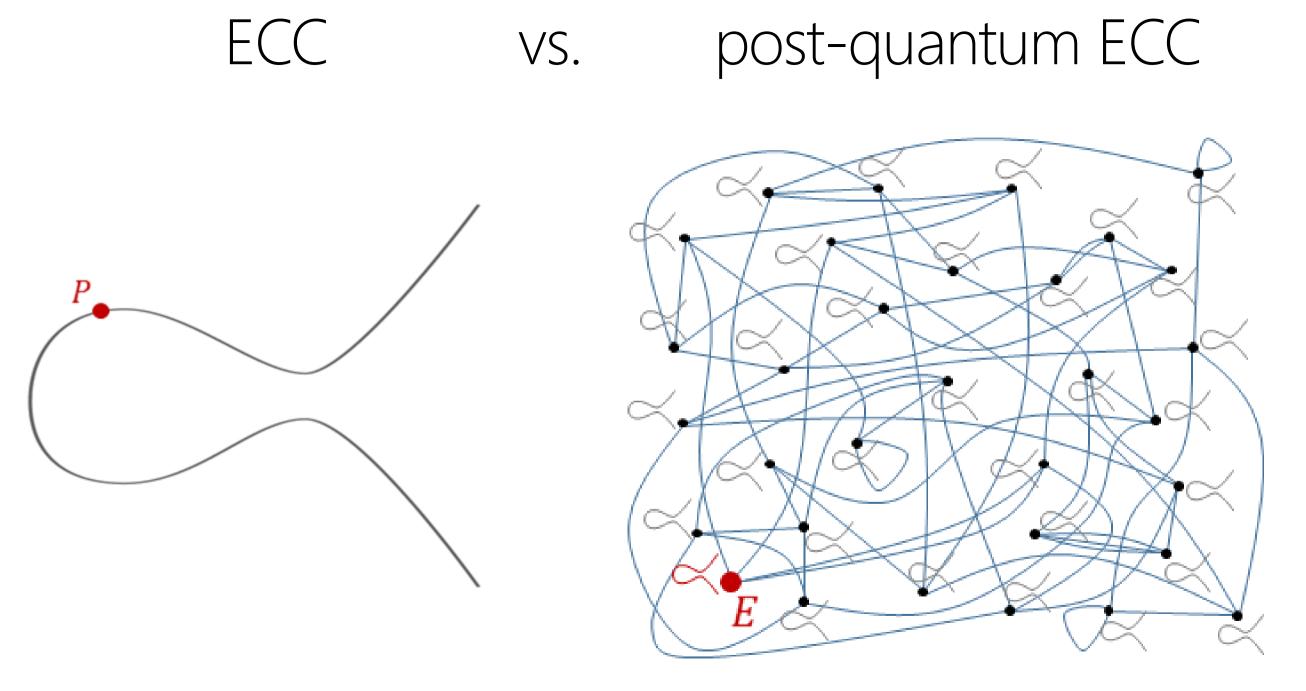
Computing supersingular isogenies on Kummer surfaces

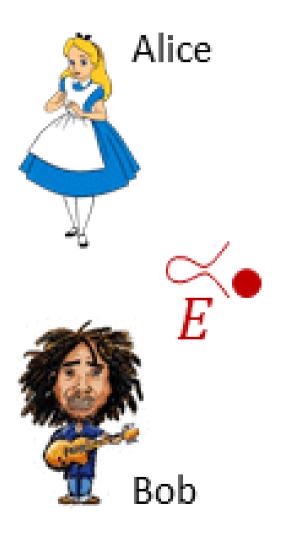
Craig Costello

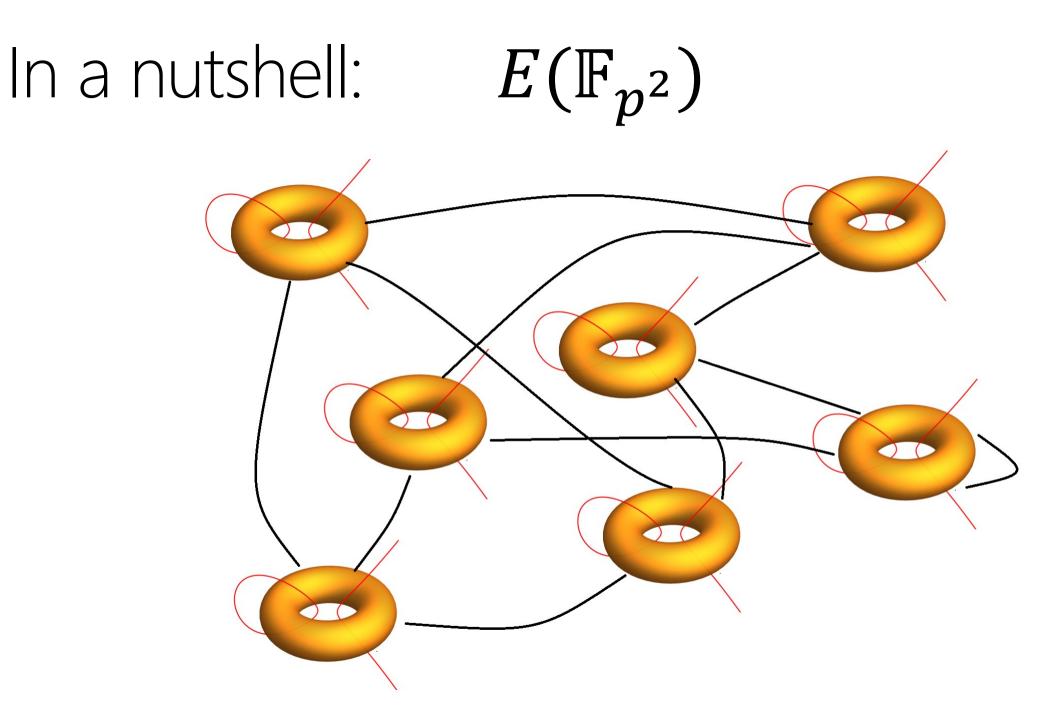
Microsoft® Research

ASIACRYPT December 6, 2018 Brisbane, Australia

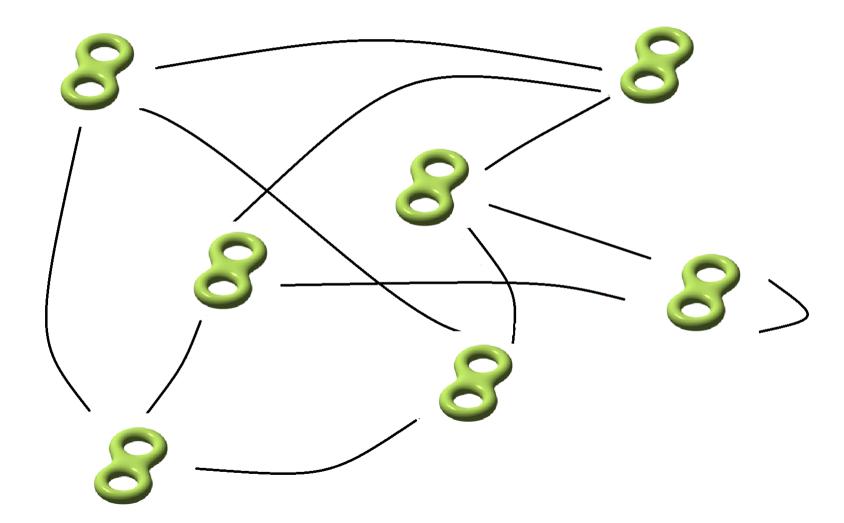


Alice 2^e -isogenies, Bob 3^f -isogenies

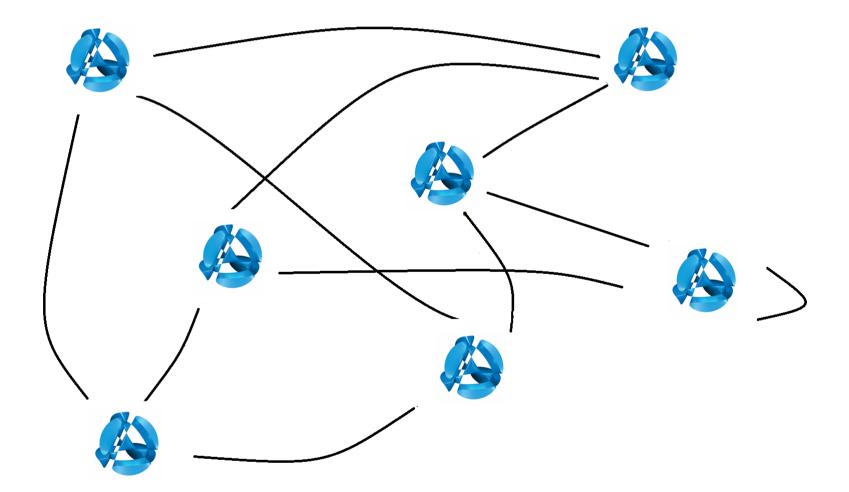




In a nutshell: $J_{\mathcal{C}}(\mathbb{F}_p)$



In a nutshell: $K(\mathbb{F}_p)$

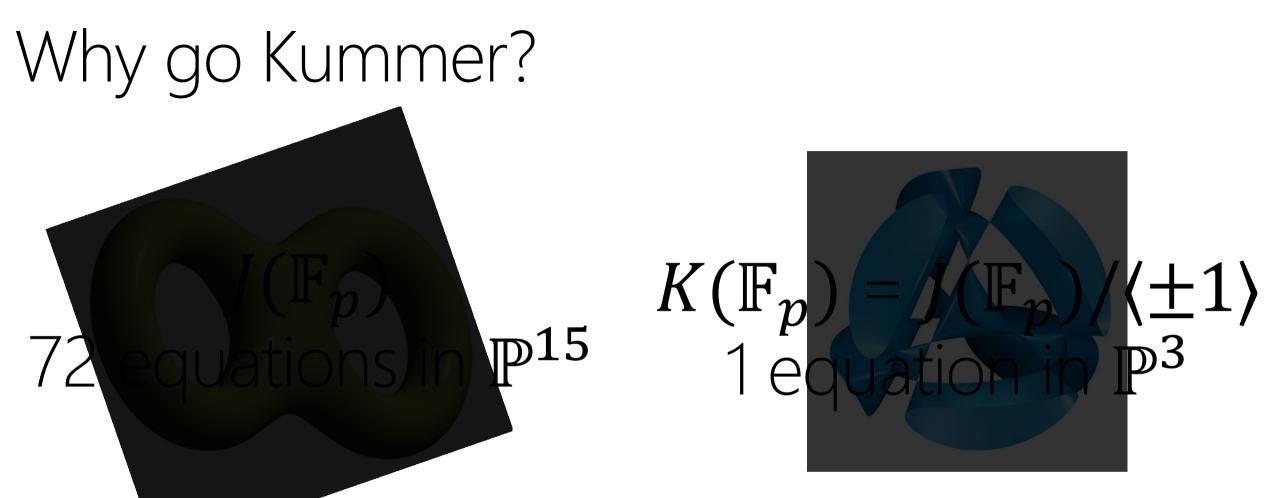


Why go hyperelliptic? *E* : (J $#E(\mathbb{F}_q) \approx #C(\mathbb{F}_q)$ R G = E

|G| = #E

C: R_1 P_1 R_2 l

 $\begin{array}{l} G \approx C \times C \\ |G| = (\#C)^2 \end{array}$



- Genus 2 analogue of elliptic curve x-line
- Extremely efficient arithmetic

... a few of my favourite things...

WEIL RESTRICTION OF AN ELLIPTIC CURVE OVER A QUADRATIC EXTENSION

JASPER SCHOLTEN

ABSTRACT. Let K be a finite field of characteristic not equal to 2, and L a quadratic extension of K. For a large class of elliptic curves E defined over L we construct hyperelliptic curves over K of genus 2 whose jacobian is isogenous to the Weil restriction $\operatorname{Res}_{K}^{L}(E)$.

Hyper-and-elliptic-curve cryptography

Daniel J. Bernstein and Tanja Lange

At this point one can and should object that [48, Lemma 2.1] merely guarantees the existence of an isogeny from W to J; it does not guarantee the existence of an efficient isogeny from W to J.

The main challenge addressed in this section is to show that W and J are efficiently isogenous.

Fast genus 2 arithmetic based on Theta functions

P. Gaudry

Remark 3.5. The pseudo-group law that we just described is somewhat surprising, because it heavily relies on a (2,2)-isogenous abelian variety for the computation: for the doubling, the point is pushed through isogenies back and forth, thus obtaining a multiplication by 2 map.

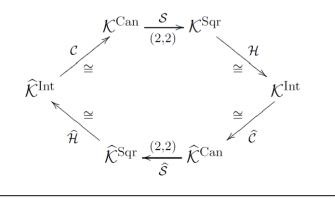
TOWARDS QUANTUM-RESISTANT CRYPTOSYSTEMS FROM SUPERSINGULAR ELLIPTIC CURVE ISOGENIES

LUCA DE FEO, DAVID JAO, AND JÉRÔME PLÛT

Also observe that since P and -P generate the same subgroup, isogenies can be defined and evaluated correctly on the Kummer line.

It is not immediately evident how to put F in Montgomery form without computing square roots. If P_8 is a point satisfying $[2]P_8 = P_4$, then $\phi(P_8) = (2\sqrt{2+A}, \ldots)$, and F can be put in the form qDSA: Small and Secure Digital Signatures with Curve-based Diffie–Hellman Key Pairs

Joost Renes^{1*} and Benjamin Smith²



From elliptic to hyperelliptic

Consider

$$E/K: y^2 = x^3 + 1$$
 $C/K: y^2 = x^6 + 1$

Obvious map

$$\omega: C(K) \to E(K)$$
$$(x, y) \mapsto (x^2, y)$$

- 1: But what about $\omega^{-1} : E(K) \to C(?)$...
- 2: Points on *E* are group elements, points on *C* are not...
- 3: Actually want map $E \rightarrow J_C$, but $\dim(E) = 1$ while $\dim(J_C) = 2...$
- 4: Want general ω, ω^{-1} between $y^2 = x^3 + Ax^2 + x$ to $y^2 = x^6 + Ax^4 + x^2$???

Proposition 1

Or, pictorially,

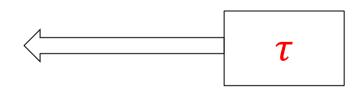
 $\mathbb{F}_{n^2} = \mathbb{F}_n(i)$ with $i^2 + 1 = 0$ E/\mathbb{F}_{n^2} : $y^2 = x(x-\alpha)(x-1/\alpha)$ $\alpha = \alpha_0 + \alpha_1 i$ with $\alpha_0, \alpha_1 \in \mathbb{F}_n$ $C/\mathbb{F}_p: y^2 = (x^2 + mx - 1)(x^2 - mx - 1)(x^2 - mnx - 1)$ $m = \frac{2\alpha_0}{\alpha_1}$, $n = \frac{(\alpha_0^2 + \alpha_1^2 - 1)}{(\alpha_0 + \alpha_1^2 + 1)}$ both in \mathbb{F}_p Then $\operatorname{Res}_{\mathbb{F}_{p^2}/\mathbb{F}_p}(E)$ is (2,2)-isogenous to $J_{\mathcal{C}}(\mathbb{F}_p)$

 $\ker(\eta) \cong \ker(\hat{\eta}) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ $\eta \circ \hat{\eta} = [2]$

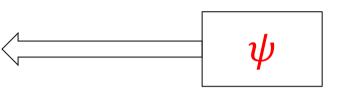
Unpacking Proposition 1

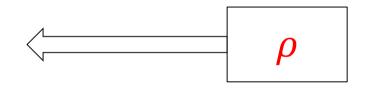
- Weil restriction turns 1 equation over \mathbb{F}_{p^2} into two equations over \mathbb{F}_p
- Simple linear transform of E/\mathbb{F}_{p^2} : $y^2 = f(x) = x^3 + Ax^2 + x$ to $\tilde{E}/\mathbb{F}_{p^2}$: $y^2 = g(x)$ such that C/\mathbb{F}_{p^2} : $y^2 = g(x^2)$ is non-singular
- Pullback ω^* of $\omega : (x, y) \mapsto (x^2, y)$ gives 2 points in $C(\mathbb{F}_{p^4})$, but composition with Abel-Jacobi map bring these to $J_C(\mathbb{F}_{p^2})$
- Need to go from $J_{\mathcal{C}}(\mathbb{F}_{p^2})$ to $J_{\mathcal{C}}(\mathbb{F}_p)$; cue good old Trace map,

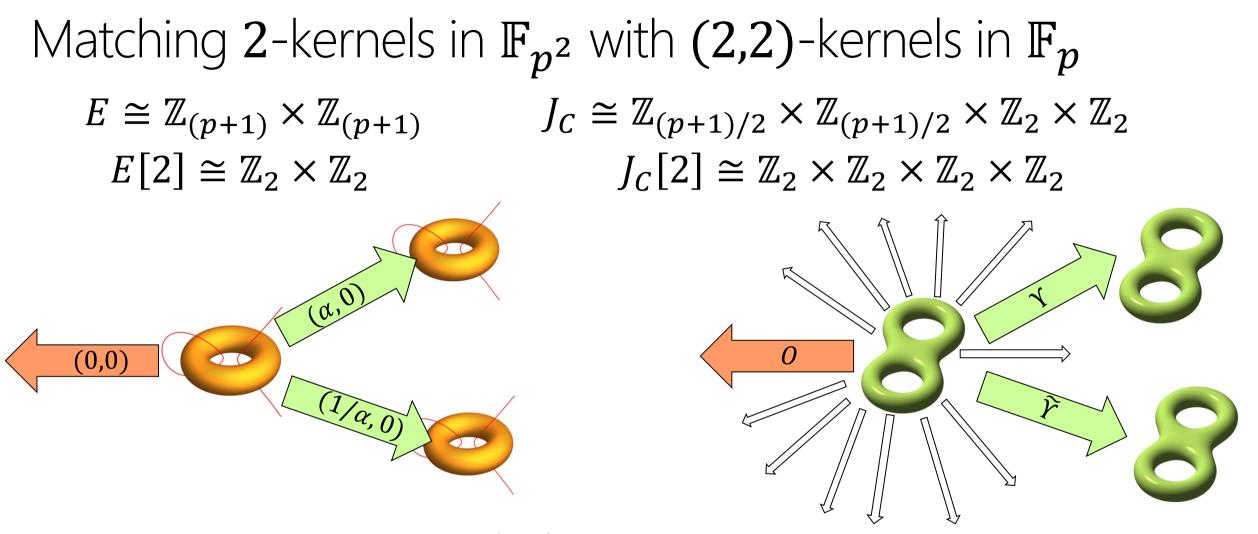
$$\tau: P \mapsto \sum_{\sigma \in \operatorname{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p)}^n \sigma(P)$$



 $\eta: \operatorname{Res}_{\mathbb{F}_{p^2}/\mathbb{F}_p}(E) \to J_C(\mathbb{F}_p), \qquad P \mapsto (\tau \circ \rho \circ \psi)(P)$







- Fifteen (2,2)-kernels in $J_{\mathcal{C}}(\mathbb{F}_p)$. Number of ways to split \mathcal{C} 's sextic into three quadratic factors.
- Lemma 2: identifies $0 \leftrightarrow (0,0)$ and $\{\Upsilon, \widetilde{\Upsilon}\} \leftrightarrow \{(\alpha, 0), (1/\alpha, 0)\}$

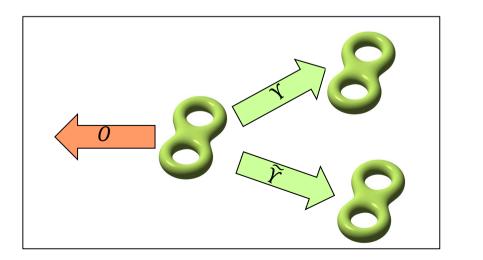
Richelot isogenies in genus 2

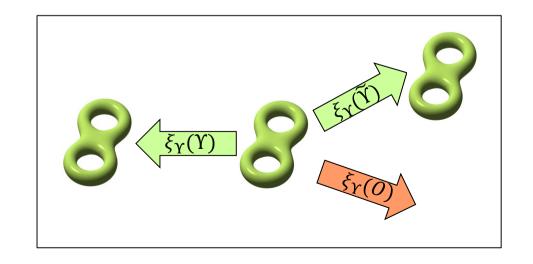
- Elliptic curve isogenies are easy/explicit/fast, thanks to Vélu. But beyond elliptic curves, far from true!
- (2,2)-isogenies in genus 2 are exception, thanks to work beginning with Richelot in 1836

 $\xi_{
m Y}$

• Lessons learned from elliptic case:

(1) easiest to derive explicitly when the kernel is O, i.e. the kernel we don't want! (2) when kernel is Υ , precompose with isomorphism $\xi_{\Upsilon} : J_C \to J_C$, $\Upsilon \mapsto O'$ (3) ξ_{Υ} either requires a square root, or torsion "from above" (4) who cares about the full Jacobian group, let's move the Kummer variety





Supersingular Kummer surfaces

$$K_{F,G,H}^{\text{Sqr}}: F \cdot X_1 X_2 X_3 X_4 = \left(X_1^2 + X_2^2 + X_3^2 + X_4^2 - G(X_1 + X_2)(X_3 + X_4) - H(X_1 X_2 + X_3 X_4)\right)^2$$

Surface constants $F, G, H \in \mathbb{F}_p$
Points $(X_1: X_2: X_3: X_4) \in \mathbb{P}^3(\mathbb{F}_p)$
Theta constants $(\mu_1: \mu_2: 1: 1) \sim (\lambda \mu_1: \lambda \mu_2: \lambda: \lambda)$
Arithmetic constants $(\pi_1: \pi_2: \pi_3: \pi_4)$; functions of μ_1, μ_2
$$\widehat{\mathcal{H}}$$

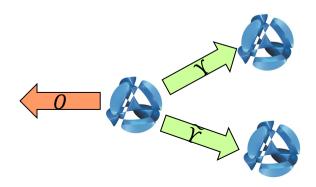
S:
$$(\ell_1: \ell_2: \ell_3: \ell_4) \mapsto (\ell_1^2: \ell_2^2: \ell_3^2: \ell_4^2)$$

C : $(\ell_1: \ell_2: \ell_3: \ell_4) \mapsto (\pi_1 \ell_1: \pi_2 \ell_2: \pi_3 \ell_3: \pi_4 \ell_4)$ $\widehat{\mathcal{K}}^{\operatorname{Sqr}} \xleftarrow{(2,2)}{\widehat{\mathcal{L}}} \widehat{\mathcal{K}}^{\operatorname{Can}}$

 $(\ell_1:\ell_2:\ell_3:\ell_4) \mapsto (\ell_1 + \ell_2 + \ell_3 + \ell_4: \quad \ell_1 + \ell_2 - \ell_3 - \ell_4: \quad \ell_1 - \ell_2 + \ell_3 - \ell_4: \quad \ell_1 - \ell_2 - \ell_3 + \ell_4)$ H:

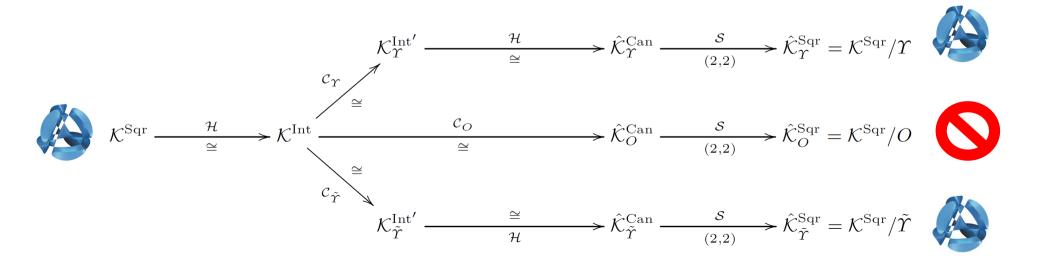
Doubling $[2]_{K}Sqr: P \mapsto (S \circ \hat{C} \circ H \circ S \circ C \circ H)(P)$

2-isogeny (splitting [2]) $\varphi_0: P \mapsto (S \circ C \circ H)(P)$



Kummer isogenies for non-trivial kernels

- P point of order 2 on K corresponding to $G \in {\Upsilon, \widetilde{\Upsilon}}$. Write $H(P) = (P'_1: P'_2: P'_3: P'_4)$
- Q point of order 4 on K such that [2]Q = P. Write $H(Q) = (Q'_1; Q'_2; Q'_3; Q'_4)$
- Define $C_{Q,P}$: $(X_1: X_2: X_3: X_4) \mapsto (\pi'_1 X_1: \pi'_2 X_2: \pi'_3 X_3: \pi'_4 X_4)$ where $(\pi_1: \pi_2: \pi_3: \pi_4) = (P'_2 Q'_4: P'_1 Q'_4: P'_2 Q'_1: P'_2 Q'_1)$
- Then $\varphi_P: K^{Sqr} \to K^{Sqr}/G$, $P \mapsto (S \circ H \circ C_{Q,P} \circ H)(P)$ 4M+4S+16A



Implications

Operation	chained 2-isogenies on Montgomery curves over \mathbb{F}_{p^2} (previous work)				chained $(2, 2)$ -isogenies on Kummer surfaces over \mathbb{F}_p (this work)				
	M	\mathbf{S}	\mathbf{A}	\approx cycles	m	\mathbf{S}	a	\approx cycles	
								$\mathbf{s} = \mathbf{m}$	s = 0.8m
doubling	4	2	4	5862	8	8	16	6272	5714
2-isog. curve	-	2	1	2088	19	4	28	9231	8952
2-isog. point	4	0	4	4336	4	4	16	3480	3200

- Theta constants map to theta constants: no special map needed to find image surface
- Comparison in Table/paper very conservative. Kummer will win in aggressive impl.:
 - Recall Kummer over $\mathbb{F}_{2^{127}-1}$ almost as fast as FourQ over $\mathbb{F}_{(2^{127}-1)^2}$ (scalars 4 x larger)
 - Recall that "doubling" and "2-isog. point" are bottlenecks in optimal tree strategy
 - Pushing points through 2^{ℓ} for small ℓ likely to be better on Kummer, don't need to compute all intermediate surface constants

Related future work

- To use this right now, Alice need to map back-and-forth using η and $\hat{\eta}$. Certainly not a deal-breaker! Thus, this is a call for skilled implementers!
- But ideally we want Bob to be able to use the Kummer, too! Then uncompressed SIDH/SIKE can be defined as Kummer everywhere! Thus, this is a call for fast (3, 3)-isogenies on fast Kummers!
- Going further, general isogenies in Montgomery elliptic case have a nice explicit form (see [C-Hisil, AsiaCrypt'17] and [Renes, PQCrypto'18]). Thus, this is a call for fast (*l*, *l*)isogenies on fast Kummers!
- Gut feeling is that there's a better way to write down supersingular Kummers, and their arithmetic. Thus, this is a call for smart geometers!

Cheers!

https://eprint.iacr.org/2018/850.pdf

https://www.microsoft.com/en-us/download/details.aspx?id=57309