
Craig Costello , Patrick Longa, Michael Naehrig, Joost Renes, Fernando Virdia

Classical cryptanalysis of
supersingular isogenies

ASEC 2018
Adelaide, Australia

December 10

1 1 1 2 3

1 2 3

Work in progress with…

Embedded…?

W. Castryck (GIF): https://www.esat.kuleuven.be/cosic/?p=7404

ECC vs. post-quantum ECC

https://www.esat.kuleuven.be/cosic/?p=7404

Diffie-Hellman instantiations

𝑔𝑎 mod 𝑞

𝑔𝑏 mod 𝑞

𝑎 𝑃

𝑏 𝑃

𝜙𝐴(𝐸)

𝜙𝐵(𝐸)

ℤ𝑞 ℤ𝑞

Diffie-Hellman instantiations

DH ECDH SIDH

Elements integers 𝑔 modulo

prime

points 𝑃 in curve

group

curves 𝐸 in

isogeny class

Secrets exponents 𝑥 scalars 𝑘 isogenies 𝜙

computations 𝑔, 𝑥 ↦ 𝑔𝑥 𝑘, 𝑃 ↦ 𝑘 𝑃 𝜙, 𝐸 ↦ 𝜙(𝐸)

hard problem given 𝑔, 𝑔𝑥

find 𝑥
given 𝑃, 𝑘 𝑃

find 𝑘
given 𝐸,𝜙(𝐸)

find 𝜙

W. Castryck (GIF): ”Elliptic curves are dead: long live elliptic curves” https://www.esat.kuleuven.be/cosic/?p=7404

Alice does 2-isogenies, Bob does 3-isogenies

https://www.esat.kuleuven.be/cosic/?p=7404

Supersingular isogeny graph for ℓ = 2: 𝑋(𝑆2412, 2)

Supersingular isogeny graph for ℓ = 3: 𝑋(𝑆2412, 3)

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃0

𝐸6 = 𝐸0/⟨𝑃0⟩

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃0

𝐸5 = 𝐸0/⟨[2]𝑃0⟩

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃0
𝐸4 = 𝐸0/⟨[4]𝑃0⟩

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃0

𝐸3 = 𝐸0/⟨[8]𝑃0⟩

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃0

𝐸2 = 𝐸0/⟨[16]𝑃0⟩

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[32]𝑃0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1 = 𝜙0(𝑃0)

𝑃0

𝑃1

𝜙0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1

𝜙0

𝐸6 = 𝐸1/⟨𝑃1⟩

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃1

𝜙0

𝐸5 = 𝐸1/⟨[2]𝑃1⟩

𝑃1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃1

𝜙0

𝐸4 = 𝐸1/⟨[4]𝑃1⟩

𝑃1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃1

𝜙0

𝐸3 = 𝐸1/⟨[8]𝑃1⟩

𝑃1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃1

𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)

𝑃1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)

𝑃1

𝑃2 = 𝜙1(𝑃1)

𝑃2

𝜙1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸2/⟨𝑃2⟩
𝑃2

𝜙1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸2/⟨[2]𝑃2⟩
𝑃2

𝜙1

[2]𝑃2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸2/⟨[4]𝑃2⟩
𝑃2

𝜙1

[4]𝑃2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸3 = 𝐸2/⟨[8]𝑃2⟩
= 𝜙2(𝐸2) 𝑃2

𝜙1

[8]𝑃2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸3 = 𝐸2/⟨[8]𝑃2⟩
= 𝜙2(𝐸2) 𝑃2

𝜙1

[8]𝑃2

𝑃3 = 𝜙2(𝑃2) 𝑃3

𝜙2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸3/⟨𝑃3⟩
𝜙1

𝑃3

𝜙2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸3/⟨[2]𝑃3⟩
𝜙1

𝑃3

𝜙2

[2]𝑃3

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3

𝑃4 = 𝜙3(𝑃3)

𝑃4

𝜙3

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸4/⟨[2]𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

[2]𝑃4

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸4/⟨[2]𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

[2]𝑃4

𝑃5 = 𝜙4(𝑃4)

𝑃5

𝜙4

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸5/⟨𝑃5⟩
𝜙1

𝜙2

𝜙3

𝑃5

𝜙4

𝜙5

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

𝜙0

𝜙1

𝜙2

𝜙3

𝜙4

𝜙5

Optimal strategies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

𝜙0

𝜙1

𝜙2

𝜙3

𝜙4

𝜙5

Optimal strategies

𝑛2

→
𝑛 log𝑛

Computing ℓ𝑒 degree isogenies

𝜙 ∶ 𝐸0 → 𝐸6

𝜙 = 𝜙5 ∘ 𝜙4 ∘ 𝜙3 ∘ 𝜙2 ∘ 𝜙1 ∘ 𝜙0

𝜙0
𝜙1

𝜙2
𝜙3

𝜙4
𝜙5

𝐸0 𝐸6

𝐸 𝐸′?

Rest of talk: given 𝐸, 𝐸′, find path (of known length)…

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

Given 𝐸 and 𝐸′ = 𝜙(𝐸), with 𝜙 degree ℓ𝑒, find 𝜙

𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

… until you have all of them

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

Now compute ℓ𝑒/2-isogenies on the other side

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

Collision will most likely be unique shortest path

Claw algorithm: meet-in-the-middle

𝐸

𝐸′

This path describes secret isogeny 𝜙 ∶ 𝐸 → 𝐸′

Claw algorithm: meet-in-the-middle

Claw algorithm: classical analysis

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes)

thus 𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical memory

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes), and
there are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸 (the purple nodes)

thus 𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical time

• Best (known) attacks: classical 𝑂(𝑝1/4) and quantum 𝑂(𝑝1/6)

• Confidence: both complexities are optimal for a black-box claw attack

NIST security levels

The curves and their security estimates

Target

Security

Level

Name

(SIKEp+

⌈log2 𝑝⌉)
(𝒆𝑨, 𝒆𝑩) 𝒌 𝟐𝒌−𝟏

𝐦𝐢𝐧

(𝟐𝒆𝑨 , 𝟑𝒆𝟑) √𝟐𝒌
𝐦𝐢𝐧

(∛𝟐𝒆𝟐 , ∛𝟑𝒆𝟑)

NIST 1 SIKEp503 (250,159) 128 2127 2125 264 283

NIST 3 SIKEp761 (372,239) 192 2191 2186 296 2124

NIST 5 SIKEp964 (486,301) 256 2255 2238 2128 2159

𝑝 = 2𝑒𝐴3eB − 1

classical quantum

• Our proposed level 1 (𝑝 ≈ 2512) requires ≈ 2128 time and ≈ 2128

memory for meet-in-the-middle

• Best attacks on AES128 either ≈ 2128 time and almost no
memory or (bicliques) ≈ 2125 and ≈ 232 memory

• Unfair comparison: 2128 memory is infeasible: fix an upper-bound
on memory, then analyse runtime. (vOW, DJB, Adj et al…)

Apples and oranges

Van Oorschot – Wiener (vOW) meets isogenies

This
work

𝐸

𝐸′𝐸0
𝐸1

Define 𝑆 = 0,1 × 0,1, … , 2𝑒/2 − 1

𝑏, 𝑘 ∈ 𝑆 fixes curve 𝐸𝑏, and 𝑘 fixes subgroup 𝑃𝑏 + 𝑘 𝑄𝑏

Define ℎ: 𝑆 → 𝔽𝑝2 , (𝑏, 𝑧) → 𝑗(𝐸𝑏/ 2𝑒/2 𝑃𝑏 + 𝑘 𝑄𝑏)

Let 𝑃0, 𝑄0 be a basis for 𝐸0[2
𝑒], and 𝑃1, 𝑄1 be a basis for 𝐸1[2

𝑒]

Define 𝑔𝑛: 𝔽𝑝2 → 𝑆, Merkle-Damgard based on AES with 𝐼𝑉 = 𝑛

ℎ(0, 𝑘)

Define 𝑓𝑛: 𝑆 → 𝑆, 𝑏, 𝑘 ↦ 𝑔𝑛 ∘ ℎ (𝑏, 𝑘),

𝑓𝑛: 𝑆 → 𝑆
𝑥𝑖 ↦ 𝑥𝑖+1

simplifying notation…

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′𝐸0
𝐸1

𝐸

𝐸′

𝐸′

can’t possibly store all these: fix 𝒘 as upper bound on #𝒙𝒊 storage

store fraction 𝟎 < 𝜽 ≪ 𝟏

• 𝑓𝑛 is a deterministic random function, different for each 𝐼𝑉 = 𝑛

• For a fixed 𝑛, each processor does the following:

- pick a random starting point 𝑥0
- produce trail 𝑥𝑖 = 𝑓𝑛(𝑥𝑖−1), for 𝑖 = 1,2…
- stop when 𝑥𝑑 is “distinguished” (1/𝜃).

if (𝑥𝑑 has not been seen yet) then
store triple 𝑥0, 𝑥𝑑 , 𝑑 and resample

else
if (collision not “golden”) then

overwrite previous triple 𝑥0, 𝑥𝑑 , 𝑑 and resample
else

vOW 𝑓𝑛: 𝑆 → 𝑆

Trails and collisions

some will be
longer than 1/𝜃

some will be
shorter than 1/𝜃

how long’s too
long?

how do we
check collisions?

and what does
check mean?

how should we
set 𝜃?

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′ ← 𝑓(𝑥0

′)

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′ ← 𝑓(𝑥0

′)

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 ≠ 𝑓𝑛(𝑥0
′)

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 = 𝑓𝑛(𝑥0
′)

𝑥0 ≠ 𝑥0
′

DONE?

Checking collisions

𝑥0

𝑥𝑑 𝑥𝑒
′

𝑥0
′

memory
𝑥0, 𝑥𝑑, 𝑑
(𝑥0

′ , 𝑥𝑒
′ , 𝑒)

𝑓𝑛 𝑥0 = 𝑓𝑛(𝑥0
′)

Nope! False alarm

• A random function 𝑓𝑛 ∶ 𝑆 → 𝑆 has many collisions, e.g., think
of the random function as a hash function (it kinda is anyway)

• We will encounter many of these before we hit the one we
want, i.e., the “golden collision”

• Much of the algorithm is spent walking, much is spent checking
useless annoying collisions

• Ideally there’ll be many paths that take us to the golden
collision…

Random collisions vs. the golden collision

• Even more annoying is that we have to restart the whole
algorithm, time and time again…

Random 𝑓𝑛: the good, the bad and the ugly…

𝑥0 𝑥0
′

𝑥0 𝑥0
′ 𝑥0 𝑥0

′

𝑓𝑔𝑜𝑜𝑑 𝑓𝑏𝑎𝑑 𝑓𝑢𝑔𝑙𝑦

• How many distinguished elements?

• How long before switching functions?

• How long before giving up on a trail?

• With these params, what’s the runtime?

• Compared to MitM?

Analysis (vOW, Adj et al, us…) Adj et al: 𝑤 ≈ 280

𝜃 ≈ 2.25 𝑤/ 𝑆

SIDH: 𝑆 ≈ 𝑝1/4

≈ 10𝑤 distinguish points

≈ 20/𝜃 function iterations

≈ 𝑂
𝑆

3
2

𝑤

≈ 𝑂
𝑆 2

𝑤

• Fast(er) collision checking

• Real-world/distributed analysis

• SIKE-specific optimisations: conjugates, fixed-bits, …

• Precomputation

• Compressed distinguished points

• Optimised isogeny computations

• Multi-target attacks

… thus, (more) precise concrete SIDH/SIKE parameters

This work

Fast collision checking
𝑥𝑑 𝑥𝑒

′

𝑥0
′

central list
𝑥0, 𝑥𝑑, 𝑑

local
memory
𝑥0
′ , 𝑥𝑒′, 𝑒

𝑥
0′
,𝑥

𝑒
′,
𝑒

𝑥0

Fast collision checking
𝑥𝑑 𝑥𝑒

′

𝑥0
′

central list
𝑥0, 𝑥𝑑, 𝑑

local
memory
𝑥0
′ , 𝑥𝑒′, 𝑒

𝑥
0′
,𝑥

𝑒
′,
𝑒 No collision…

Start new trail

𝑥0

Fast collision checking
𝑥𝑑 𝑥𝑒

′

𝑥0
′

central list
𝑥0, 𝑥𝑑, 𝑑

local
memory
𝑥0
′ , 𝑥𝑒

′ , 𝑒

𝑥
0′
,𝑥

𝑒′
,𝑒

Collision!
Check it!

𝑥
0 ,𝑥

𝑑
,𝑑

𝑥0

Fast collision checking
𝑥𝑑 𝑥𝑒

′

𝑥0

𝑥0
′

central list
𝑥0, 𝑥𝑑, 𝑑

local
memory
𝑥0
′ , 𝑥𝑒

′ , 𝑒

𝑥
0′
,𝑥

𝑒′
,𝑒

Collision!
Check it!

𝑥
0 ,𝑥

𝑑
,𝑑

𝑥1
′

𝑥𝑒−1
′

Fast collision checking
𝑥𝑑 𝑥𝑒

′

𝑥0

central list
𝑥0, 𝑥𝑑, 𝑑

local
memory
𝑥0
′ , 𝑥𝑒

′ , 𝑒

𝑥
0′
,𝑥

𝑒′
,𝑒

Collision!
Check it!

𝑥
0 ,𝑥

𝑑
,𝑑

𝑥𝑒−1
′

𝑥0
′

Fast collision checking

𝑥0

central list
𝑥0, 𝑥𝑑, 𝑑

local
memory
𝑥0
′ , 𝑥𝑒

′ , 𝑒

𝑥
0′
,𝑥

𝑒′
,𝑒

Collision!
Check it!

𝑥
0 ,𝑥

𝑑
,𝑑

𝑥0
′

Fast collision checking

𝑥0

central list
𝑥0, 𝑥𝑑, 𝑑

local
memory
𝑥0
′ , 𝑥𝑒

′ , 𝑒

𝑥
0′
,𝑥

𝑒′
,𝑒

Collision!
Check it!

𝑥
0 ,𝑥

𝑑
,𝑑

𝑥0
′

Now swap sides and repeat

• Sedgewick, Szymanski and Yao., e.g., suppose we can store 10 points…

How to leave the trail?

0

0 1

0 1 2

0 1 2 3 4 5 6 7 8 9

0 2 3 4 5 6 7 8 9 10

0 2 4 5 6 7 8 9 10 11

0 2 4 6 7 8 9 10 11 12

0 2 4 6 8 10 12 14 15 16

0 2 4 6 8 10 12 14 16 18

0 4 6 8 10 12 14 16 18 20

0 4 6 8 10 12 14 16 18 20

0 4 8 10 12 14 16 18 20 22

0 4 8 12 16 2820 3624 32

Hansel & Gretel a la Sedgewick-Szymanski-Yao…

ℓ2ℓ 2ℓ 2ℓ 2ℓ2ℓ ℓ ℓ
≤
ℓ

• Hard to analyse average case, but (easy-to-analyse) worst case
is way better than previous average collision checking

• In practice solid savings…

vOW at scale

• How best to orchestrate a real attack?

• Communication costs are non-trivial.
Overhead? Synchronise 𝑓𝑛 changes…?

• When/how to check for incoming
distinguished points? At both ends?
Overhead?

• Large-scale vOW is non-trivial

• This is ongoing…

𝐸

𝐸′

𝐸′

Conjugates
𝛼 + 𝛽 ⋅ 𝑖

𝛼 − 𝛽 ⋅ 𝑖

• For every 𝛼 + 𝛽 ⋅ 𝑖 reached from left,
𝛼 − 𝛽 ⋅ 𝑖 is also a possible 𝑗-invariant

• Walk on pairs by choosing canonical
representative (same as Pollard rho
automorphisms/negation map)

• Essentially shrinks set size |𝑆| by 25%

• ePrint 2018/313: Adj, Cervantes-Vazquez, Chi-Dominguez, Menezes, Rodriguez-Henriquez

Implications
Target

Security

Level

SIKE

spec

log𝟐(𝒑)

Adj et al

SAC 2018

log𝟐(𝒑)

SIKE

future spec

log𝟐(𝒑)

NIST 1 (AES128) 503 - ?

NIST 2 (SHA256) - 434 ?

NIST 3 (AES192) 751 - ?

NIST 4 (SHA384) - 610 ?

NIST 5 (AES256) 964 - ?

Questions?

