Classical cryptanalysis of supersingular isogenies

Work in progress with...
Craig Costello, ${ }^{1}$, Patrick Longa, Michael Naehrig, ${ }^{1}$, Joost Renes, ${ }^{2}$, Fernando Virdia ${ }^{3}$

ASEC 2018

Adelaide, Australia
December 10

${ }^{1}$ Microsoft ${ }^{\circ}$
 Research
 Radboud University

3

Embedded...?

ECC
 vs.
 post-quantum ECC

Diffie-Hellman instantiations

\mathbb{Z}_{q}

Diffie-Hellman instantiations

	DH	ECDH	SIDH
Elements	integers g modulo prime	points P in curve group	curves E in isogeny class
Secrets	exponents x	scalars k	isogenies ϕ
computations	$g, x \mapsto g^{x}$	$k, P \mapsto[k] P$	$\phi, E \mapsto \phi(E)$
hard problem	given g, g^{x} find x	given $P,[k] P$ find k	given $E, \phi(E)$ find ϕ

Alice does 2-isogenies, Bob does 3-isogenies

W. Castryck (GIF): "Elliptic curves are dead: long live elliptic curves" https://www.esat.kuleuven.be/cosic/?p=7404

Supersingular isogeny graph for $\ell=2: X\left(S_{241^{2}}, 2\right)$

Supersingular isogeny graph for $\ell=3: X\left(S_{241^{2}}, 3\right)$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{6}=E_{0} /\left\langle P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64 64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{0} /\left\langle[2] P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64 64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$
$E_{4}=E_{0} /\left\langle[4] P_{0}\right\rangle$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$
$E_{3}=E_{0} /\left\langle[8] P_{0}\right\rangle$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{2}=E_{0} /\left\langle[16] P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{1} & =E_{0} /\left\langle[32] P_{0}\right\rangle \\
& =\phi_{0}\left(E_{0}\right)
\end{aligned}
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64 64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{1} & =E_{0} /\left\langle[32] P_{0}\right\rangle \\
& =\phi_{0}\left(E_{0}\right)
\end{aligned}
$$

$$
P_{1}=\phi_{0}\left(P_{0}\right)
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{1} /\left\langle[2] P_{1}\right\rangle
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{4}=E_{1} /\left\langle[4] P_{1}\right\rangle
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{2} & =E_{1} /\left\langle[16] P_{1}\right\rangle \\
& =\phi_{1}\left(E_{1}\right)
\end{aligned}
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{2} /\left\langle\left[[2] P_{2}\right\rangle\right.
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{3} & =E_{2} /\left\langle[8] P_{2}\right\rangle \\
& =\phi_{2}\left(E_{2}\right)
\end{aligned}
$$

N

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{3} /\left\langle[2] P_{3}\right\rangle
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{4}=E_{3} /\left\langle[4] P_{3}\right\rangle
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

Optimal strategies

Optimal strategies

Computing ℓ^{e} degree isogenies

$$
\begin{gathered}
\phi: E_{0} \rightarrow E_{6} \\
\phi=\phi_{5} \circ \phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1} \circ \phi_{0}
\end{gathered}
$$

Rest of talk: given E, E^{\prime}, find path (of known length)...
?
E^{\prime}

Claw algorithm: meet-in-the-middle

Given E and $E^{\prime}=\phi(E)$, with ϕ degree ℓ^{e}, find ϕ

Claw algorithm: meet-in-the-middle

Compute and store $\ell^{e / 2}$-isogenies on one side

Claw algorithm: meet-in-the-middle

Compute and store $\ell^{e / 2}$-isogenies on one side

Claw algorithm: meet-in-the-middle

Claw algorithm: meet-in-the-middle

Claw algorithm: meet-in-the-middle

Claw algorithm: meet-in-the-middle

discarding them until you find a collision

Claw algorithm: meet-in-the-middle

Claw algorithm: meet-in-the-middle

Claw algorithm: meet-in-the-middle

This path describes secret isogeny $\phi: E \rightarrow E^{\prime}$

Claw algorithm: classical analysis

- There are $O\left(\ell^{e / 2}\right)$ curves $\ell^{e / 2}$-isogenous to E^{\prime} (the blue nodes O)

$$
\text { thus } O\left(\ell^{e / 2}\right)=O\left(p^{1 / 4}\right) \text { classical memory }
$$

- There are $O\left(\ell^{e / 2}\right)$ curves $\ell^{e / 2}$-isogenous to E^{\prime} (the blue nodes $)$), and there are $O\left(\ell^{e / 2}\right)$ curves $\ell^{e / 2}$-isogenous to E (the purple nodes $)$
thus $O\left(\ell^{e / 2}\right)=O\left(p^{1 / 4}\right)$ classical time
- Best (known) attacks: classical $O\left(p^{1 / 4}\right)$ and quantum $O\left(p^{1 / 6}\right)$
- Confidence: both complexities are optimal for a black-box claw attack

NIST security levels

1) Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 128 -bit key (e.g. AES 128
2) Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for collision search on a 256-bit hash function (e.g. SHA256/ SHA3-256)
3) Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 192-bit key (e.g. AES192)
4) Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for collision search on a 384-bit hash function (e.g. SHA384/ SHA3-384)
5) Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 256 -bit key (e.g. AES 256

The curves and their security estimates

$$
p=2^{e_{A}} 3^{\mathrm{e}_{\mathrm{B}}}-1
$$

Target Security Level	Name $(\mathrm{SIKEp+}$ $\left\lceil\log _{2} p 7\right)$	$\left(\boldsymbol{e}_{\boldsymbol{A}}, \boldsymbol{e}_{\boldsymbol{B}}\right)$	\boldsymbol{k}	$\mathbf{2}^{\boldsymbol{k}-\mathbf{1}}$	min $\left(\sqrt[\mathbf{2}^{\boldsymbol{e}_{\boldsymbol{A}}}]{ }, \sqrt{\mathbf{3}^{\boldsymbol{e}_{\mathbf{3}}}}\right)$	$\sqrt{\mathbf{2}^{\boldsymbol{k}}}$	min $\left(\sqrt[3]{\left.\mathbf{2}^{\boldsymbol{e}_{2}}, \sqrt[3]{\mathbf{3}^{\boldsymbol{e}_{\mathbf{3}}}}\right)}\right.$
NIST 1	SIKEp503	$(250,159)$	128	2^{127}	2^{125}	2^{64}	2^{83}
NIST 3	SIKEp761	$(372,239)$	192	2^{191}	2^{186}	2^{96}	2^{124}
NIST 5	SIKEp964	$(486,301)$	256	2^{255}	2^{238}	2^{128}	2^{159}

Apples and oranges

- Our proposed level $1\left(p \approx 2^{512}\right)$ requires $\approx 2^{128}$ time and $\approx 2^{128}$ memory for meet-in-the-middle
- Best attacks on AES128 either $\approx 2^{128}$ time and almost no memory or (bicliques) $\approx 2^{125}$ and $\approx 2^{32}$ memory
- Unfair comparison: 2^{128} memory is infeasible: fix an upper-bound on memory, then analyse runtime. (vOW, DJB, Adj et al...)

Van Oorschot - Wiener (vOW) meets isogenies

Parallel Collision Search with Cryptanalytic Applications

$$
\begin{aligned}
& \text { Paul C. van Oorschot and Michael J. Wiener } \\
& \text { Nortel, p.o. Box } 3511 \text { Station C. Ottawa, Ontario, K1Y 4H7, Canada } \\
& 1996 \text { September } 23
\end{aligned}
$$

Abstract. A simple new tecchinque of parallelizing methods for solving search problems which
seek collisions in pseudo-random walks is presented. This techinique can be adapted to a wide seak collisisons in pseudo-random walks is presented. This tecchinuqe can be adapted to a wide
range of cryptanalytic problems which can ber edduced to finding collisions. General constructions
. are given showing how to adapt the techmique to finding discrete logarithms in cyclic proupss.
finding meaningfulu collisions in hash fuinctions, and performing meet-in-the-middle attacks such as
 practical atacks. providing the most costeffective means known to date for defeating: the small
suberoup used in certain schemes based on discrete logarithm such as Schnorr. DSA, and ellipitic
 illustrated by giving the design for three 10 million custom machines which could be built with
current technology one finds ellipicic curve logaritum in $G F\left(2^{155}\right.$) thereby defeating a proposed elliptic curve cryptosystem in expected time 32 days, the second finds MDD collisions in expected time 21 days, and die last recovers a double-DES key from 2 known plaintexts in expected time 4
years. which is four orders of masnitude faster than the conventional meet-in-the-middele atack on years, Which is four orders of mangitude faster than the conventional meet-in-the-middle atack on
doubbe-EDS. Based on this atack, double-DES offers only 17 more bits of security than singleDES.
Key words. parallee collision search. cryptanalysis, discrete logarithm, hash collision, meet-in-the-
middle atack, double encryption, elliptic curves.

1. Introduction

The power of parallelized attacks has been illustrated in work on integer factorization and cryptanalysis of DES. In the factoring of the RSA-129 challenge number and other factoring efforts (e.g. [26, 27]), the sieving process was distributed among a large number of workstations. smilar efforts have been undertaken on large parallel machines [14, 19]. In an exhaustive key search attack proposed for DES [44], a large number of inexpensive specialized processors were proposed to achieve a high degree of parallelism. In this paper, we provide a method for efficient parallelization of collision search techniques. ${ }^{1}$

Preliminary versions of parts of this work have appeared in the proceedings of the
Computer and Commumications Security $\left[42\right.$ and in the proceedings of Crypto ${ }^{\circ} 96[44$]

ON THE COST OF COMPUTING ISOGENIES BETWEEN SUPERSINGULAR ELLIPTIC CURVES

GORA ADJ, DANIEL CERVANTES-VAZZQUEZ, JESUÚS-JAVIER CHI-DOMINGU

Abstract. The security of the Jao-De Feo Supersingular Isogeny Diffie-Hellman (SIDH) Key arreement scheme is based on the intractability of the Computational Supersingular
Isogeny (CSSI) problem
computing \mathbb{F}^{2}-rational isogenies of degrees 2^{e} and 3^{2} between
 attack on CSSI has an expected running time of $D\left(p^{1 / 4}\right)$, but also has $O\left(p^{1 / 4)}\right.$) storage
reauirements. In this paper. we demonstrate that the van Ooschot-Wiener requirements. In this paper, we demonstrate that the van Oorschot-Wiener golden colil-
sion finding algorithm has a lower cost (but higher running time) for solving CSSI, and thus should be used instead of the meet-in-the-middle attack to assess the eecurity of
SIDH against classical attacks. The smaller parameter p brings signifcantly improved SiDH against classical

1. Introduction

The Supersingular Isogeny Diffie-Hellman (SIDH) key agreement scheme was proposed The Supersingular (1ogeny and De Feo [12] (see also [7]). It is one of 69 candidates being considered by the U.S. government's National Institute of Standards and Technology (NIST) for inclusion in a forthcoming standard for quantum-safe cryptography [11]. The security of SIDH is based on the difficulty of the Computational Supersingular Isogeny (CSSI) problem, which was first defined by Charles, Goren and Lauter [33 in their paper that introduced
an isogeny-based hash function. The CSSI problem is also the basis for the security of isogeny-based signature schemes [9, 28] and an undeniable signature scheme [13].
Let p be a prime, let ℓ be a small prime (e.g., $\ell \in\{2,3\}$), and let E and E^{\prime} be two upersingular elliptic curves defined over \mathbb{F}_{p} 2 for which a (separable) degree- ℓ^{e} isogeny . $L \rightarrow E$ defined over \mathbb{P}^{2} exists. The ${ }^{2}$. against classical and quantum attacks [23], respectively. The classical attack is a meet-in-the-middle attack (MITM) that has time complexity $O\left(p^{1 / 4}\right)$ and space complexity $O\left(p^{1 / 4}\right)$. We observe that the (classical) van Oorschot-Wiener golden collision finding algorithm $[16,17]$ can be employed to construct ϕ. Whereas the time complexity of the
van Oorschot-Wiener algorithm is higher than that of the meet-in-the-middle attack its space requirements are smaller. Our cost analysis of these two CSSI attacks leads to the conclusion that, despite its higher running time, the golden collision finding CSSI attack has a lower cost than the meet-in-the-middle attack, and thus should be used to assess he security of SIDH against (known) classical attacks.
Dene Api13 2018, wedated on July 18 , 2018 .

This
work

Let P_{0}, Q_{0} be a basis for $E_{0}\left[2^{e}\right]$, and P_{1}, Q_{1} be a basis for $E_{1}\left[2^{e}\right]$
Define $S=\{0,1\} \times\left\{0,1, \ldots, 2^{e / 2}-1\right\}$
$(b, k) \in S$ fixes curve E_{b}, and k fixes subgroup $P_{b}+[k] Q_{b}$

Define $h: \quad S \rightarrow \mathbb{F}_{p^{2},}(b, z) \rightarrow j\left(E_{b} /\left\langle\left[2^{e / 2}\right]\left(P_{b}+[k] Q_{b}\right)\right\rangle\right)$
Define $g_{n}: \mathbb{F}_{p^{2}} \rightarrow S$, Merkle-Damgard based on AES with $I V=n$

$$
\text { Define } f_{n}: S \rightarrow S, \quad(b, k) \mapsto\left(g_{n} \circ h\right)(b, k),
$$

simplifying notation...

E_{0}°

O
E_{0}°

\bullet
${ }^{\bullet}$
E_{1}

E_{0}°

E_{0}°

$\stackrel{\bullet}{E}_{1}$

$\stackrel{\circ}{E}_{1}$

E_{0}
-
E_{1}
(E0
(E0
(
(
(

can't possibly store all these: fix w as upper bound on $\# x_{i}$ storage

store fraction $0<\theta \ll 1$

- f_{n} is a deterministic random function, different for each $I V=n$
- For a fixed n, each processor does the following:
- pick a random starting point x_{0}
- produce trail $x_{i}=f_{n}\left(x_{i-1}\right)$, for $i=1,2 \ldots$
- stop when x_{d} is "distinguished" $(1 / \theta)$.
if (x_{d} has not been seen yet) then
store triple (x_{0}, x_{d}, d) and resample
else if (collision not "golden") then
overwrite previous triple $\left(x_{0}, x_{d}, d\right)$ and resample else

Trails and collisions

how long's too long?
how do we check collisions?
and what does check mean?

Checking collisions ${ }_{\substack{x_{d} \\\left(\begin{array}{c}x_{0}, x_{0},() \\\left(x_{0}^{\prime}, x_{e}, e\right) \\ \hline\end{array}\right.}}^{x_{e}^{\prime}}$
 $$
f_{n}\left(x_{0}\right) \neq f_{n}\left(x_{0}^{\prime}\right)
$$

Checking collisions ${ }^{x_{d}} x_{e}^{x_{e}^{\prime}}$
 $$
f_{n}\left(x_{0}\right) \neq f_{n}\left(x_{0}^{\prime}\right)
$$

DONE?

Nope! False alarm

Random collisions vs. the golden collision

- A random function $f_{n}: S \rightarrow S$ has many collisions, e.g., think of the random function as a hash function (it kinda is anyway)
- We will encounter many of these before we hit the one we want, i.e., the "golden collision"
- Much of the algorithm is spent walking, much is spent checking useless annoying collisions
- Ideally there'll be many paths that take us to the golden collision...

Random f_{n} : the good, the bad and the ugly...

- Even more annoying is that we have to restart the whole algorithm, time and time again...

Analysis (vOW, Adj et al, us...)

SIDH: $|S| \approx p^{1 / 4}$ Adj et al: $w \approx 2^{80}$

- How many distinguished elements?
- How long before switching functions?
- How long before giving up on a trail?
- With these params, what's the runtime?
- Compared to MitM?
$\theta \approx 2.25 \sqrt{w /|S|}$
$\approx 10 w$ distinguish points
$\approx 20 / \theta$ function iterations
$\approx O\left(\frac{|S|^{\frac{3}{2}}}{\sqrt{w}}\right)$
$\approx O\left(\frac{|S|^{2}}{w}\right)$

This work

- Fast(er) collision checking
- Real-world/distributed analysis
- SIKE-specific optimisations: conjugates, fixed-bits, ...
- Precomputation
- Compressed distinguished points
- Optimised isogeny computations
- Multi-target attacks
... thus, (more) precise concrete SIDH/SIKE parameters

Fast collision checking

$$
x_{d} \bullet x_{e}^{\prime}
$$

x_{0} 。

$$
\circ x_{0}^{\prime}
$$

Fast collision checking

$$
\circ x_{0}^{\prime}
$$

Fast collision checking

$$
x_{d} \bullet x_{e}^{\prime}
$$

x_{0} 。

$$
\circ x_{0}^{\prime}
$$

Fast collision checking

Fast collision checking

Fast collision checking

Fast collision checking

Now swap sides and repeat

How to leave the trail?

- Sedgewick, Szymanski and Yao., e.g., suppose we can store 10 points...

01

$$
0 \quad 2 \quad 4 \quad 6 \quad 7 \quad 8 \quad 9 \quad 101112
$$

$$
0 \begin{array}{lllllllll}
& 2 & 4 & 6 & 8 & 10 & 12 & 14 & 15 \\
16
\end{array}
$$

$$
\begin{array}{lllllllll}
0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 \\
18
\end{array}
$$

```
0
```

```
0
```

```
0
```

	4	8	12	16	20	24	28	3	3

Hansel \& Gretel a la Sedgewick-Szymanski-Yao...

- Hard to analyse average case, but (easy-to-analyse) worst case is way better than previous average collision checking
- In practice solid savings...

vOW at scale

- How best to orchestrate a real attack?
- Communication costs are non-trivial. Overhead? Synchronise f_{n} changes...?

- When/how to check for incoming distinguished points? At both ends? Overhead?
- Large-scale vOW is non-trivial

- This is ongoing...

Conjugates

$$
\alpha+\beta \cdot i
$$

- For every $\alpha+\beta \cdot i$ reached from left, $\alpha-\beta \cdot i$ is also a possible j-invariant
- Walk on pairs by choosing canonical representative (same as Pollard rho automorphisms/negation map)
- Essentially shrinks set size $|S|$ by 25%

$$
\alpha-\beta \cdot i
$$

Implications

Target Security Level	SIKE spec $\log _{\mathbf{2}}(\boldsymbol{p})$	Adj et al SAC 2018 $\log _{\mathbf{2}}(\boldsymbol{p})$	SIKE future spec $\log _{\mathbf{2}}(\boldsymbol{p})$
NIST 1 (AES128)	503	-	$?$
NIST 2 (SHA256)	-	434	$?$
NIST 3 (AES192)	751	-	$?$
NIST 4 (SHA384)	-	610	$?$
NIST 5 (AES256)	964	-	$?$

- ePrint 2018/313: Adj, Cervantes-Vazquez, Chi-Dominguez, Menezes, Rodriguez-Henriquez

Questions?

