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Embedded…?



W. Castryck (GIF): https://www.esat.kuleuven.be/cosic/?p=7404

ECC vs. post-quantum ECC

https://www.esat.kuleuven.be/cosic/?p=7404


Diffie-Hellman instantiations
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Diffie-Hellman instantiations
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W. Castryck (GIF): ”Elliptic curves are dead: long live elliptic curves” https://www.esat.kuleuven.be/cosic/?p=7404

Alice does 2-isogenies, Bob does 3-isogenies

https://www.esat.kuleuven.be/cosic/?p=7404


Supersingular isogeny graph for ℓ = 2:  𝑋(𝑆2412, 2)



Supersingular isogeny graph for ℓ = 3:  𝑋(𝑆2412, 3)



Computing ℓ𝑒 degree isogenies
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𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃0

𝐸6 = 𝐸0/⟨𝑃0⟩



Computing ℓ𝑒 degree isogenies
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(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃0

𝐸5 = 𝐸0/⟨[2]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies
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(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃0
𝐸4 = 𝐸0/⟨[4]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies
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𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃0

𝐸3 = 𝐸0/⟨[8]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies
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𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃0

𝐸2 = 𝐸0/⟨[16]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies
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𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[32]𝑃0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1
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𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1 = 𝜙0(𝑃0)
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𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)



Computing ℓ𝑒 degree isogenies
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𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1

𝜙0

𝐸6 = 𝐸1/⟨𝑃1⟩



Computing ℓ𝑒 degree isogenies
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(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃1

𝜙0

𝐸5 = 𝐸1/⟨[2]𝑃1⟩

𝑃1



Computing ℓ𝑒 degree isogenies
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𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃1

𝜙0

𝐸4 = 𝐸1/⟨[4]𝑃1⟩

𝑃1



Computing ℓ𝑒 degree isogenies
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𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃1

𝜙0

𝐸3 = 𝐸1/⟨[8]𝑃1⟩

𝑃1



Computing ℓ𝑒 degree isogenies
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𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃1

𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)
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Computing ℓ𝑒 degree isogenies
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(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)
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Computing ℓ𝑒 degree isogenies
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𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸2/⟨𝑃2⟩
𝑃2
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Computing ℓ𝑒 degree isogenies
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𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸2/⟨[2]𝑃2⟩
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Computing ℓ𝑒 degree isogenies
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𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸2/⟨[4]𝑃2⟩
𝑃2
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[4]𝑃2



Computing ℓ𝑒 degree isogenies
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(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0
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Computing ℓ𝑒 degree isogenies
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𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0
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Computing ℓ𝑒 degree isogenies
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Computing ℓ𝑒 degree isogenies
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𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸3/⟨[2]𝑃3⟩
𝜙1

𝑃3

𝜙2

[2]𝑃3



Computing ℓ𝑒 degree isogenies
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(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3



Computing ℓ𝑒 degree isogenies
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(suppose ℓ = 2 and 𝑒 = 6)
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Computing ℓ𝑒 degree isogenies
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(suppose ℓ = 2 and 𝑒 = 6)
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Computing ℓ𝑒 degree isogenies
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Computing ℓ𝑒 degree isogenies
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(suppose ℓ = 2 and 𝑒 = 6)
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Computing ℓ𝑒 degree isogenies

𝜙 ∶ 𝐸0 → 𝐸6

𝜙 = 𝜙5 ∘ 𝜙4 ∘ 𝜙3 ∘ 𝜙2 ∘ 𝜙1 ∘ 𝜙0
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𝐸 𝐸′?

Rest of talk: given 𝐸, 𝐸′, find path (of known length)…



Claw algorithm: meet-in-the-middle

𝐸

𝐸′

Given 𝐸 and 𝐸′ = 𝜙(𝐸), with 𝜙 degree ℓ𝑒, find 𝜙



𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

… until you have all of them

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

Now compute ℓ𝑒/2-isogenies on the other side

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

Collision will most likely be unique shortest path

Claw algorithm: meet-in-the-middle



𝐸

𝐸′

This path describes secret isogeny 𝜙 ∶ 𝐸 → 𝐸′

Claw algorithm: meet-in-the-middle



Claw algorithm: classical analysis

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes )

thus  𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical memory

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes    ), and 
there are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸 (the purple nodes    ) 

thus  𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical time 

• Best (known) attacks: classical 𝑂(𝑝1/4) and quantum 𝑂(𝑝1/6)

• Confidence: both complexities are optimal for a black-box claw attack



NIST security levels



The curves and their security estimates

Target 

Security 

Level

Name

(SIKEp+

⌈log2 𝑝⌉)
(𝒆𝑨, 𝒆𝑩) 𝒌 𝟐𝒌−𝟏

𝐦𝐢𝐧

( 𝟐𝒆𝑨 , 𝟑𝒆𝟑) √𝟐𝒌
𝐦𝐢𝐧

(∛𝟐𝒆𝟐 , ∛𝟑𝒆𝟑)

NIST 1 SIKEp503 (250,159) 128 2127 2125 264 283

NIST 3 SIKEp761 (372,239) 192 2191 2186 296 2124

NIST 5 SIKEp964 (486,301) 256 2255 2238 2128 2159

𝑝 = 2𝑒𝐴3eB − 1

classical quantum



• Our proposed level 1 (𝑝 ≈ 2512) requires ≈ 2128 time and ≈ 2128

memory for meet-in-the-middle

• Best attacks on AES128 either ≈ 2128 time and almost no 
memory or (bicliques) ≈ 2125 and ≈ 232 memory 

• Unfair comparison: 2128 memory is infeasible: fix an upper-bound 
on memory, then analyse runtime. (vOW, DJB, Adj et al…)

Apples and oranges



Van Oorschot – Wiener (vOW) meets isogenies

This 
work



𝐸

𝐸′𝐸0
𝐸1

Define  𝑆 = 0,1 × 0,1, … , 2𝑒/2 − 1

𝑏, 𝑘 ∈ 𝑆 fixes curve 𝐸𝑏, and 𝑘 fixes subgroup 𝑃𝑏 + 𝑘 𝑄𝑏

Define ℎ: 𝑆 → 𝔽𝑝2 ,  (𝑏, 𝑧) → 𝑗(𝐸𝑏/ 2𝑒/2 𝑃𝑏 + 𝑘 𝑄𝑏 )

Let 𝑃0, 𝑄0 be a basis for 𝐸0[2
𝑒],   and 𝑃1, 𝑄1 be a basis for 𝐸1[2

𝑒]

Define 𝑔𝑛: 𝔽𝑝2 → 𝑆,  Merkle-Damgard based on AES with 𝐼𝑉 = 𝑛

ℎ(0, 𝑘)

Define 𝑓𝑛: 𝑆 → 𝑆, 𝑏, 𝑘 ↦ 𝑔𝑛 ∘ ℎ (𝑏, 𝑘),        



𝑓𝑛: 𝑆 → 𝑆
𝑥𝑖 ↦ 𝑥𝑖+1

simplifying notation…
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𝐸′𝐸0
𝐸1
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𝐸′𝐸0
𝐸1



𝐸

𝐸′𝐸0
𝐸1



𝐸

𝐸′𝐸0
𝐸1



𝐸

𝐸′𝐸0
𝐸1



𝐸

𝐸′𝐸0
𝐸1



𝐸

𝐸′𝐸0
𝐸1



𝐸

𝐸′𝐸0
𝐸1



𝐸

𝐸′𝐸0
𝐸1



𝐸

𝐸′

𝐸′

can’t possibly store all these: fix 𝒘 as upper bound on #𝒙𝒊 storage

store fraction 𝟎 < 𝜽 ≪ 𝟏



• 𝑓𝑛 is a deterministic random function, different for each 𝐼𝑉 = 𝑛

• For a fixed 𝑛, each processor does the following:

- pick a random starting point 𝑥0
- produce trail 𝑥𝑖 = 𝑓𝑛(𝑥𝑖−1), for 𝑖 = 1,2…
- stop when 𝑥𝑑 is “distinguished” (1/𝜃). 

if (𝑥𝑑 has not been seen yet) then
store triple 𝑥0, 𝑥𝑑 , 𝑑 and resample

else
if (collision not “golden”) then

overwrite previous triple 𝑥0, 𝑥𝑑 , 𝑑 and resample
else

vOW 𝑓𝑛: 𝑆 → 𝑆



Trails and collisions

some will be 
longer than 1/𝜃

some will be 
shorter than 1/𝜃

how long’s too 
long?

how do we 
check collisions?

and what does 
check mean?

how should we 
set 𝜃? 



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′ ← 𝑓(𝑥0

′ )

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′ ← 𝑓(𝑥0

′ )

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′ )



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′ )



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′ )



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′ )



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 = 𝑓𝑛(𝑥0
′ )

𝑥0 ≠ 𝑥0
′

DONE?



Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 = 𝑓𝑛(𝑥0
′ )

Nope! False alarm



• A random function  𝑓𝑛 ∶ 𝑆 → 𝑆 has many collisions, e.g., think 
of the random function as a hash function (it kinda is anyway)

• We will encounter many of these before we hit the one we 
want, i.e., the “golden collision”

• Much of the algorithm is spent walking, much is spent checking 
useless annoying collisions

• Ideally there’ll be many paths that take us to the golden 
collision…

Random collisions vs. the golden collision



• Even more annoying is that we have to restart the whole 
algorithm, time and time again…

Random 𝑓𝑛: the good, the bad and the ugly…

𝑥0 𝑥0
′

𝑥0 𝑥0
′ 𝑥0 𝑥0

′

𝑓𝑔𝑜𝑜𝑑 𝑓𝑏𝑎𝑑 𝑓𝑢𝑔𝑙𝑦



• How many distinguished elements?

• How long before switching functions?

• How long before giving up on a trail?

• With these params, what’s the runtime?

• Compared to MitM?

Analysis (vOW, Adj et al, us…) Adj et al:   𝑤 ≈ 280

𝜃 ≈ 2.25 𝑤/ 𝑆

SIDH:   𝑆 ≈ 𝑝1/4

≈ 10𝑤 distinguish points 

≈ 20/𝜃 function iterations

≈ 𝑂
𝑆

3
2

𝑤

≈ 𝑂
𝑆 2

𝑤



• Fast(er) collision checking

• Real-world/distributed analysis

• SIKE-specific optimisations: conjugates, fixed-bits, …

• Precomputation

• Compressed distinguished points

• Optimised isogeny computations

• Multi-target attacks

… thus, (more) precise concrete SIDH/SIKE parameters

This work



Fast collision checking
𝑥𝑑 𝑥𝑒

′

𝑥0
′

central list
𝑥0, 𝑥𝑑, 𝑑

local 
memory
𝑥0
′ , 𝑥𝑒′, 𝑒

𝑥
0′
,𝑥

𝑒
′,
𝑒

𝑥0



Fast collision checking
𝑥𝑑 𝑥𝑒

′

𝑥0
′

central list
𝑥0, 𝑥𝑑, 𝑑

local 
memory
𝑥0
′ , 𝑥𝑒′, 𝑒

𝑥
0′
,𝑥

𝑒
′,
𝑒 No collision…

Start new trail

𝑥0



Fast collision checking
𝑥𝑑 𝑥𝑒

′

𝑥0
′

central list
𝑥0, 𝑥𝑑, 𝑑

local 
memory
𝑥0
′ , 𝑥𝑒

′ , 𝑒

𝑥
0′
,𝑥

𝑒′
,𝑒

Collision!
Check it!

𝑥
0 ,𝑥

𝑑
,𝑑

𝑥0



Fast collision checking
𝑥𝑑 𝑥𝑒

′

𝑥0

𝑥0
′

central list
𝑥0, 𝑥𝑑, 𝑑

local 
memory
𝑥0
′ , 𝑥𝑒

′ , 𝑒

𝑥
0′
,𝑥

𝑒′
,𝑒

Collision!
Check it!

𝑥
0 ,𝑥

𝑑
,𝑑

𝑥1
′

𝑥𝑒−1
′



Fast collision checking
𝑥𝑑 𝑥𝑒

′

𝑥0

central list
𝑥0, 𝑥𝑑, 𝑑

local 
memory
𝑥0
′ , 𝑥𝑒

′ , 𝑒

𝑥
0′
,𝑥

𝑒′
,𝑒

Collision!
Check it!

𝑥
0 ,𝑥

𝑑
,𝑑

𝑥𝑒−1
′

𝑥0
′



Fast collision checking

𝑥0

central list
𝑥0, 𝑥𝑑, 𝑑

local 
memory
𝑥0
′ , 𝑥𝑒

′ , 𝑒

𝑥
0′
,𝑥

𝑒′
,𝑒

Collision!
Check it!

𝑥
0 ,𝑥

𝑑
,𝑑

𝑥0
′



Fast collision checking

𝑥0

central list
𝑥0, 𝑥𝑑, 𝑑

local 
memory
𝑥0
′ , 𝑥𝑒

′ , 𝑒

𝑥
0′
,𝑥

𝑒′
,𝑒

Collision!
Check it!

𝑥
0 ,𝑥

𝑑
,𝑑

𝑥0
′

Now swap sides and repeat



• Sedgewick, Szymanski and Yao., e.g., suppose we can store 10 points… 

How to leave the trail?



0



0 1



0 1 2



0 1 2 3 4 5 6 7 8 9



0 2 3 4 5 6 7 8 9 10



0 2 4 5 6 7 8 9 10 11



0 2 4 6 7 8 9 10 11 12



0 2 4 6 8 10 12 14 15 16



0 2 4 6 8 10 12 14 16 18



0 4 6 8 10 12 14 16 18 20



0 4 6 8 10 12 14 16 18 20



0 4 8 10 12 14 16 18 20 22



0 4 8 12 16 2820 3624 32



Hansel & Gretel a la Sedgewick-Szymanski-Yao…

ℓ2ℓ 2ℓ 2ℓ 2ℓ2ℓ ℓ ℓ
≤
ℓ

• Hard to analyse average case, but (easy-to-analyse) worst case 
is way better than previous average collision checking

• In practice solid savings… 



vOW at scale

• How best to orchestrate a real attack?

• Communication costs are non-trivial. 
Overhead? Synchronise 𝑓𝑛 changes…?

• When/how to check for incoming 
distinguished points? At both ends? 
Overhead?

• Large-scale vOW is non-trivial

• This is ongoing…



𝐸

𝐸′

𝐸′

Conjugates
𝛼 + 𝛽 ⋅ 𝑖

𝛼 − 𝛽 ⋅ 𝑖

• For every 𝛼 + 𝛽 ⋅ 𝑖 reached from left, 
𝛼 − 𝛽 ⋅ 𝑖 is also a possible 𝑗-invariant

• Walk on pairs by choosing canonical 
representative (same as Pollard rho 
automorphisms/negation map)

• Essentially shrinks set size |𝑆| by 25%



• ePrint 2018/313: Adj, Cervantes-Vazquez, Chi-Dominguez, Menezes, Rodriguez-Henriquez

Implications
Target 

Security 

Level

SIKE 

spec

log𝟐(𝒑)

Adj et al

SAC 2018

log𝟐(𝒑)

SIKE 

future spec

log𝟐(𝒑)

NIST 1 (AES128) 503 - ?

NIST 2 (SHA256) - 434 ?

NIST 3 (AES192) 751 - ?

NIST 4 (SHA384) - 610 ?

NIST 5 (AES256) 964 - ?



Questions?


