124}
NIST 5	SIKEp964	$(486,301)$	256	2^{255}	2^{238}	2^{128}	2^{159}

Since submission...

cryptanalysis

- Adj, Cervantes-Vázquez, Chi-Domínguez, Menezes, Rodríguez-Henríquez: On the cost of computing isogenies between supersingular elliptic curves (ia.cr/2018/313)
- Jaques-Schanck: Quantum cryptanalysis in the RAM model: claw-finding attacks on SIKE (ia.cr/2019/103)
- C-Longa-Naehrig-Renes-Virdia: Improved classical cryptanalysis of the computational supersingular isogeny problem (ia.cr/2019/XXX)

compression

- Zanon, Simplicio Jr, Pereira, Doliskani, Barreto: Faster key compression for isogeny-based cryptosystems (ia.cr/2017/1143)

Jaques-Schanck (ia.cr/2019/103)

- Models allow direct classical-quantum comparison: best known quantum algorithms do not achieve significant advantage over classical
- (w.r.t. Tani and Grover) In certain attack scenarios classical security is the limiting factor for achieving a specified security level
- "Our conclusion is that an adversary with enough memory to run Tani's algorithm with the query-optimal parameters could break SIKE faster by using the classical control hardware to run vOW"

van Oorschot-Wiener

Do not have enough memory to MitM, so run a deterministic function that combines both sides into a set S

$$
f_{n}: \text { a half-sized isogeny }+\epsilon
$$

E_{0}°

O
E_{0}°

\bullet
${ }^{\bullet}$
E_{1}

E_{0}°

E_{0}°

$\stackrel{\bullet}{E}_{1}$

$\stackrel{\circ}{E}_{1}$

E_{0}
-
E_{1}
(E0
(E0
(
(
(

can't possibly store all these: fix w as upper bound on $\# x_{i}$ storage

store fraction $0<\theta \ll 1$

- f_{n} is a deterministic random function, different for each $I V=n$
- For a fixed n, each processor does the following:
- pick a random starting point x_{0}
- produce trail $x_{i}=f_{n}\left(x_{i-1}\right)$, for $i=1,2 \ldots$
- stop when x_{d} is "distinguished" $(1 / \theta)$.
if (x_{d} has not been seen yet) then
store triple (x_{0}, x_{d}, d) and resample
else if (collision not "golden") then
overwrite previous triple $\left(x_{0}, x_{d}, d\right)$ and resample else

Trails and collisions

how long's too long?
how do we check collisions?
and what does check mean?

Checking collisions ${ }_{\substack{x_{d} \\\left(\begin{array}{c}x_{0}, x_{0},() \\\left(x_{0}^{\prime}, x_{e}, e\right) \\ \hline\end{array}\right.}}^{x_{e}^{\prime}}$
 $$
f_{n}\left(x_{0}\right) \neq f_{n}\left(x_{0}^{\prime}\right)
$$

Checking collisions ${ }^{x_{d}} x_{e}^{x_{e}^{\prime}}$
 $$
f_{n}\left(x_{0}\right) \neq f_{n}\left(x_{0}^{\prime}\right)
$$

DONE?

Nope! False alarm

Random collisions vs. the golden collision

- A random function $f_{n}: S \rightarrow S$ has many collisions, e.g., think of the random function as a hash function (it kinda is anyway)
- We will encounter many of these before we hit the one we want, i.e., the "golden collision"
- Much of the algorithm is spent walking, much is spent checking useless annoying collisions
- Ideally there'll be many paths that take us to the golden collision...

Random f_{n} : the good, the bad and the ugly...

- Even more annoying is that we have to restart the whole algorithm, time and time again...

vOW Complexity

- Analysis conducted by van Oorschot and Wiener
- Analysis confirmed (for CSSI) by Adj et al.
- Analysis re-confirmed (for CSSI) by Jaques-Schanck
- Analysis re-re-confirmed (for CSSI) by us

$$
T \approx 2.5 \sqrt{N^{3} / w} \cdot t
$$

- T = time taken to find golden collision
- $N=|S|$, the number of x_{i}, approx. $p^{1 / 4}$
- $w=$ the maximum number of x_{i} that can be stored.
- $t=$ the time taken to compute $f_{n}: x_{i} \mapsto x_{i+1}$ (i.e., half-sized isogeny $+\epsilon$)

vOW security $\left(w=2^{80}\right)$

> 2-torsion 3-torsion

NIST level	Name	$\left(e_{A}, e_{B}\right)$	$\log _{2}(N)$	$\log _{\mathbf{2}}(\mathbf{v O W})$	$\log _{2}(N)$	$\log _{\mathbf{2}}(\mathbf{v O W})$
1	SIKEp434	$(216,137)$	107	$\mathbf{1 4 3}$	107	$\mathbf{1 4 4}$
3	SIKEp610	$(305,192)$	151	$\mathbf{2 1 0}$	150	$\mathbf{2 1 0}$
5	SIKEp751	$(372,239)$	185	$\mathbf{2 6 2}$	188	$\mathbf{2 6 8}$

$\log _{\mathbf{2}}(\mathbf{v O W})$: count of number of $\times 64$ instructions required to mount VOW . Intended as conservative lower-bound on the classical gate count.

Uncompressed SIKE

	Round 1			Round 2		
NIST level	prime (bits)	PK size (bytes)	cycles (m) (enc+dec)	prime (bits)	PK size (bytes)	Cycles (m) (enc+dec)
1	503	378	30.7	434	326	21.9
3	751	564	88.5	610	458	52.8
5	964	723		751	564	88.5

Uncompressed vs. compressed SIKE

	SIKE
Sec. (NIST)	prime (bits)
1	434
3	610
5	751

uncompressed	
PK size (bytes)	Cycles (m) (enc+dec)
326	21.9
458	52.8
564	88.5

compressed	
PK size (bytes)	Cycles (m) (enc+dec)
191	tbd.
268	tbd.
330	tbd.

questions?

