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In a nutshell: 𝐸(𝔽𝑝2)



In a nutshell: 𝐽𝐶(𝔽𝑝)



In a nutshell: 𝐾(𝔽𝑝)



Why go hyperelliptic?

𝐸 ∶ 𝑦2 = 𝑥3 +⋯ 𝐶: 𝑦2 = 𝑥6 +⋯

𝐺 = 𝐸
𝐺 = #𝐸

#𝐸 𝔽𝑞 ≈ #𝐶 𝔽𝑞

𝐺 ≈ 𝐶 × 𝐶
𝐺 = #𝐶 2



Why go Kummer?

𝐽(𝔽𝑝)
72 equations in ℙ15

𝐾(𝔽𝑝) = 𝐽(𝔽𝑝)/⟨±1⟩
1 equation in ℙ3

• Genus 2 analogue of elliptic curve 𝑥-line

• Extremely efficient arithmetic 



… a few of my favourite things…



From elliptic to hyperelliptic

𝐸/𝐾: 𝑦2 = 𝑥3 + 1 𝐶/𝐾: 𝑦2 = 𝑥6 + 1

Consider

Obvious map 𝜔 ∶ 𝐶 𝐾 → 𝐸 𝐾
𝑥, 𝑦 ↦ (𝑥2, 𝑦)

1: But what about 𝜔−1 ∶ 𝐸 𝐾 → 𝐶(? )…

2: Points on 𝐸 are group elements, points on 𝐶 are not…

3: Actually want map 𝐸 → 𝐽𝐶 , but dim 𝐸 = 1 while dim 𝐽𝐶 = 2…

4: Want general 𝜔,𝜔−1 between 𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥 to 𝑦2 = 𝑥6 + 𝐴𝑥4 + 𝑥2 ???



𝔽𝑝2 = 𝔽𝑝(𝑖) with 𝑖2 + 1 = 0

Proposition 1

𝐸/𝔽𝑝2: 𝑦2= 𝑥 𝑥 − 𝛼 𝑥 − 1/𝛼

𝐶/𝔽𝑝: 𝑦2= (𝑥2 +𝑚𝑥 − 1) 𝑥2 −𝑚𝑥 − 1 𝑥2 −𝑚𝑛𝑥 − 1

𝛼 = 𝛼0 + 𝛼1𝑖 with 𝛼0, 𝛼1 ∈ 𝔽𝑝

𝑚 =
2𝛼0

𝛼1
, 𝑛 =

(𝛼0
2+𝛼1

2−1)

(𝛼0+𝛼1
2+1)

both in 𝔽𝑝

Then Res𝔽
𝑝2
/𝔽𝑝(𝐸) is (2,2)-isogenous to 𝐽𝐶(𝔽𝑝)

Or, pictorially,
𝜂𝜂

Ƹ𝜂

ker(𝜂) ≅ ker Ƹ𝜂 ≅ ℤ2 × ℤ2
𝜂 ∘ Ƹ𝜂 = [2]



• Weil restriction turns 1 equation over 𝔽𝑝2 into two equations over 𝔽𝑝

• Simple linear transform of 𝐸/𝔽𝑝2: 𝑦
2 = 𝑓 𝑥 = 𝑥3 + 𝐴𝑥2 + 𝑥 to

෨𝐸/𝔽𝑝2: 𝑦
2 = 𝑔(𝑥) such that 𝐶/𝔽𝑝2: 𝑦

2 = 𝑔(𝑥2) is non-singular  

• Pullback 𝜔∗ of 𝜔 ∶ 𝑥, 𝑦 ↦ (𝑥2, 𝑦) gives 2 points in 𝐶 𝔽𝑝4 , 

but composition with Abel-Jacobi map bring these to 𝐽𝐶(𝔽𝑝2)

• Need to go from 𝐽𝐶(𝔽𝑝2) to 𝐽𝐶(𝔽𝑝); cue good old Trace map,

𝜏: 𝑃 ↦ 

𝜎∈Gal(𝔽𝑝2/𝔽𝑝)

𝑛

𝜎(𝑃)

Unpacking Proposition 1

𝜓

𝜌

𝜏

𝜂 ∶ Res𝔽
𝑝2
/𝔽𝑝(𝐸) → 𝐽𝐶(𝔽𝑝),        𝑃 ↦ (𝜏 ∘ 𝜌 ∘ 𝜓)(𝑃)



Matching 2-kernels in 𝔽𝑝2 with (2,2)-kernels in 𝔽𝑝

(0,0)

𝐽𝐶 2 ≅ ℤ2 × ℤ2 × ℤ2 × ℤ2𝐸 2 ≅ ℤ2 × ℤ2

𝑂

𝐽𝐶 ≅ ℤ(𝑝+1)/2 × ℤ(𝑝+1)/2 × ℤ2 × ℤ2𝐸 ≅ ℤ(𝑝+1) × ℤ(𝑝+1)

• Fifteen (2,2)-kernels in 𝐽𝐶 𝔽𝑝 . Number of ways to split 𝐶’s sextic into 
three quadratic factors.   

• Lemma 2: identifies 𝑂 ↔ (0,0) and Υ, ෩Υ ↔ { 𝛼, 0 , 1/𝛼, 0 }



• Elliptic curve isogenies are easy/explicit/fast, thanks to Vélu. But beyond elliptic curves, far from true!

• 2,2 -isogenies in genus 2 are exception, thanks to work beginning with Richelot in 1836

• Lessons learned from elliptic case: 

(1) easiest to derive explicitly when the kernel is 𝑂, i.e. the kernel we don’t want!
(2) when kernel is Υ, precompose with isomorphism 𝜉Υ ∶ 𝐽𝐶 → 𝐽𝐶′ Υ ↦ 𝑂′

(3) 𝜉Υ either requires a square root, or torsion “from above”
(4) who cares about the full Jacobian group, let’s move the Kummer variety

Richelot isogenies in genus 2

𝑂 𝜉Υ(Υ)

𝜉Υ
≅



𝐾𝐹,𝐺,𝐻
Sqr

: 𝐹 ⋅ 𝑋1𝑋2𝑋3𝑋4 = 𝑋1
2 + 𝑋2

2 + 𝑋3
2 + 𝑋4

2 − 𝐺 𝑋1 + 𝑋2 𝑋3 + 𝑋4 − 𝐻 𝑋1𝑋2 + 𝑋3𝑋4
2

Supersingular Kummer surfaces

𝐻: ℓ1: ℓ2: ℓ3: ℓ4 ↦ (ℓ1 + ℓ2 + ℓ3 + ℓ4:   ℓ1+ℓ2 − ℓ3 − ℓ4: ℓ1 − ℓ2 + ℓ3 − ℓ4: ℓ1 − ℓ2 − ℓ3 + ℓ4)

𝑆: ℓ1: ℓ2: ℓ3: ℓ4 ↦ (ℓ1
2: ℓ2

2: ℓ3
2: ℓ4

2)

𝐶: ℓ1: ℓ2: ℓ3: ℓ4 ↦ (𝜋1ℓ1: 𝜋2ℓ2: 𝜋3ℓ3: 𝜋4ℓ4)

Points 𝑋1: 𝑋2: 𝑋3: 𝑋4 ∈ ℙ3(𝔽𝑝)

Theta constants 𝜇1: 𝜇2: 1: 1 ∼ (𝜆𝜇1: 𝜆𝜇2: 𝜆: 𝜆)

Arithmetic constants 𝜋1: 𝜋2: 𝜋3: 𝜋4 ; functions of 𝜇1, 𝜇2

Surface constants 𝐹, 𝐺, 𝐻 ∈ 𝔽𝑝

Doubling  2 𝐾𝑆𝑞𝑟: 𝑃 ↦ (𝑆 ∘ መ𝐶 ∘ 𝐻 ∘ 𝑆 ∘ 𝐶 ∘ 𝐻)(𝑃)

2-isogeny (splitting [2])  𝜑𝑂: 𝑃 ↦ (𝑆 ∘ 𝐶 ∘ 𝐻)(𝑃)

𝑂



Kummer isogenies for non-trivial kernels

• 𝑃 point of order 2 on 𝐾 corresponding to G ∈ {Υ, ෩Υ}.   Write 𝐻 𝑃 = 𝑃1
′: 𝑃2

′: 𝑃3
′: 𝑃4

′

• 𝑄 point of order 4 on 𝐾 such that 2 𝑄 = 𝑃. Write 𝐻 𝑄 = 𝑄1
′ : 𝑄2

′ : 𝑄3
′ : 𝑄4

′

• Define 𝐶𝑄,𝑃 ∶ 𝑋1: 𝑋2: 𝑋3: 𝑋4 ↦ 𝜋1
′𝑋1: 𝜋2

′𝑋2: 𝜋3
′𝑋3: 𝜋4

′𝑋4
where 𝜋1: 𝜋2: 𝜋3: 𝜋4 = 𝑃2

′𝑄4
′ : 𝑃1

′𝑄4
′ : 𝑃2

′𝑄1
′ : 𝑃2

′𝑄1
′

• Then 𝜑𝑃: 𝐾
𝑆𝑞𝑟→𝐾𝑆𝑞𝑟/𝐺 , 𝑃 ↦ (𝑆 ∘ 𝐻 ∘ 𝐶𝑄,𝑃 ∘ 𝐻)(𝑃) 4M+4S+16A



• Theta constants map to theta constants: no special map needed to find image surface

• Comparison in Table/paper very conservative. Kummer will win in aggressive impl.:

- Recall Kummer over 𝔽2127−1 almost as fast as FourQ over 𝔽
2127−1

2 (scalars 4 x larger)

- Recall that “doubling” and “2-isog. point” are bottlenecks in optimal tree strategy
- Pushing points through 2ℓ for small ℓ likely to be better on Kummer, don’t need to          

compute all intermediate surface constants  

Implications



• To use this right now, Alice need to map back-and-forth using 𝜂 and Ƹ𝜂. Certainly not a 
deal-breaker! Thus, this is a call for skilled implementers!

• But ideally we want Bob to be able to use the Kummer, too! Then uncompressed 
SIDH/SIKE can be defined as Kummer everywhere! 
Thus, this is a call for fast (𝟑, 𝟑)-isogenies on fast Kummers!

• Going further, general isogenies in Montgomery elliptic case have a nice explicit form 
(see [C-Hisil, AsiaCrypt’17] and [Renes,PQCrypto’18]). Thus, this is a call for fast (ℓ, ℓ)-
isogenies on fast Kummers!

• Gut feeling is that there’s a better way to write down supersingular Kummers, and their 
arithmetic. Thus, this is a call for smart geometers!

Related future work



https://www.microsoft.com/en-us/download/details.aspx?id=57309

Cheers!

https://eprint.iacr.org/2018/850.pdf

https://www.microsoft.com/en-us/download/details.aspx?id=57309
https://eprint.iacr.org/2018/850.pdf

