Computing supersingular isogenies on Kummer surfaces

Craig Costello

Microsoft ${ }^{\circ}$
Research

ASIACRYPT
December 6, 2018
Brisbane, Australia

ECC
 vs.
 post-quantum ECC

Alice 2^{e}-isogenies, Bob 3^{f}-isogenies

In a nutshell:
 $E\left(\mathbb{F}_{p^{2}}\right)$

In a nutshell: $\quad J_{C}\left(\mathbb{F}_{p}\right)$

In a nutshell:
 $K\left(\mathbb{F}_{p}\right)$

Why go hyperelliptic?

$\# E\left(\mathbb{F}_{q}\right) \approx \# C\left(\mathbb{F}_{q}\right)$

$$
\begin{gathered}
G=E \\
|G|=\# E
\end{gathered}
$$

Why go Kummer?

- Genusz analogue of elliptic curve x-line
- Extremely efficient arithmetic

... a few of my favourite things...

WEIL RESTRICTION OF AN ELLIPTIC CURVE OVER A QUADRATIC EXTENSION

Hyper-and-elliptic-curve cryptography

Daniel J. Bernstein and Tanja Lange

JASPER SCHOLTEN

Abstract. Let K be a finite field of characteristic not equal to 2 , and L a quadratic extension of K. For a large class of elliptic curves E defined over L we construct hyperelliptic curves over K of genus 2 whose jacobian is isogenous to the Weil restriction $\operatorname{Res}_{K}^{L}(E)$.

At this point one can and should object that [48, Lemma 2.1] merely guarantees the existence of an isogeny from W to J; it does not guarantee the existence of an efficient isogeny from W to J

The main challenge addressed in this section is to show that W and J are efficiently isogenous.

Fast genus 2 arithmetic based on Theta functions

P. Gaudry

Remark 3.5. The pseudo-group law that we just described is somewhat surprising, because it heavily relies on a (2,2)-isogenous abelian variety for the computation: for the doubling, the point is pushed through isogenies back and forth, thus obtaining a multiplication by 2 map.

TOWARDS QUANTUM-RESISTANT CRYPTOSYSTEMS FROM SUPERSINGULAR ELLIPTIC CURVE ISOGENIES

LUCA DE FEO, DAVID JAO, AND JÉRÔME PLÛT

Also observe that since P and $-P$ generate the same subgroup, isogenies can be defined and evaluated correctly on the Kummer line.

It is not immediately evident how to put F in Montgomery form without computing square roots. If P_{8} is a point satisfying $[2] P_{8}=P_{4}$, then $\phi\left(P_{8}\right)=(2 \sqrt{2+A} \ldots)$, and F can be put in the form
qDSA: Small and Secure Digital Signatures with Curve-based Diffie-Hellman Key Pairs

$$
\text { Joost Renes }{ }^{1 \star} \text { and Benjamin Smith }{ }^{2}
$$

From elliptic to hyperelliptic

Consider

$$
E / K: \quad y^{2}=x^{3}+1 \quad C / K: \quad y^{2}=x^{6}+1
$$

Obvious map

$$
\begin{aligned}
\omega: \quad C(K) & \rightarrow E(K) \\
(x, y) & \mapsto\left(x^{2}, y\right)
\end{aligned}
$$

1: But what about $\omega^{-1}: E(K) \rightarrow C(?) \ldots$
2: Points on E are group elements, points on C are not...
3: Actually want map $E \rightarrow J_{C}$, but $\operatorname{dim}(E)=1$ while $\operatorname{dim}\left(J_{C}\right)=2 \ldots$
4: \quad Want general ω, ω^{-1} between $y^{2}=x^{3}+A x^{2}+x$ to $y^{2}=x^{6}+A x^{4}+x^{2}$???

Proposition 1

$$
\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(i) \text { with } i^{2}+1=0
$$

$$
E / \mathbb{F}_{p^{2}}: \quad y^{2}=x(x-\alpha)(x-1 / \alpha)
$$

$C / \mathbb{F}_{p}: \quad y^{2}=\left(x^{2}+m x-1\right)\left(x^{2}-m x-1\right)\left(x^{2}-m n x-1\right)$

$$
m=\frac{2 \alpha_{0}}{\alpha_{1}}, n=\frac{\left(\alpha_{0}^{2}+\alpha_{1}^{2}-1\right)}{\left(\alpha_{0}+\alpha_{1}^{2}+1\right)} \text { both in } \mathbb{F}_{p}
$$

Then $\operatorname{Res}_{\mathbb{F}_{p^{2}} / \mathbb{F}_{p}}(E)$ is $(2,2)$-isogenous to $J_{C}\left(\mathbb{F}_{p}\right)$

Or, pictorially,

$$
\operatorname{ker}(\eta) \cong \operatorname{ker}(\hat{\eta}) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

$$
\eta \circ \hat{\eta}=[2]
$$

Unpacking Proposition 1

- Weil restriction turns 1 equation over $\mathbb{F}_{p^{2}}$ into two equations over \mathbb{F}_{p}
- Simple linear transform of $E / \mathbb{F}_{p^{2}}: y^{2}=f(x)=x^{3}+A x^{2}+x$ to $\tilde{E} / \mathbb{F}_{p^{2}}: y^{2}=g(x)$ such that $C / \mathbb{F}_{p^{2}}: y^{2}=g\left(x^{2}\right)$ is non-singular
- Pullback ω^{*} of $\omega:(x, y) \mapsto\left(x^{2}, y\right)$ gives 2 points in $C\left(\mathbb{F}_{p^{4}}\right)$, but composition with Abel-Jacobi map bring these to $J_{C}\left(\mathbb{F}_{p^{2}}\right)$

Matching 2-kernels in $\mathbb{F}_{p^{2}}$ with $(2,2)$-kernels in \mathbb{F}_{p}

$$
\begin{array}{cc}
E \cong \mathbb{Z}_{(p+1)} \times \mathbb{Z}_{(p+1)} & J_{C} \cong \mathbb{Z}_{(p+1) / 2} \times \mathbb{Z}_{(p+1) / 2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\
E[2] \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} & J_{C}[2] \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
\end{array}
$$

- Fifteen $(2,2)$-kernels in $J_{C}\left(\mathbb{F}_{p}\right)$. Number of ways to split C 's sextic into three quadratic factors.
- Lemma 2: identifies $O \leftrightarrow(0,0)$ and $\{\Upsilon, \widetilde{\Upsilon}\} \leftrightarrow\{(\alpha, 0),(1 / \alpha, 0)\}$

Richelot isogenies in genus 2

- Elliptic curve isogenies are easy/explicit/fast, thanks to Vélu. But beyond elliptic curves, far from true!
- (2,2)-isogenies in genus 2 are exception, thanks to work beginning with Richelot in 1836
- Lessons learned from elliptic case:
(1) easiest to derive explicitly when the kernel is O, i.e. the kernel we don't want!
(2) when kernel is Υ, precompose with isomorphism $\xi_{Y}: J_{C} \rightarrow J_{C}, \Upsilon \mapsto O^{\prime}$
(3) ξ_{r} either requires a square root, or torsion "from above"
(4) who cares about the full Jacobian group, let's move the Kummer variety

Supersingular Kummer surfaces

$K_{F, G, H}^{\mathrm{Sqr}}: \quad F \cdot X_{1} X_{2} X_{3} X_{4}=\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}-G\left(X_{1}+X_{2}\right)\left(X_{3}+X_{4}\right)-H\left(X_{1} X_{2}+X_{3} X_{4}\right)\right)^{2}$ Surface constants $F, G, H \in \mathbb{F}_{p}$
Points $\left(X_{1}: X_{2}: X_{3}: X_{4}\right) \in \mathbb{P}^{3}\left(\mathbb{F}_{p}\right)$
Theta constants $\left(\mu_{1}: \mu_{2}: 1: 1\right) \sim\left(\lambda \mu_{1}: \lambda \mu_{2}: \lambda: \lambda\right)$
Arithmetic constants $\left(\pi_{1}: \pi_{2}: \pi_{3}: \pi_{4}\right)$; functions of μ_{1}, μ_{2}
$S: \quad\left(\ell_{1}: \ell_{2}: \ell_{3}: \ell_{4}\right) \mapsto\left(\ell_{1}^{2}: \ell_{2}^{2}: \ell_{3}^{2}: \ell_{4}^{2}\right)$

$C: \quad\left(\ell_{1}: \ell_{2}: \ell_{3}: \ell_{4}\right) \mapsto\left(\pi_{1} \ell_{1}: \pi_{2} \ell_{2}: \pi_{3} \ell_{3}: \pi_{4} \ell_{4}\right)$
$H: \quad\left(\ell_{1}: \ell_{2}: \ell_{3}: \ell_{4}\right) \mapsto\left(\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}: \quad \ell_{1}+\ell_{2}-\ell_{3}-\ell_{4}: \quad \ell_{1}-\ell_{2}+\ell_{3}-\ell_{4}: \quad \ell_{1}-\ell_{2}-\ell_{3}+\ell_{4}\right)$

Doubling $[2]_{K} S q r: P \mapsto(S \circ \hat{C} \circ H \circ S \circ C \circ H)(P)$
2-isogeny (splitting [2]) $\varphi_{O}: P \mapsto(S \circ C \circ H)(P)$

Kummer isogenies for non-trivial kernels

- P point of order 2 on K corresponding to $\mathrm{G} \in\{\Upsilon, \widetilde{\Upsilon}\}$. Write $H(P)=\left(P_{1}^{\prime}: P_{2}^{\prime}: P_{3}^{\prime}: P_{4}^{\prime}\right)$
- Q point of order 4 on K such that $[2] Q=P$.

$$
\text { Write } H(Q)=\left(Q_{1}^{\prime}: Q_{2}^{\prime}: Q_{3}^{\prime}: Q_{4}^{\prime}\right)
$$

- Define $C_{Q, P}:\left(X_{1}: X_{2}: X_{3}: X_{4}\right) \mapsto\left(\pi_{1}^{\prime} X_{1}: \pi_{2}^{\prime} X_{2}: \pi_{3}^{\prime} X_{3}: \pi_{4}^{\prime} X_{4}\right)$

$$
\text { where }\left(\pi_{1}: \pi_{2}: \pi_{3}: \pi_{4}\right)=\left(P_{2}^{\prime} Q_{4}^{\prime}: P_{1}^{\prime} Q_{4}^{\prime}: P_{2}^{\prime} Q_{1}^{\prime}: P_{2}^{\prime} Q_{1}^{\prime}\right)
$$

- Then $\varphi_{P}: K^{S q r} \rightarrow K^{S q r} / G$,

$$
P \mapsto\left(S \circ H \circ C_{Q, P} \circ H\right)(P)
$$

$4 M+4 S+16 A$

Implications

Operation	chained 2-isogenies on Montgomery curves over $\mathbb{F}_{p^{2}}$ (previous work)				chained $(2,2)$-isogenies on Kummer surfaces over \mathbb{F}_{p} (this work)				
	M	S	A	\approx cycles	m	S	a	\approx cycles	
								$\mathbf{s}=\mathbf{m}$	$\mathrm{s}=0.8 \mathrm{~m}$
doubling	4	2	4	5862	8	8	16	6272	5714
2-isog. curve	-	2	1	2088	19	4	28	9231	8952
2-isog. point	4	0	4	4336	4	4	16	3480	3200

- Theta constants map to theta constants: no special map needed to find image surface
- Comparison in Table/paper very conservative. Kummer will win in aggressive impl.:
- Recall Kummer over $\mathbb{F}_{2^{127}-1}$ almost as fast as FourQ over $\mathbb{F}_{\left(2^{127}-1\right)^{2}}$ (scalars $4 \times$ larger)
- Recall that "doubling" and "2-isog. point" are bottlenecks in optimal tree strategy
- Pushing points through 2^{ℓ} for small ℓ likely to be better on Kummer, don't need to compute all intermediate surface constants

Related future work

- To use this right now, Alice need to map back-and-forth using η and $\hat{\eta}$. Certainly not a deal-breaker! Thus, this is a call for skilled implementers!
- But ideally we want Bob to be able to use the Kummer, too! Then uncompressed SIDH/SIKE can be defined as Kummer everywhere!
Thus, this is a call for fast $(3,3)$-isogenies on fast Kummers!
- Going further, general isogenies in Montgomery elliptic case have a nice explicit form (see [C-Hisil, AsiaCrypt'17] and [Renes,PQCrypto'18]). Thus, this is a call for fast (ℓ, ℓ)isogenies on fast Kummers!
- Gut feeling is that there's a better way to write down supersingular Kummers, and their arithmetic. Thus, this is a call for smart geometers!

Cheers!

https://eprint.iacr.org/2018/850.pdf

https://www.microsoft.com/en-us/download/details.aspx?id =57309

