Supersingular isogenies in cryptography

Craig Costello

Summer School on Real-World Crypto and Privacy June 15, 2018 Šibenik, Croatia

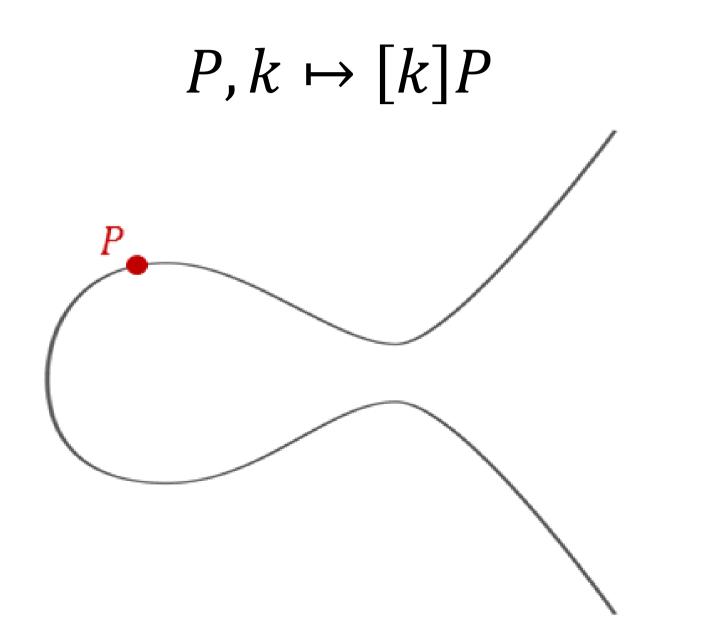
> Microsoft® Research

Part 1: Motivation

Part 2: Preliminaries

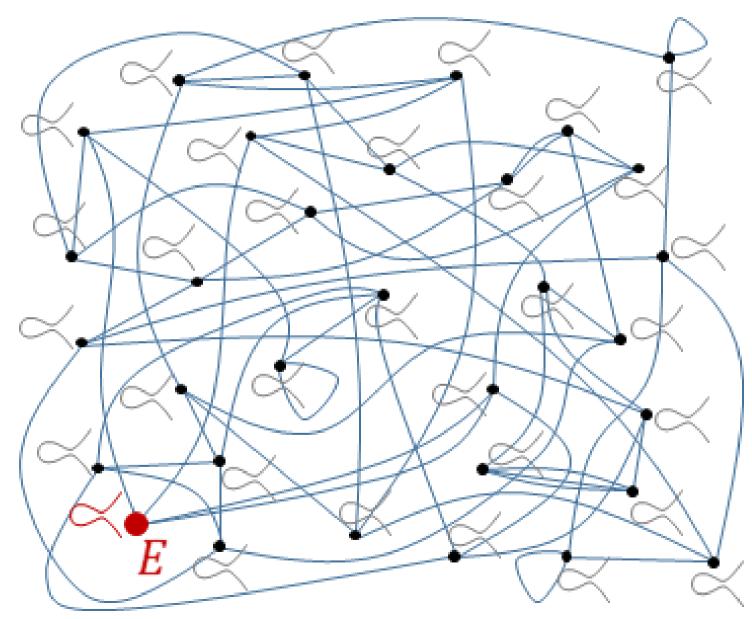
Part 3: SIDH

Recall Monday's talk: pre-quantum ECC



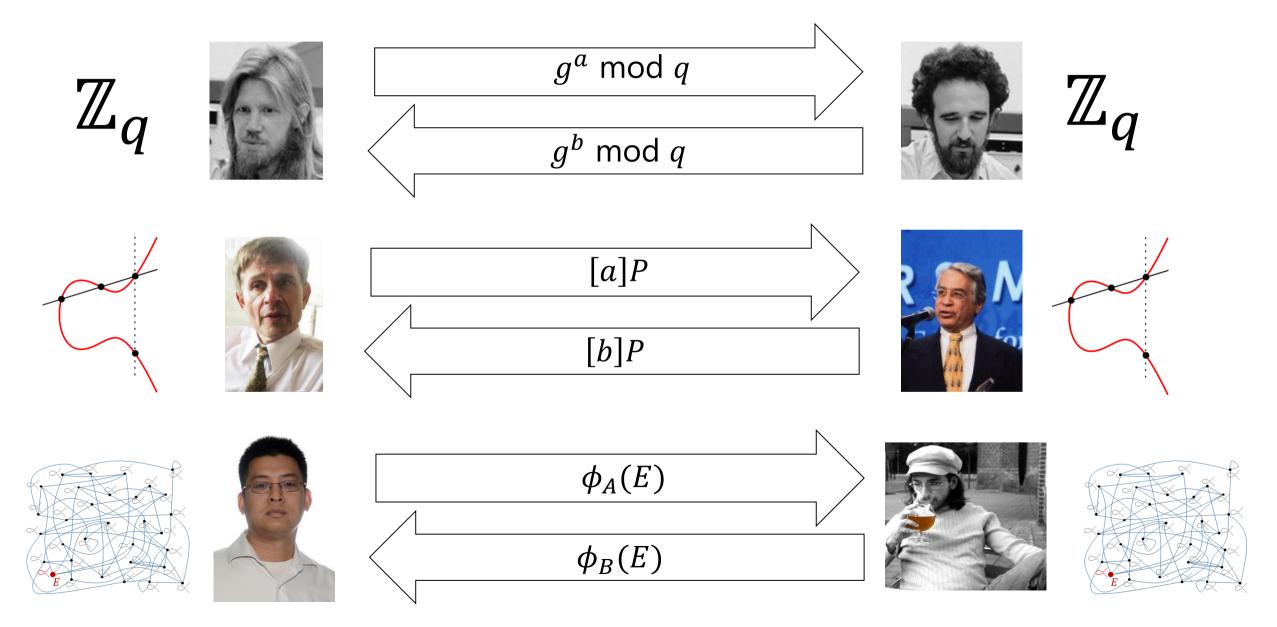
GIF: Wouter Castryck

Today's talk: post-quantum ECC



W. Castryck (GIF): "Elliptic curves are dead: long live elliptic curves" <u>https://www.esat.kuleuven.be/cosic/?p=7404</u>

Diffie-Hellman instantiations



Diffie-Hellman instantiations

	DH	ECDH	SIDH
Elements	integers <i>g</i> modulo prime	points <i>P</i> in curve group	curves <i>E</i> in isogeny class
Secrets	exponents x	scalars <i>k</i>	isogenies ϕ
computations	$g, x \mapsto g^x$	$k, P \mapsto [k]P$	$\phi, E \mapsto \phi(E)$
hard problem	given <i>g,g^x</i> find <i>x</i>	given P, [k]P find k	given $E, \phi(E)$ find ϕ

Part 1: Motivation

Part 2: Preliminaries

Part 3: SIDH

Extension fields

To construct degree n extension field \mathbb{F}_{q^n} of a finite field $\mathbb{F}_{q'}$ take $\mathbb{F}_{q^n} = \mathbb{F}_q(\alpha)$ where $f(\alpha) = 0$ and f(x) is irreducible of degree n in $\mathbb{F}_q[x]$.

Example: for any prime $p \equiv 3 \mod 4$, can take $\mathbb{F}_{p^2} = \mathbb{F}_p(i)$ where $i^2 + 1 = 0$

Elliptic Curves and *j*-invariants

• Recall that every elliptic curve E over a field K with char(K) > 3 can be defined by

 $E: y^2 = x^3 + ax + b$, where $a, b \in K$, $4a^3 + 27b^2 \neq 0$

- For any extension K'/K, the set of K'-rational points forms a group with identity
- The *j*-invariant $j(E) = j(a,b) = 1728 \cdot \frac{4a^3}{4a^3 + 27b^2}$ determines isomorphism class over \overline{K}
- E.g., $E': y^2 = x^3 + au^2x + bu^3$ is isomorphic to E for all $u \in K^*$

• Recover a curve from j: e.g., set a = -3c and b = 2c with c = j/(j - 1728)

Example

Over \mathbb{F}_{13} , the curves $E_1: y^2 = x^3 + 9x + 8$ and $E_2: y^2 = x^3 + 3x + 5$ are isomorphic, since $j(E_1) = 1728 \cdot \frac{4 \cdot 9^3}{4 \cdot 9^3 + 27 \cdot 8^2} = 3 = 1728 \cdot \frac{4 \cdot 3^3}{4 \cdot 3^3 + 27 \cdot 5^2} = j(E_2)$

An isomorphism is given by

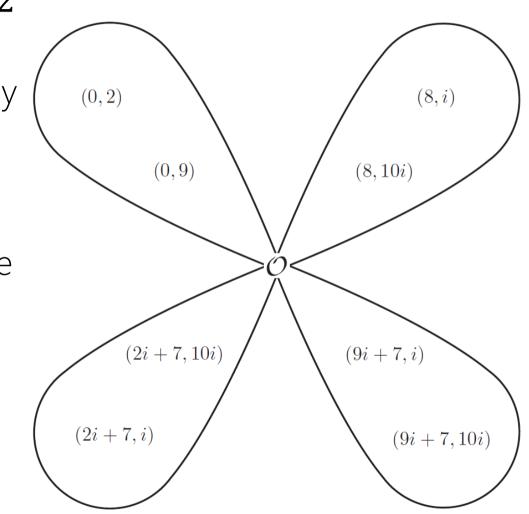
 $\begin{array}{ll} \psi : E_1 \to E_2 , & (x,y) \mapsto (10x,5y), \\ \psi^{-1} : E_2 \to E_1, & (x,y) \mapsto (4x,8y), \end{array}$ noting that $\psi(\infty_1) = \infty_2$

Torsion subgroups

- The multiplication-by-n map: $n: E \to E, \qquad P \mapsto [n]P$
- The *n*-torsion subgroup is the kernel of [n] $E[n] = \{P \in E(\overline{K}) : [n]P = \infty\}$
- Found as the roots of the n^{th} division polynomial ψ_n
- If char(K) doesn't divide n, then $E[n] \simeq \mathbb{Z}_n \times \mathbb{Z}_n$

Example (n = 3)

- Consider E/\mathbb{F}_{11} : $y^2 = x^3 + 4$ with $\#E(\mathbb{F}_{11}) = 12$
- 3-division polynomial $\psi_3(x) = 3x^4 + 4x$ partially splits as $\psi_3(x) = x(x+3)(x^2+8x+9)$
- Thus, x = 0 and x = -3 give 3-torsion points. The points (0,2) and (0,9) are in $E(\mathbb{F}_{11})$, but the rest lie in $E(\mathbb{F}_{11^2})$
- Write $\mathbb{F}_{11^2} = \mathbb{F}_{11}(i)$ with $i^2 + 1 = 0$. $\psi_3(x)$ splits over \mathbb{F}_{11^2} as $\psi_3(x) = x(x+3)(x+9i+4)(x+2i+4)$
- Observe $E[3] \simeq \mathbb{Z}_3 \times \mathbb{Z}_3$, i.e., 4 cyclic subgroups of order 3



Subgroup isogenies

• **Isogeny:** morphism (rational map)

$$\phi: E_1 \to E_2$$

that preserves identity, i.e. $\phi(\infty_1) = \infty_2$

- Degree of (separable) isogeny is number of elements in kernel, same as its degree as a rational map
- Given finite subgroup $G \in E_1$, there is a unique curve E_2 and isogeny $\phi : E_1 \to E_2$ (up to isomorphism) having kernel G. Write $E_2 = \phi(E_1) = E_1/\langle G \rangle$.

Subgroup isogenies: special cases

- Isomorphisms are a special case of isogenies where the kernel is trivial $\phi: E_1 \to E_2, \quad \ker(\phi) = \infty_1$
- Endomorphisms are a *special case of isogenies* where the domain and codomain are the same curve

$$\phi: E_1 \to E_1, \quad \ker(\phi) = G, \quad |G| > 1$$

- Perhaps think of isogenies as a generalization of either/both: isogenies allow non-trivial kernel and allow different domain/co-domain
- Isogenies are *almost* isomorphisms

Velu's formulas

Given any finite subgroup of G of E, we may form a quotient isogeny $\phi: E \to E' = E/G$ with kernel G using Velu's formulas

Example:
$$E: y^2 = (x^2 + b_1 x + b_0)(x - a)$$
. The point $(a, 0)$ has order 2; the quotient of E by $\langle (a, 0) \rangle$ gives an isogeny $\phi: E \to E' = E/\langle (a, 0) \rangle$,

where

$$E': y^2 = x^3 + \left(-(4a + 2b_1)\right)x^2 + \left(b_1^2 - 4b_0\right)x$$

And where ϕ maps (x, y) to

$$\left(\frac{x^3 - (a - b_1)x^2 - (b_1a - b_0)x - b_0a}{x - a}, \frac{(x^2 - (2a)x - (b_1a + b_0))y}{(x - a)^2}\right)$$

Velu's formulas

Given curve coefficients a, b for E, and **all** of the x-coordinates x_i of the subgroup $G \in E$, Velu's formulas output a', b' for E', and the map

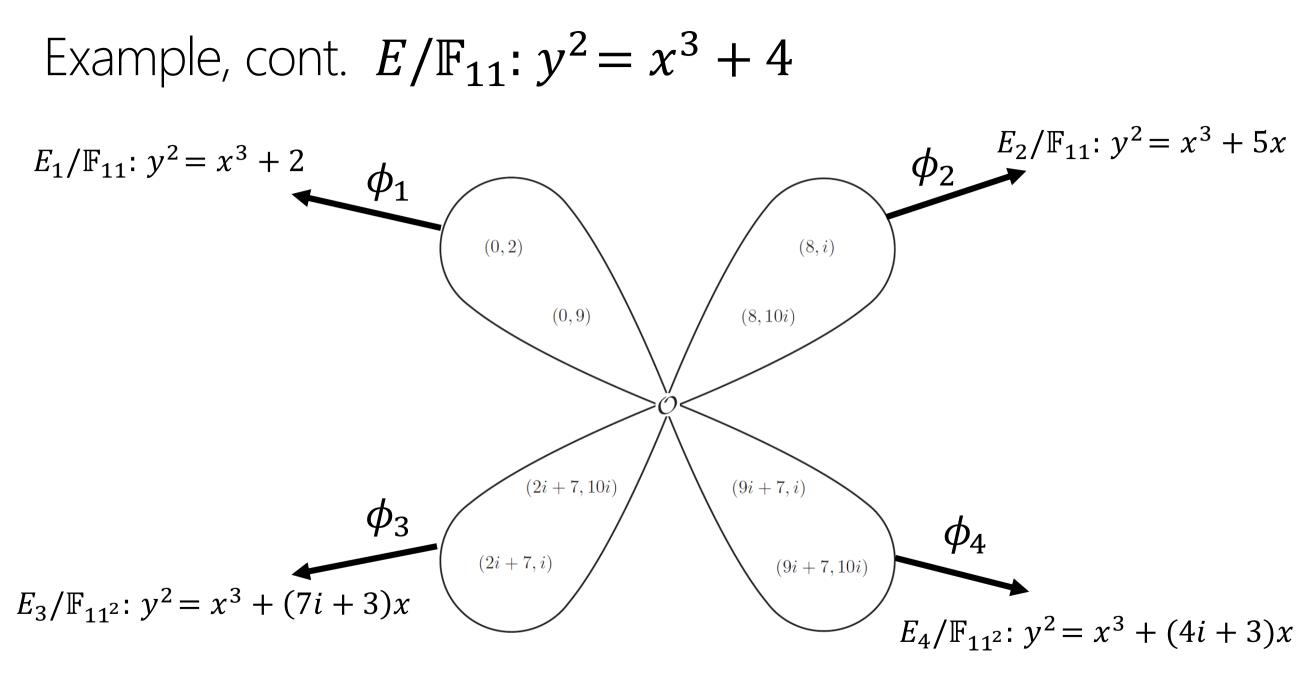
$$\phi: E \to E',$$

$$(x, y) \mapsto \left(\frac{f_1(x, y)}{g_1(x, y)}, \frac{f_2(x, y)}{g_2(x, y)}\right)$$

Example, cont.

- Recall E/\mathbb{F}_{11} : $y^2 = x^3 + 4$ with $\#E(\mathbb{F}_{11}) = 12$
- Consider $[3] : E \rightarrow E$, the multiplication-by-3 endomorphism
- $G = \operatorname{ker}([3])$, which is not cyclic
- Conversely, given the subgroup G, the unique isogeny ϕ with $\ker(\phi) = G$ turns out to be the endormorphism $\phi = [3]$
- But what happens if we instead take *G* as one of the cyclic subgroups of order 3?





Isomorphisms and isogenies

- Fact 1: E_1 and E_2 isomorphic iff $j(E_1) = j(E_2)$
- Fact 2: E_1 and E_2 isogenous iff $#E_1 = #E_2$ (Tate)
- Fact 3: $q + 1 2\sqrt{q} \le \#E(\mathbb{F}_q) \le q + 1 + 2\sqrt{q}$ (Hasse)

Upshot for fixed q $O(\sqrt{q})$ isogeny classes O(q) isomorphism classes

Supersingular curves

- E/\mathbb{F}_q with $q = p^n$ supersingular iff $E[p] = \{\infty\}$
- Fact: all supersingular curves can be defined over \mathbb{F}_{p^2}
- Let S_{p^2} be the set of supersingular *j*-invariants

Theorem:
$$\#S_{p^2} = \left\lfloor \frac{p}{12} \right\rfloor + b$$
, $b \in \{0, 1, 2\}$

The supersingular isogeny graph

- We are interested in the set of supersingular curves (up to isomorphism) over a specific field
- Thm (Mestre): all supersingular curves over \mathbb{F}_{p^2} in same isogeny class
- Fact (see previous slides): for every prime ℓ not dividing p, there exists $\ell + 1$ isogenies of degree ℓ originating from any supersingular curve

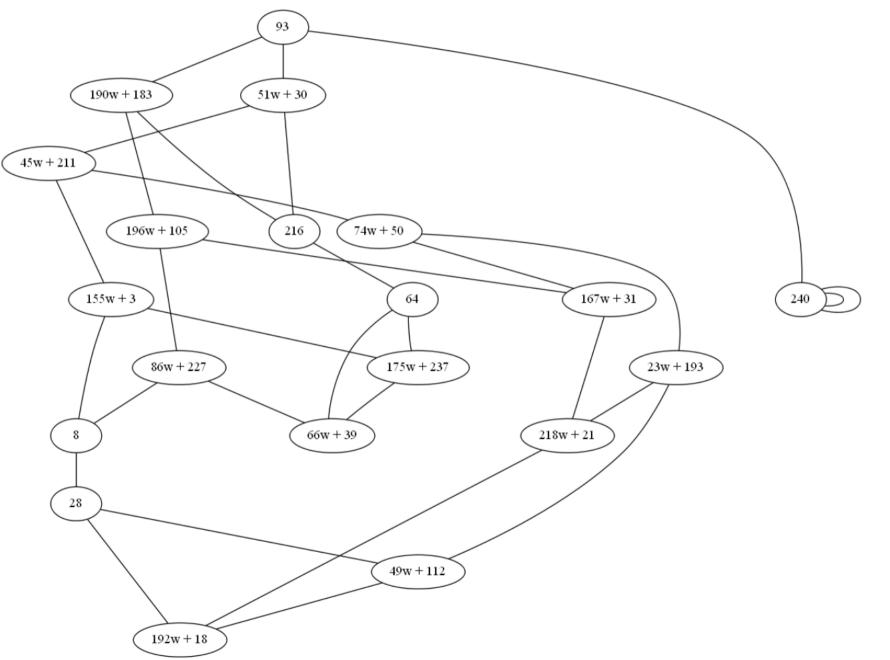
Upshot: immediately leads to $(\ell + 1)$ directed regular graph $X(S_{p^2}, \ell)$

E.g. a supersingular isogeny graph

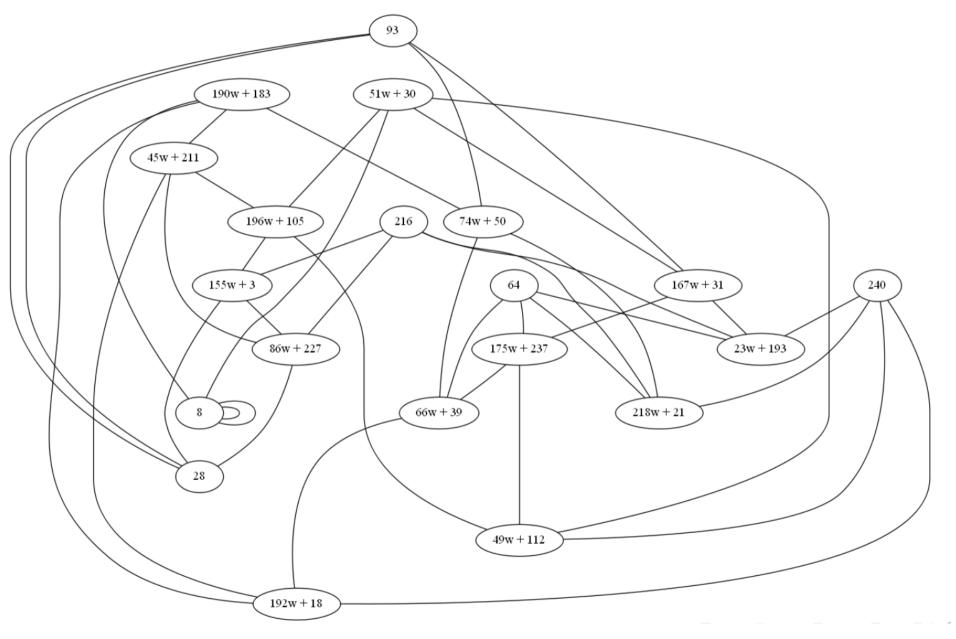
- Let p = 241, $\mathbb{F}_{p^2} = \mathbb{F}_p[w] = \mathbb{F}_p[x]/(x^2 3x + 7)$
- $#S_{p^2} = 20$
- $S_{p^2} = \{93, 51w + 30, 190w + 183, 240, 216, 45w + 211, 196w + 105, 64, 155w + 3, 74w + 50, 86w + 227, 167w + 31, 175w + 237, 66w + 39, 8, 23w + 193, 218w + 21, 28, 49w + 112, 192w + 18\}$

Credit to Fre Vercauteren for example and pictures...

Supersingular isogeny graph for $\ell = 2$: $X(S_{241^2}, 2)$



Supersingular isogeny graph for $\ell = 3$: $X(S_{241^2}, 3)$



Supersingular isogeny graphs are Ramanujan graphs

Rapid mixing property: Let *S* be any subset of the vertices of the graph *G*, and *x* be any vertex in *G*. A "long enough" random walk will land in *S* with probability at least $\frac{|S|}{2|G|}$.

See De Feo, Jao, Plut (Prop 2.1) for precise formula describing what's "long enough"

Part 1: Motivation

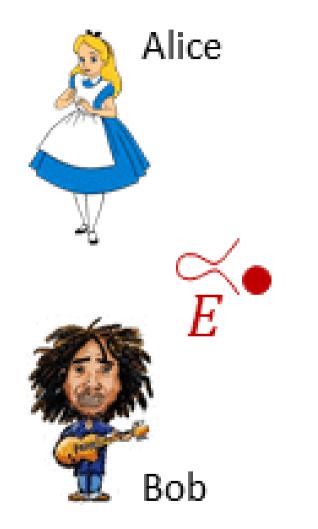
Part 2: Preliminaries

Part 3: SIDH

SIDH: history

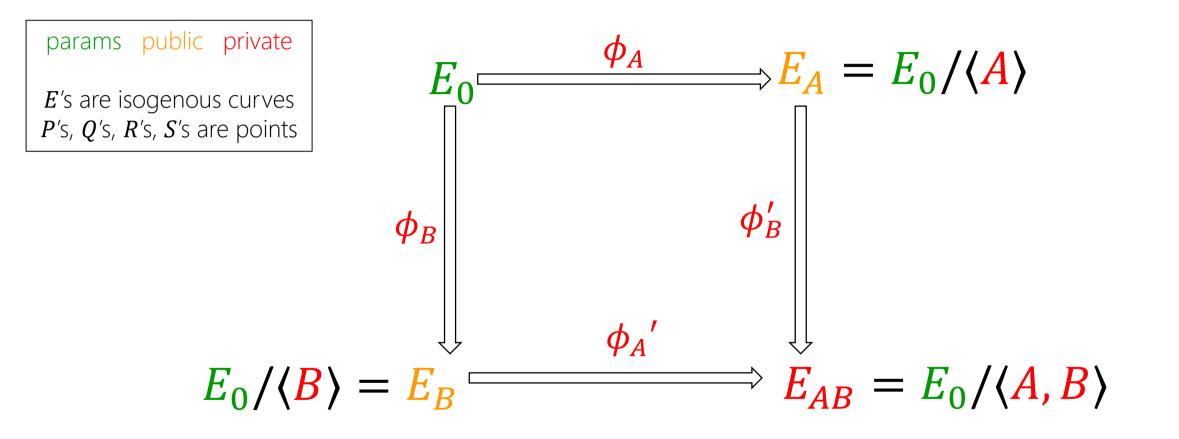
- 1999: Couveignes gives talk "Hard homogenous spaces" (eprint.iacr.org/2006/291)
- 2006 (OIDH): Rostovsev and Stolbunov propose ordinary isogeny DH
- 2010 (OIDH break): Childs-Jao-Soukharev give quantum subexponential alg.
- 2011 (SIDH): Jao and De Feo choose supersingular curves

Crucial difference: supersingular (i.e., non-ordinary) endomorphism ring is not commutative (resists 2010 attack)

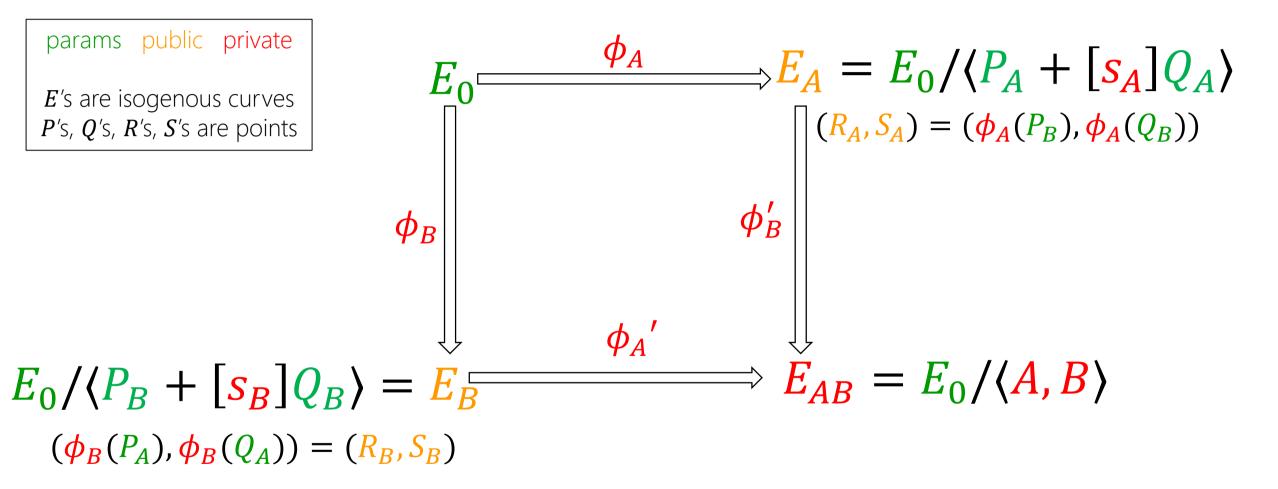


W. Castryck (GIF): "Elliptic curves are dead: long live elliptic curves" <u>https://www.esat.kuleuven.be/cosic/?p=7404</u>

SIDH: in a nutshell



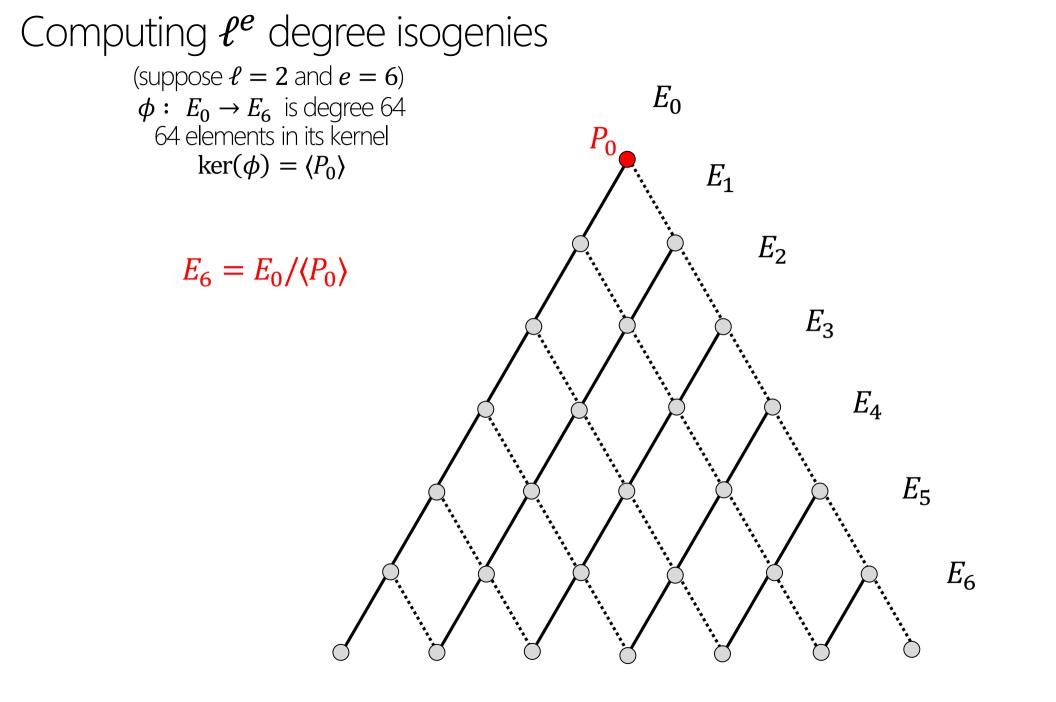
SIDH: in a nutshell

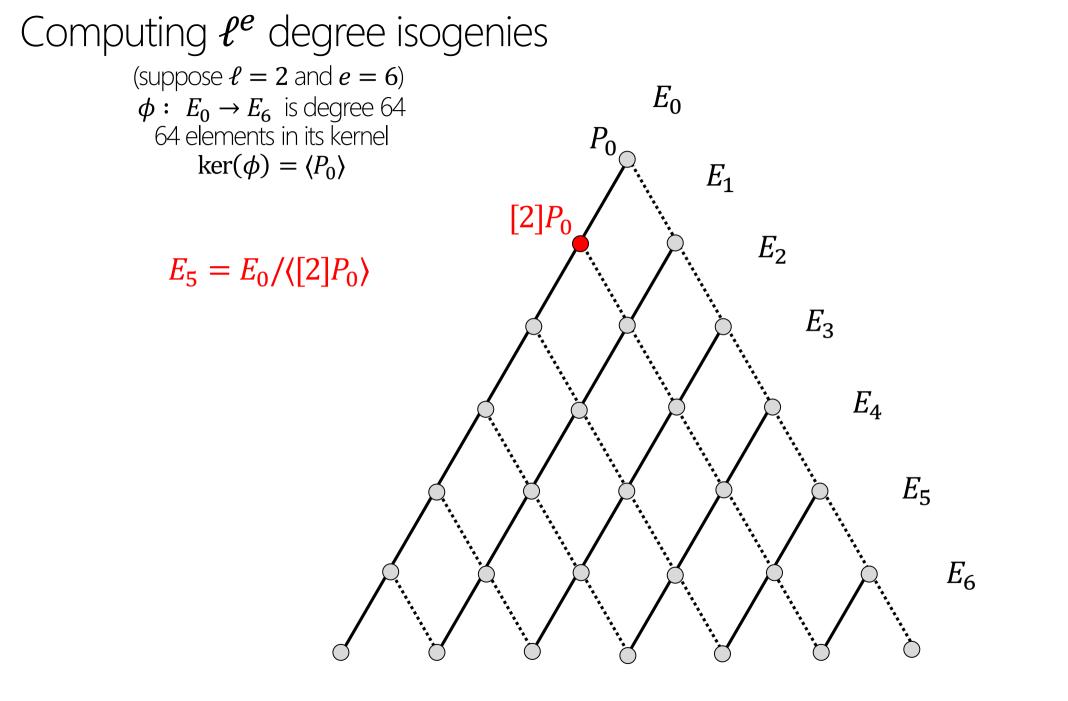


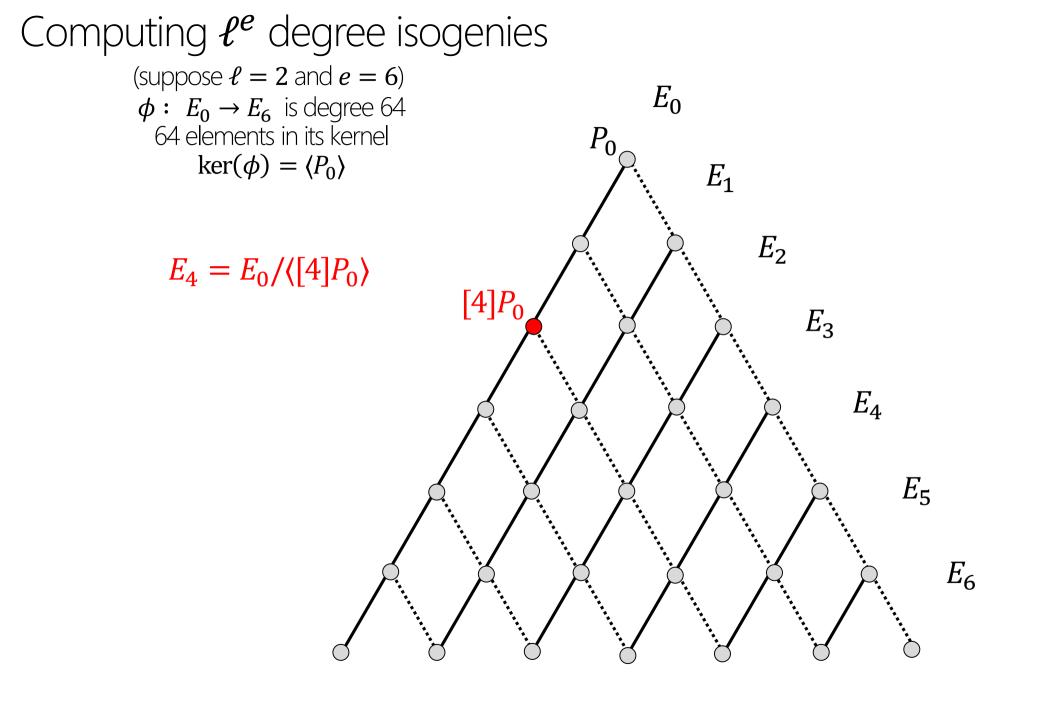
Key: Alice sends her isogeny evaluated at Bob's generators, and vice versa $E_A/\langle R_A + [s_B]S_A \rangle \cong E_0/\langle P_A + [s_A]Q_A, P_B + [s_B]Q_B \rangle \cong E_B/\langle R_B + [s_A]S_B \rangle$

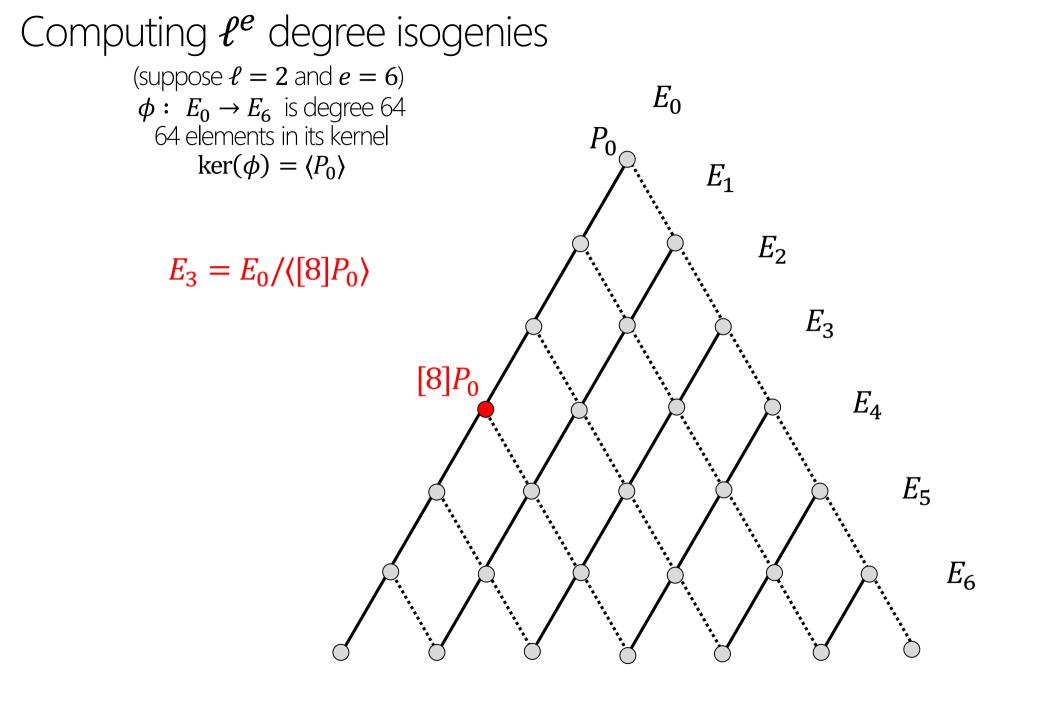
Exploiting smooth degree isogenies

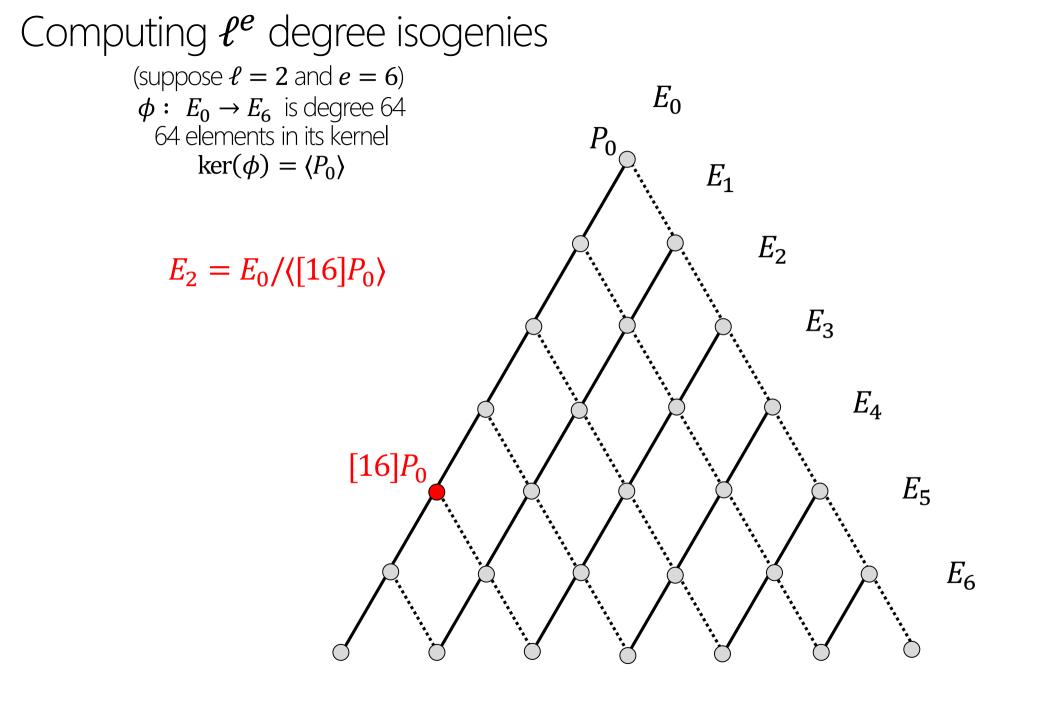
- Computing isogenies of prime degree ℓ at least $O(\ell)$, e.g., Velu's formulas need the whole kernel specified
- We (obviously) need exp. set of kernels, meaning exp. sized isogenies, which we can't compute unless they're smooth
- Here (for efficiency/ease) we will only use isogenies of degree ℓ^e for $\ell \in \{2,3\}$
- In SIDH: Alice does 2-isogenies, Bob does 3-isogenies

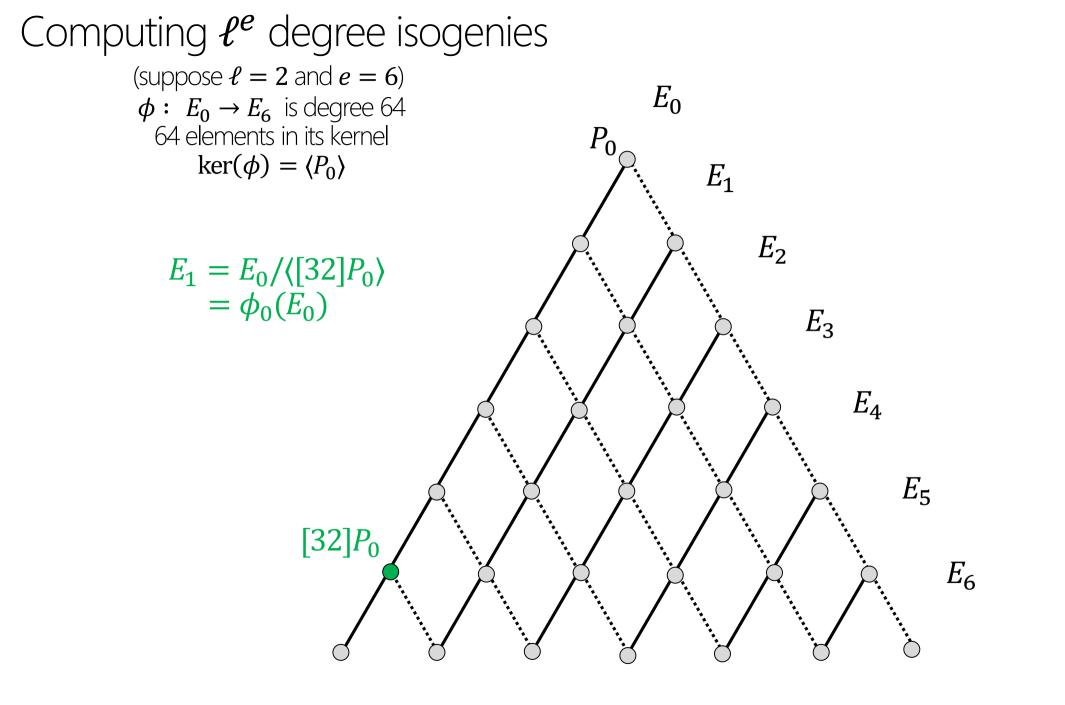


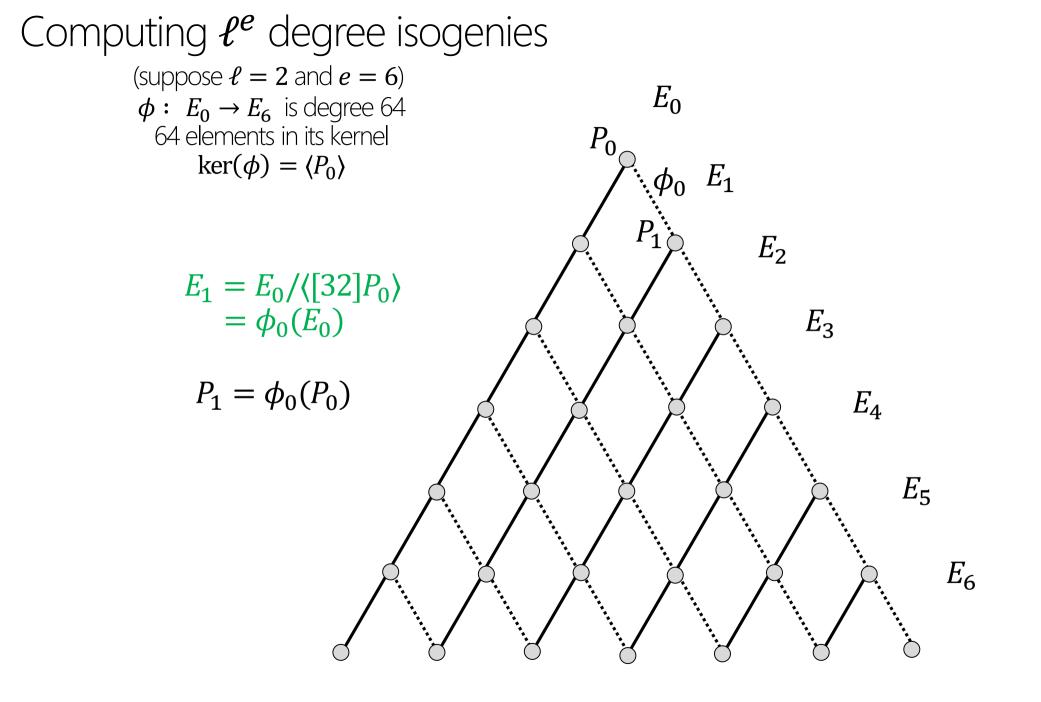


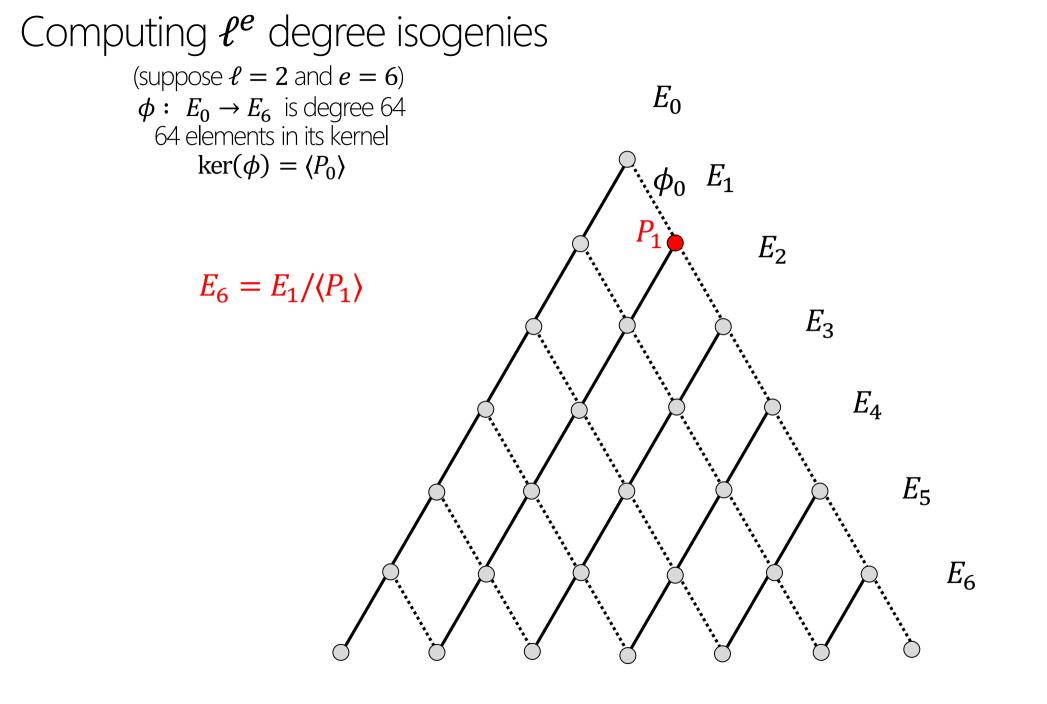


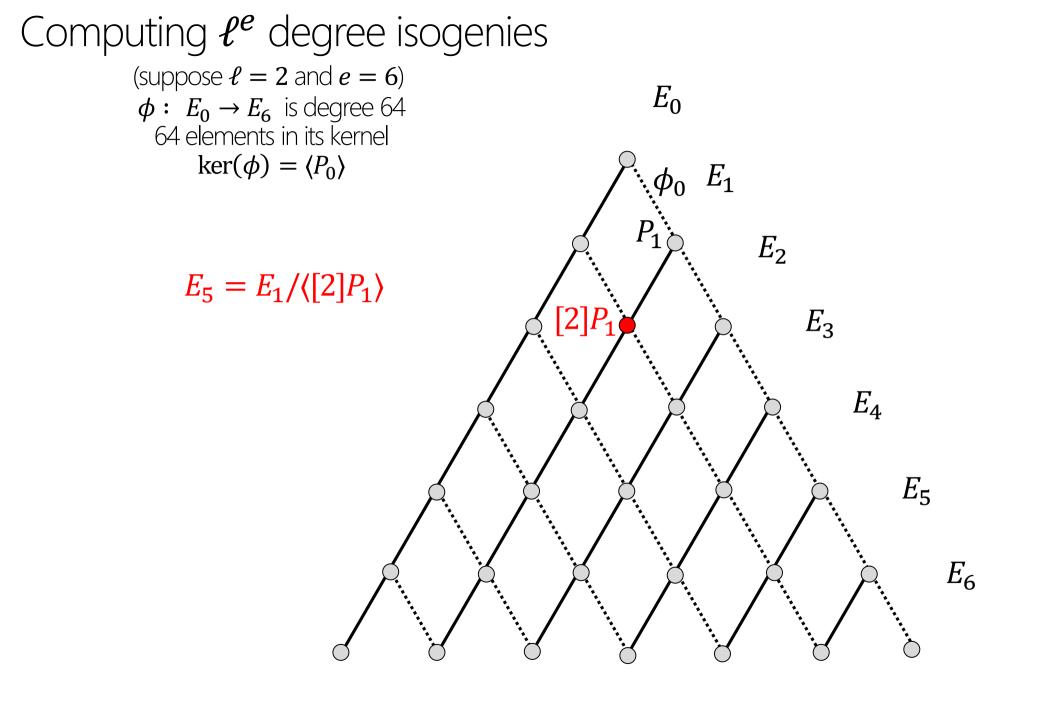




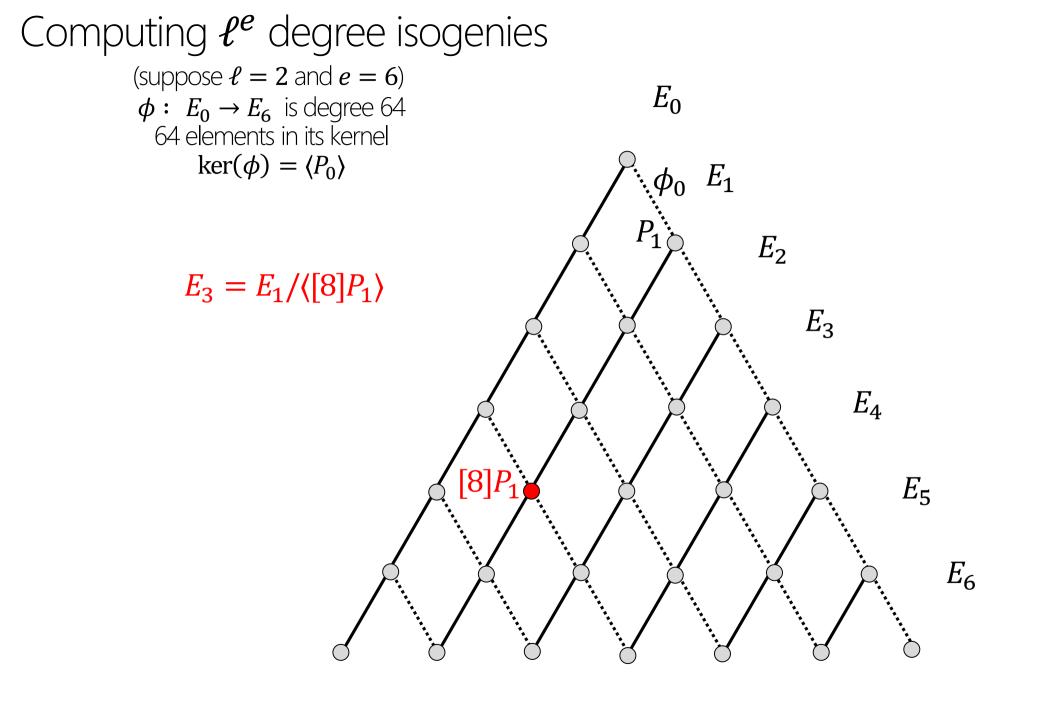


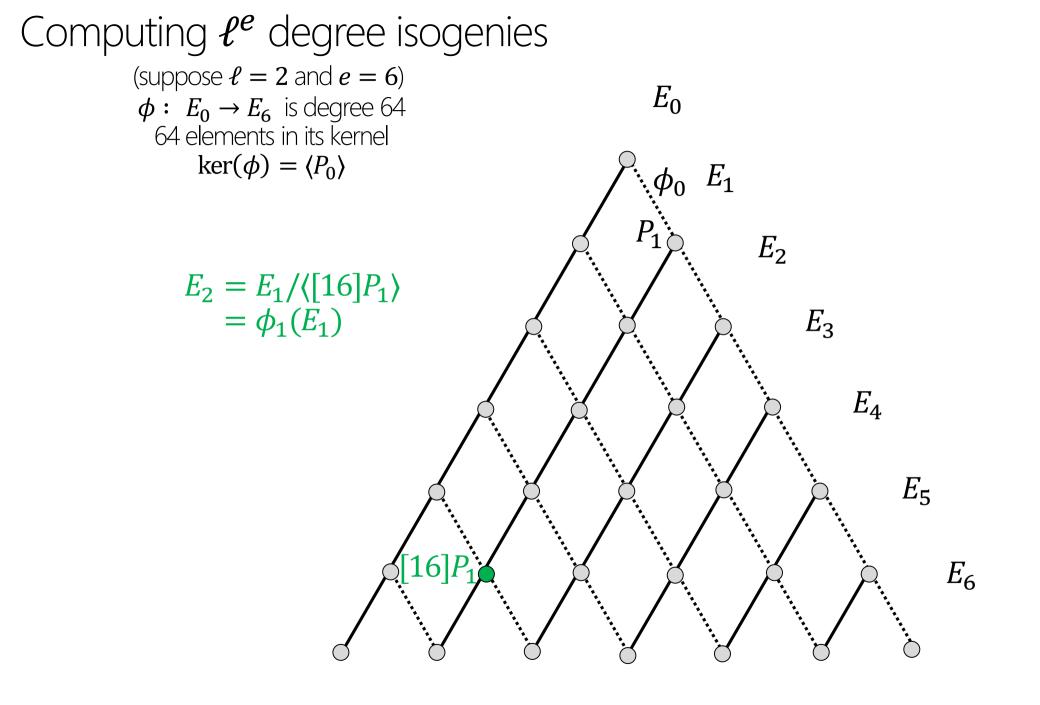


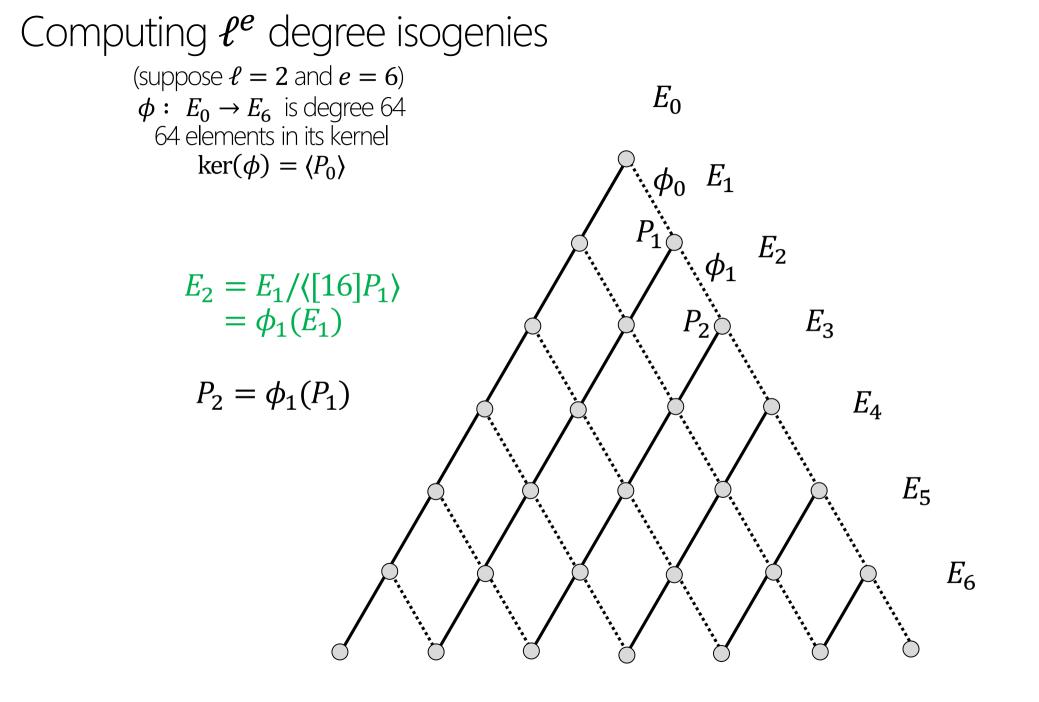


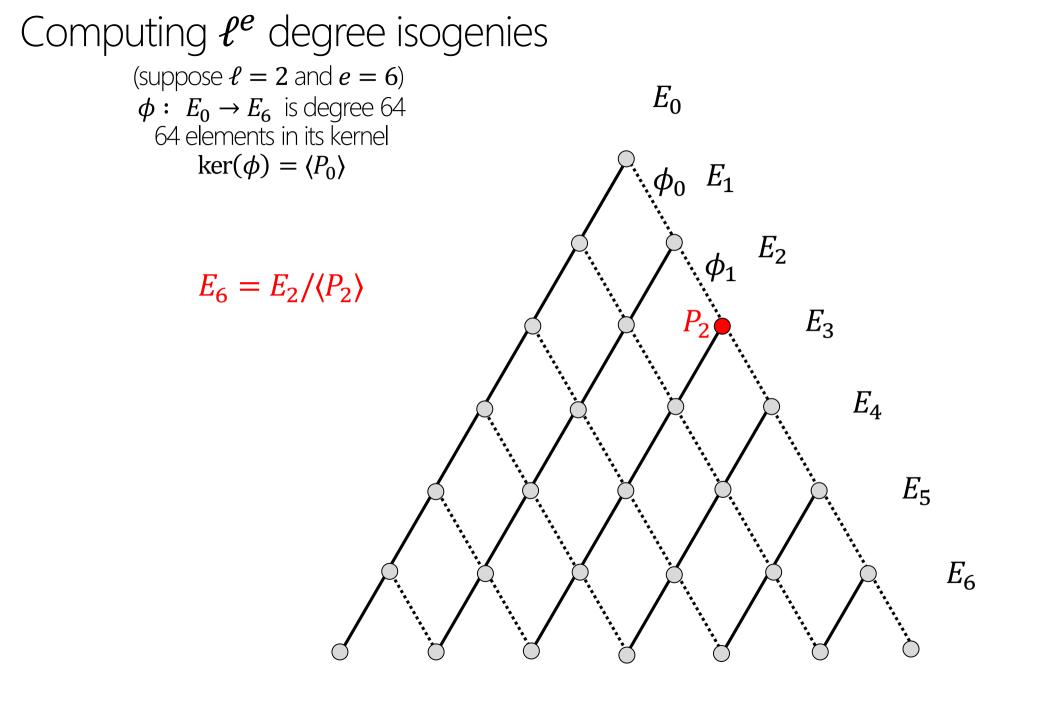


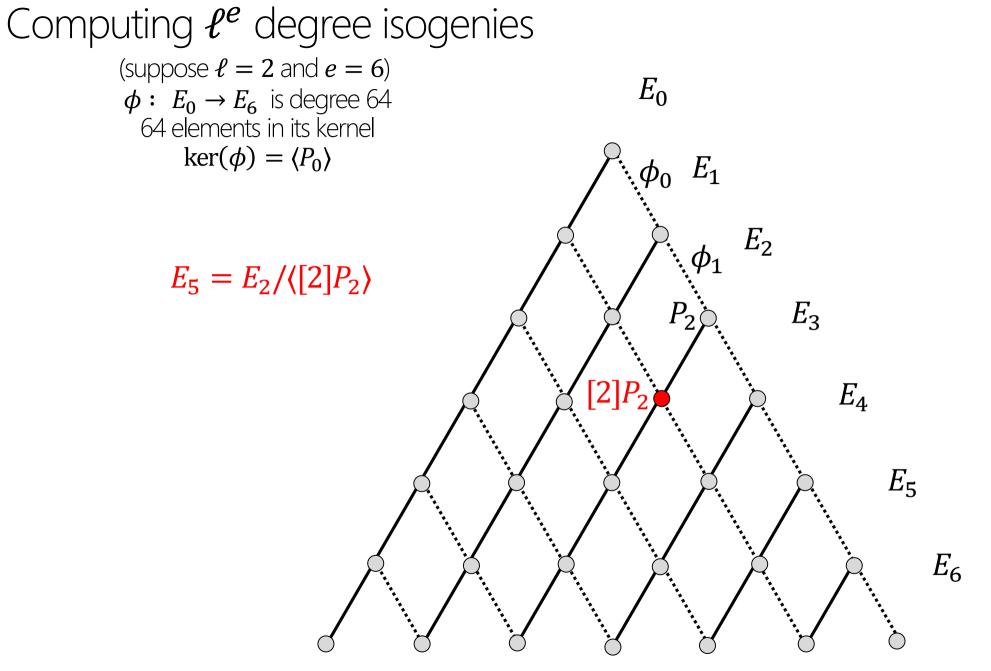


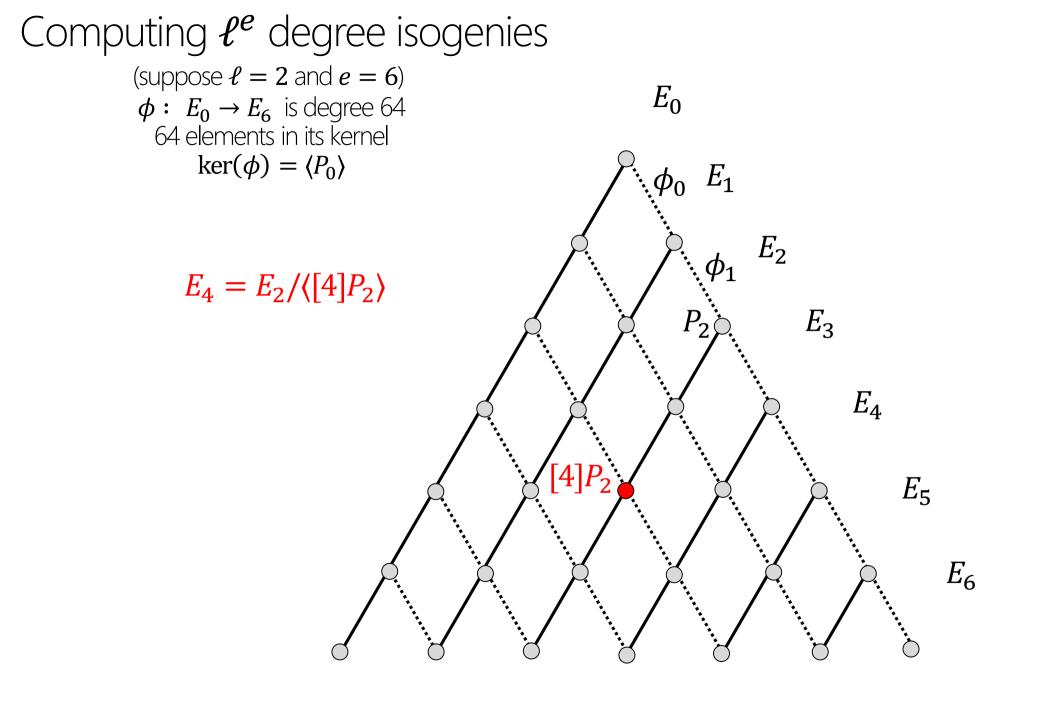


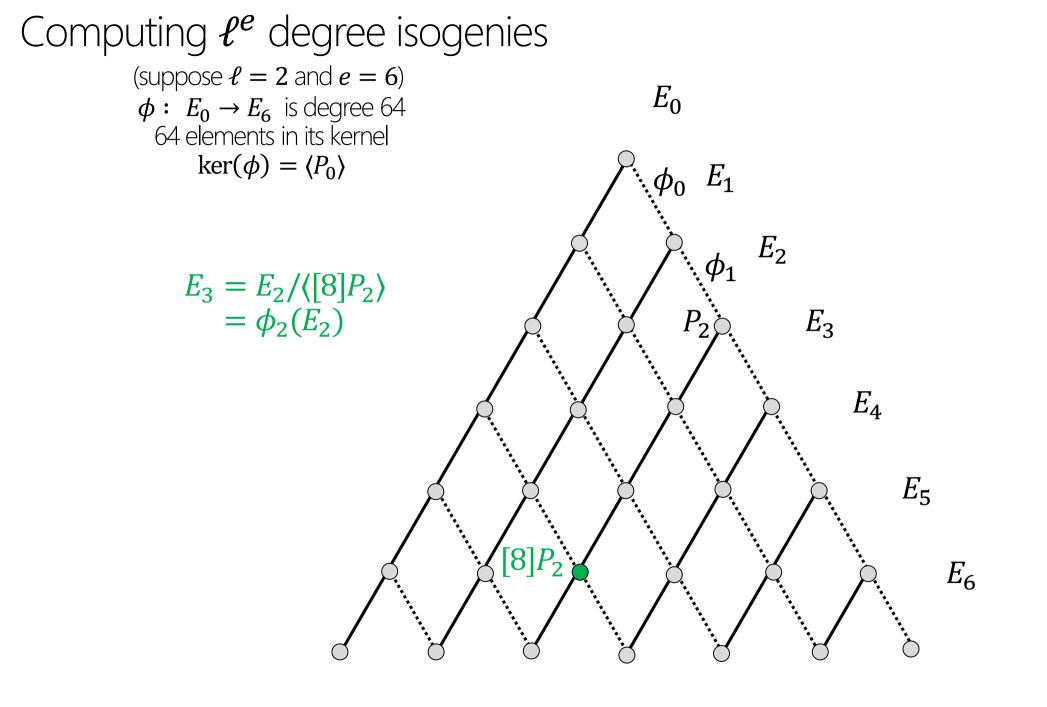


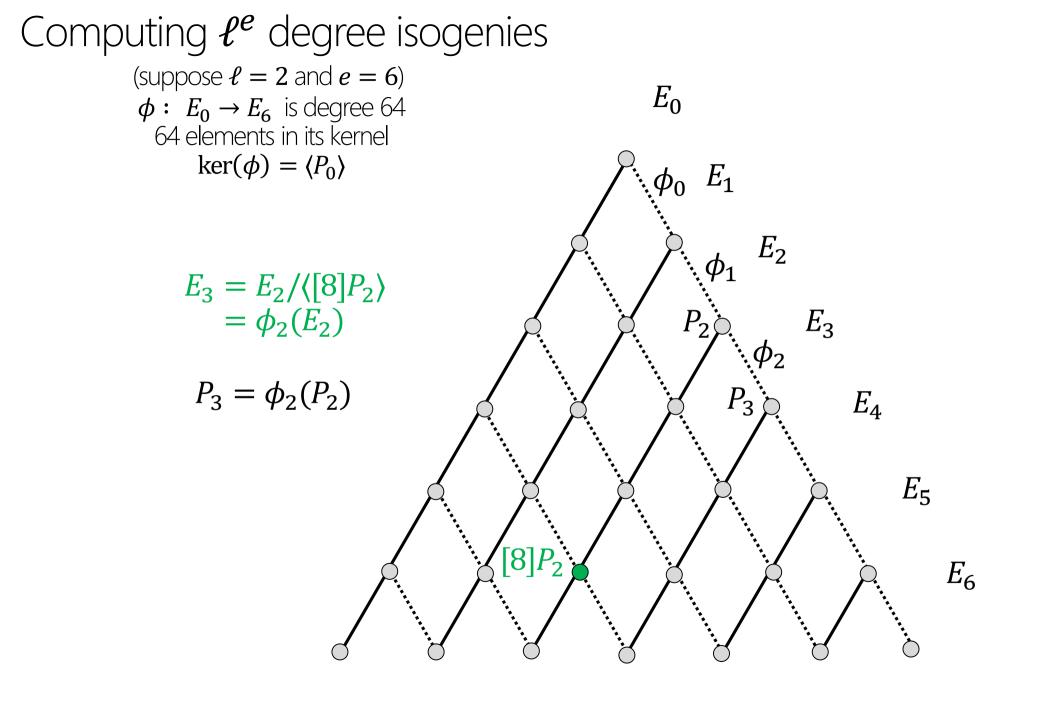


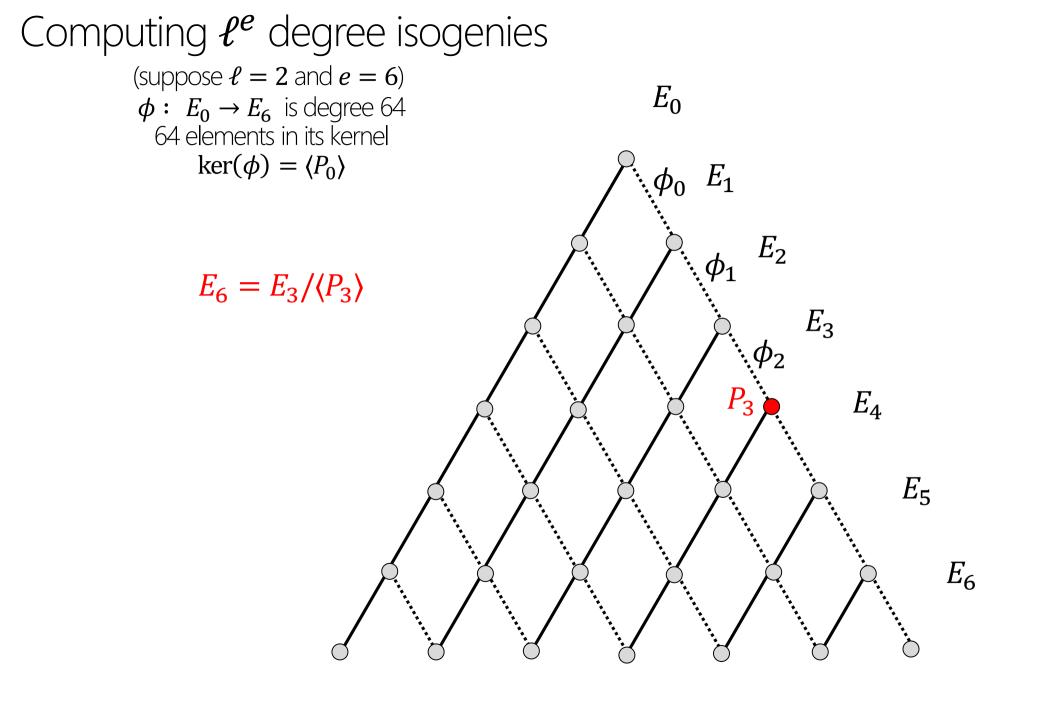


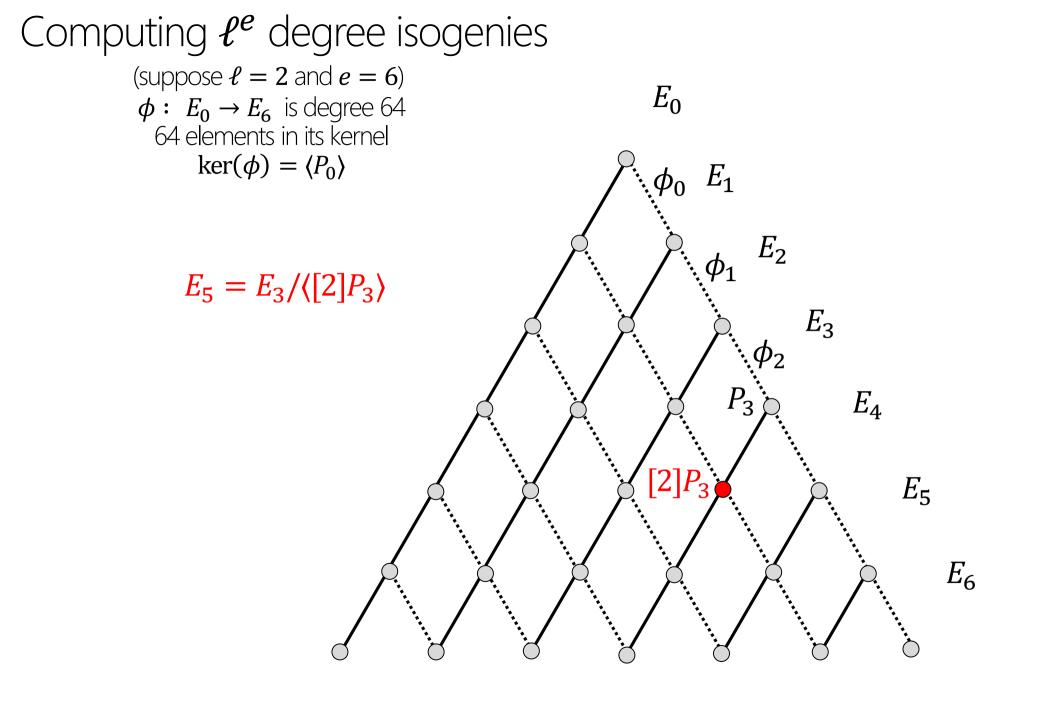


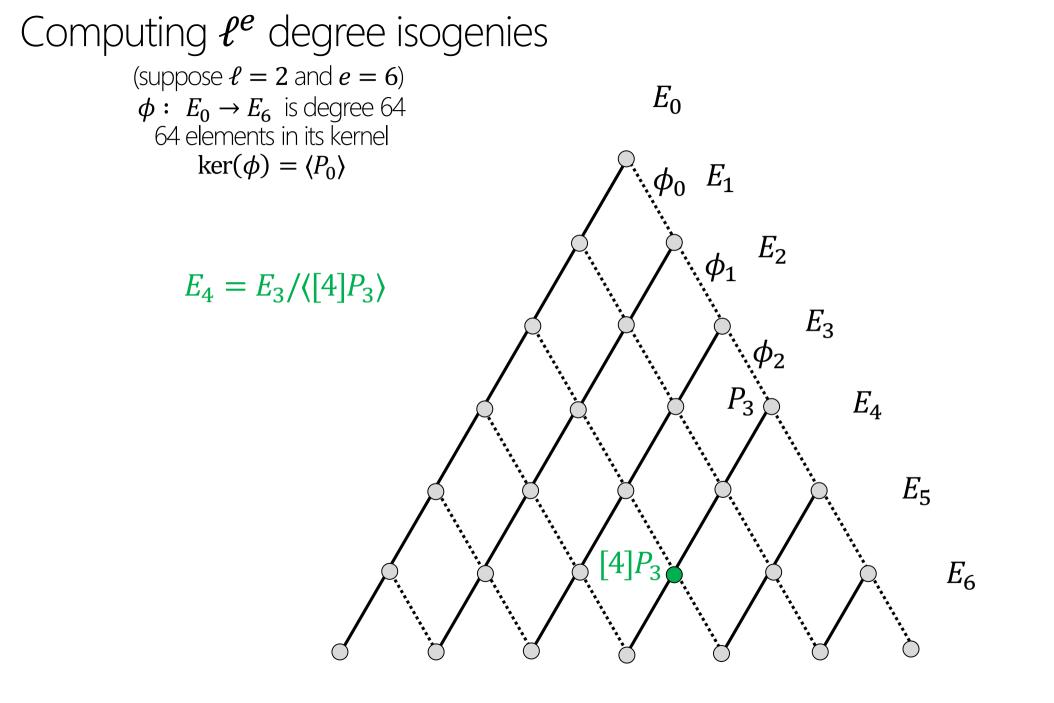


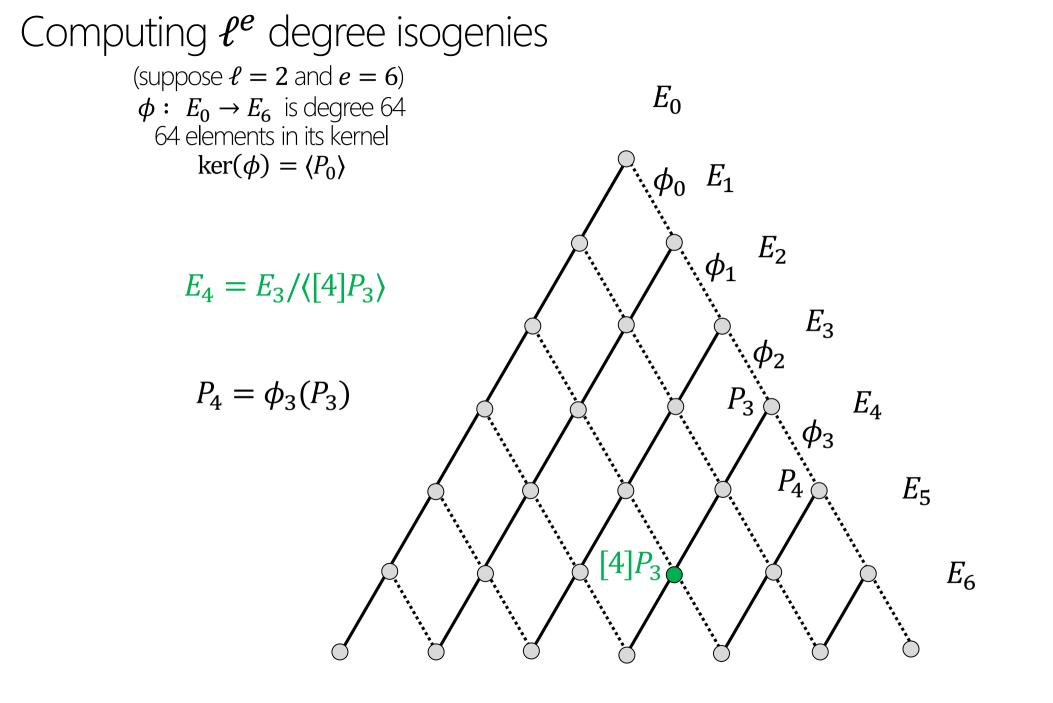


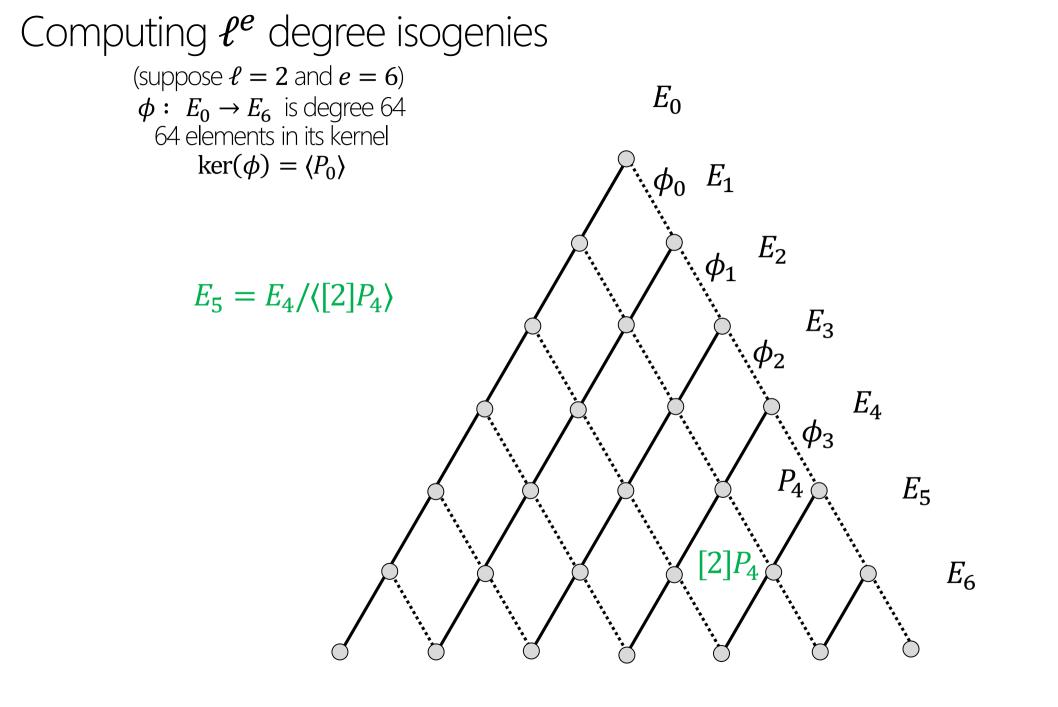


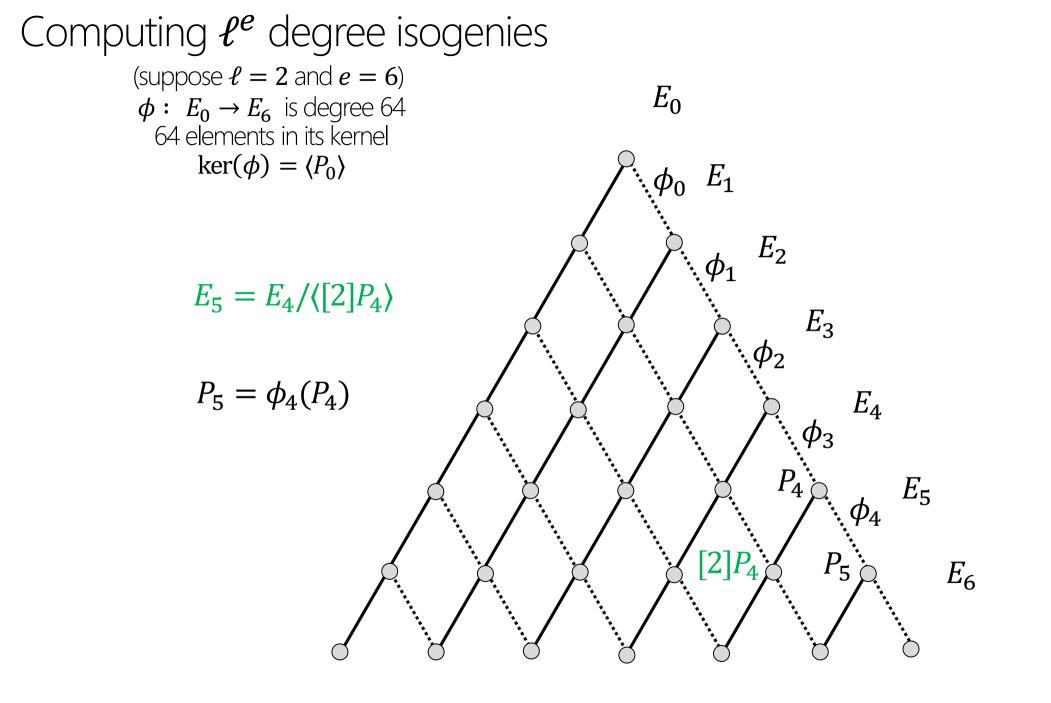


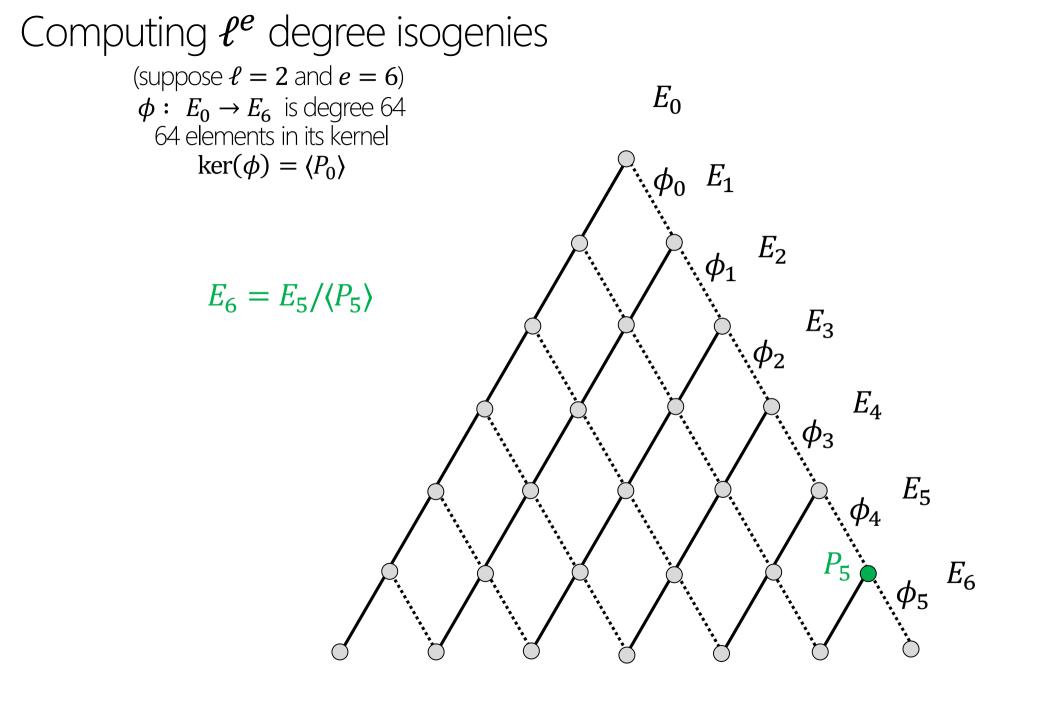






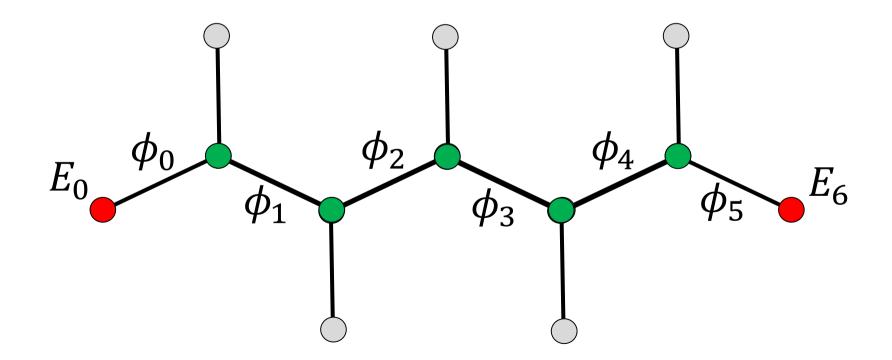






Computing ℓ^e degree isogenies

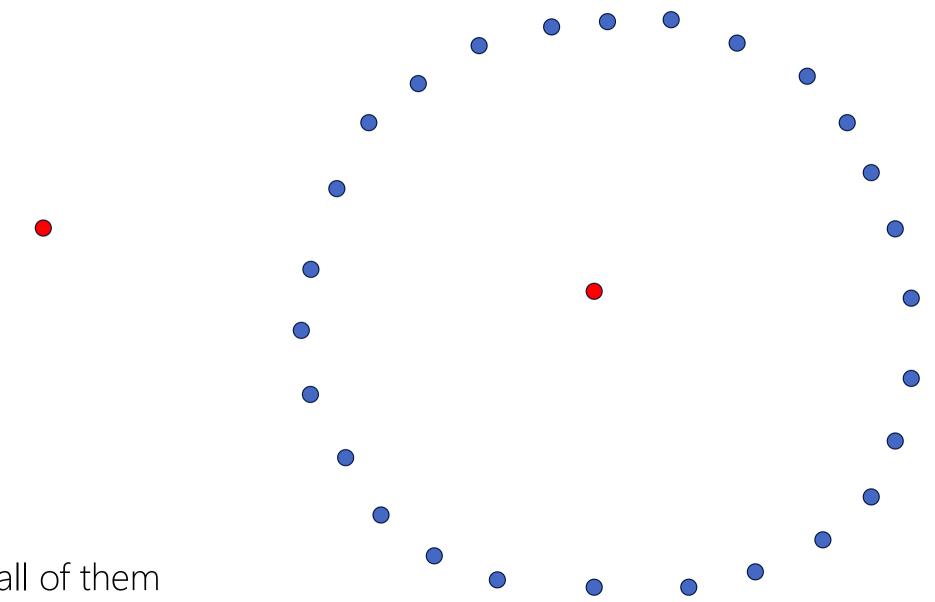
$$\phi : E_0 \to E_6$$
$$\phi = \phi_5 \circ \phi_4 \circ \phi_3 \circ \phi_2 \circ \phi_1 \circ \phi_0$$



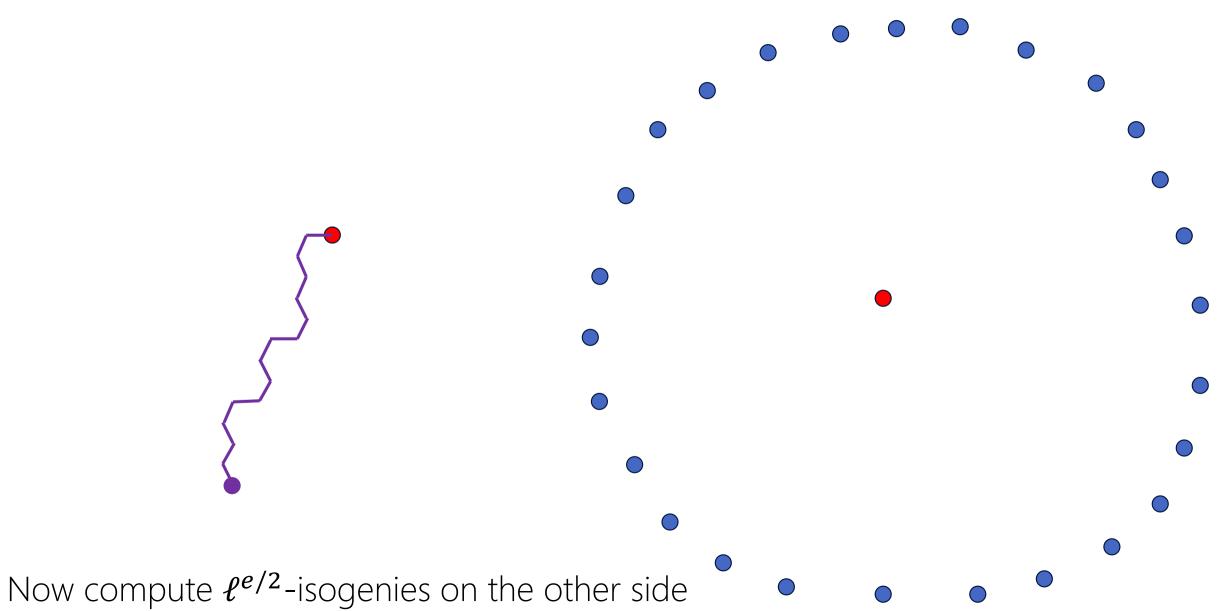
Given E and $E' = \phi(E)$, with ϕ degree ℓ^e , find ϕ

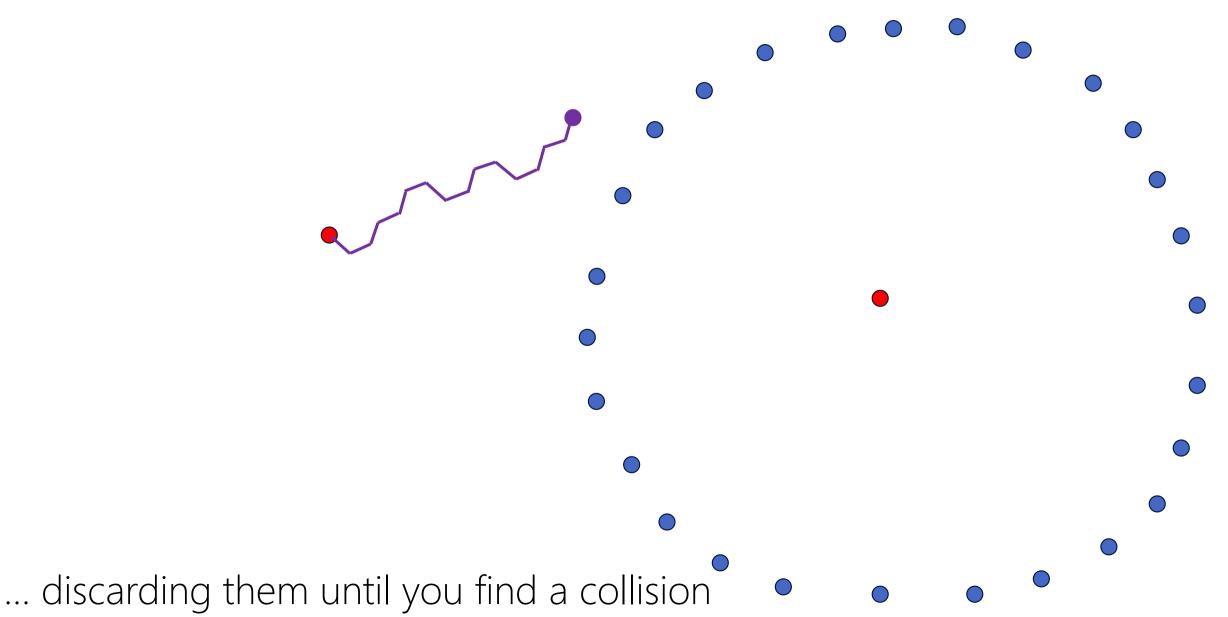
Compute and store $\ell^{e/2}$ -isogenies on one side

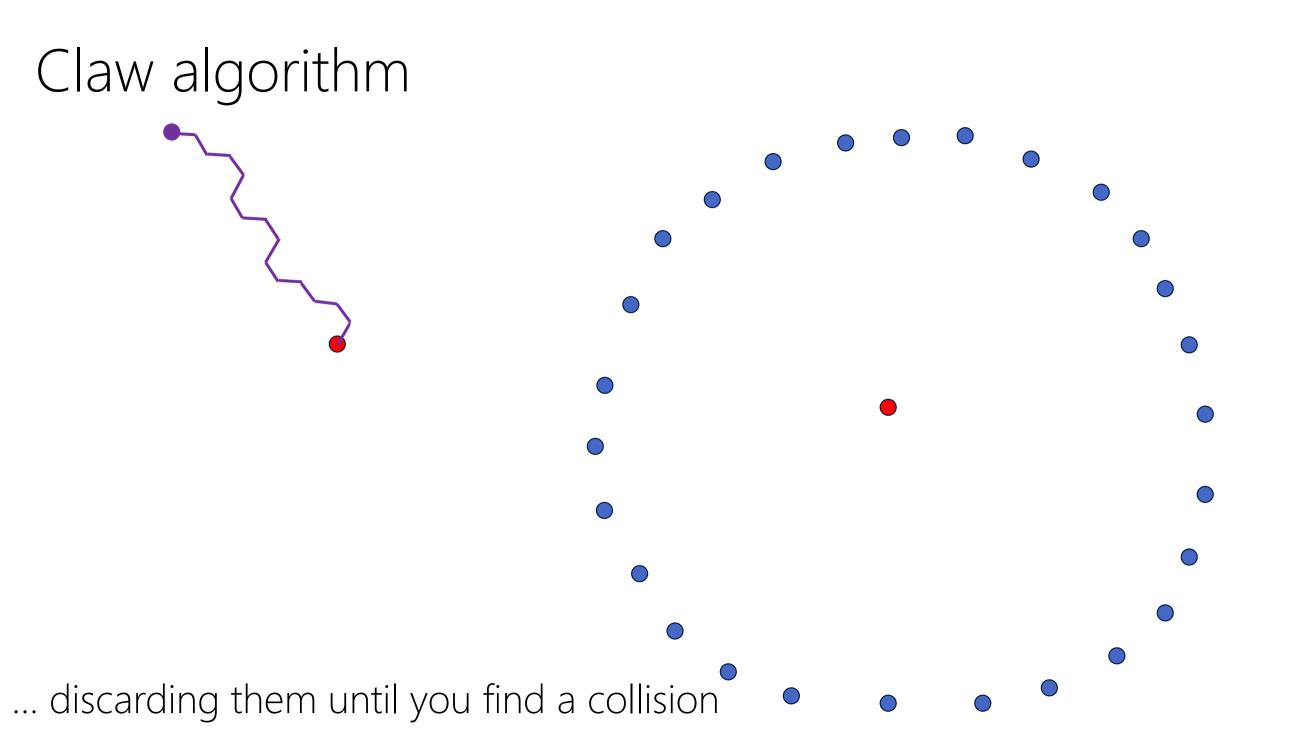
Compute and store $\ell^{e/2}$ -isogenies on one side

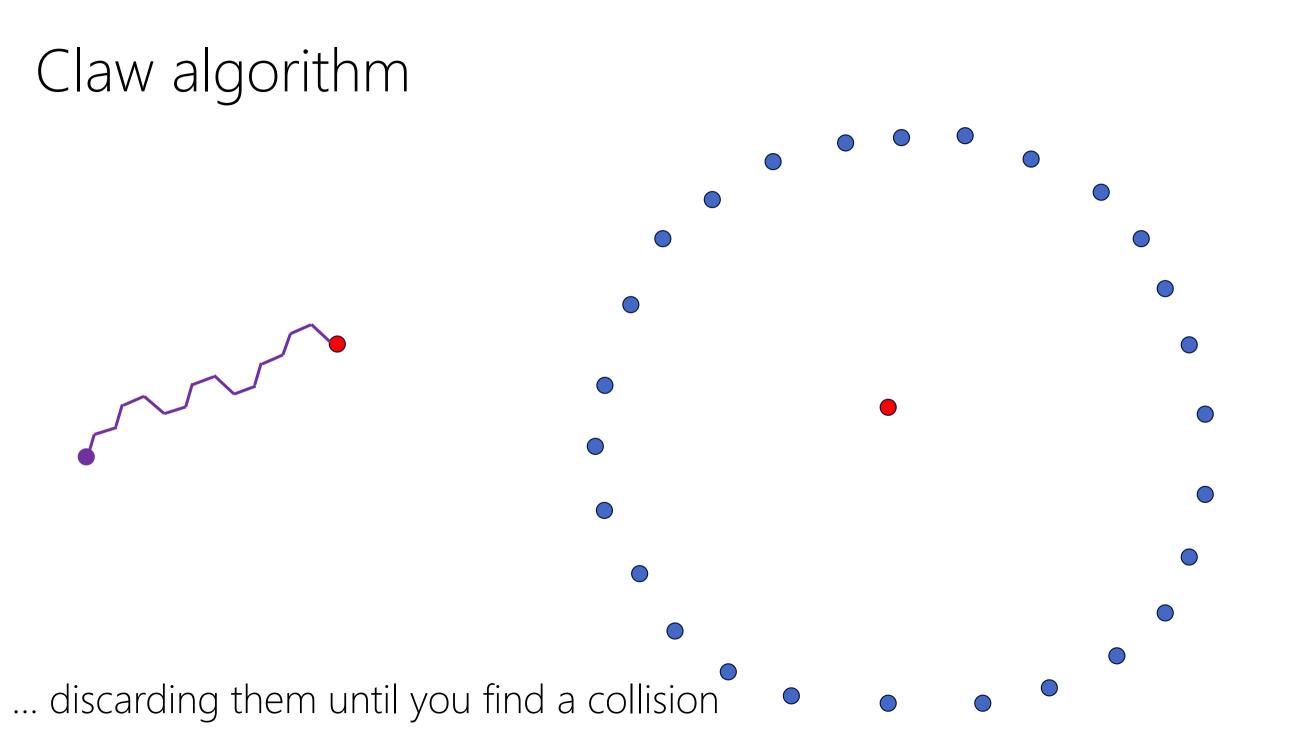


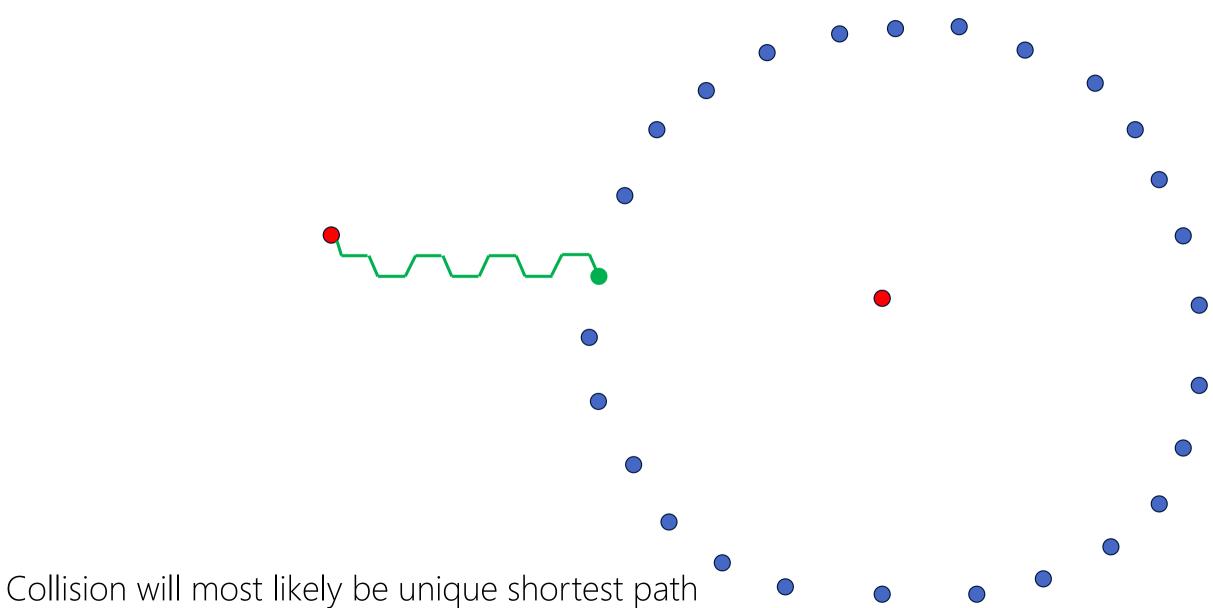
... until you have all of them











This path describes secret isogeny $\phi: E \to E'$

Claw algorithm: classical analysis

• There are $O(\ell^{e/2})$ curves $\ell^{e/2}$ -isogenous to E' (the blue nodes \bigcirc)

thus $O(\ell^{e/2}) = O(p^{1/4})$ classical memory

• There are $O(\ell^{e/2})$ curves $\ell^{e/2}$ -isogenous to E' (the blue nodes \bigcirc), and there are $O(\ell^{e/2})$ curves $\ell^{e/2}$ -isogenous to E (the purple nodes \bigcirc)

thus $O(\ell^{e/2}) = O(p^{1/4})$ classical time

- Best (known) attacks: classical $O(p^{1/4})$ and quantum $O(p^{1/6})$
- Confidence: both complexities are optimal for a black-box claw attack

SIDH: security summary

- Setting: supersingular elliptic curves E/\mathbb{F}_{p^2} where p is a large prime
- Hard problem: Given $P, Q \in E$ and $\phi(P), \phi(Q) \in \phi(E)$, compute ϕ (where ϕ has fixed, smooth, public degree)
- Best (known) attacks: classical $O(p^{1/4})$ and quantum $O(p^{1/6})$
- Confidence: above complexities are optimal for (above generic) claw attack

SIDH: summary

- Setting: supersingular elliptic curves E/\mathbb{F}_{p^2} where $p = 2^i 3^j 1_{E_0/\langle S_B \rangle = E_B}$
- Parameters:

$$E_0/\mathbb{F}_{p^2}: y^3 = x^3 + x$$
 with $\#E_0 = (2^i 3^j)^2$
 $P_A, Q_A \in E_0[2^i]$ and $P_B, Q_B \in E_0[3^j]$

• Public key generation (Alice):

$$s \in [0, 2^{i})$$

$$S_{A} = P_{A} + [s]Q_{A}$$

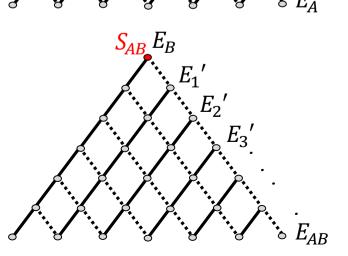
$$\phi_{A}: E_{0} \rightarrow E_{A} := E_{0}/\langle S_{A} \rangle$$
send $E_{A}, \phi_{A}(P_{B}), \phi_{A}(Q_{B})$ to Bob

• Shared key generation (Alice):

$$S_{AB} = \phi_B(P_A) + [s]\phi_B(Q_A) \in E_B$$

$$\phi_{A'}: E_B \to E_{AB}:= E_B/\langle S_{AB} \rangle$$

$$j_{AB} = j(E_{AB})$$



 $S_A E_0$

 $\underline{E}_{A} = E_{0} / \langle S_{A} \rangle$

đл

 $E_{\overline{0}}$

SIKE: Supersingular Isogeny Key Encapsulation (static key SIDH falls prey to active attacks)

Microsoft[®] Research Radboud University

Actively secure key encapsulation (IND-CCA KEM)

S)

 $PK_A = [\phi_A(E_0), \phi_A(P_B), \phi_A(Q_B)]$ $s \in_R \{0,1\}^{\ell}$

if

Alice

$$c = [PK_B(r), H_1(j) \oplus m]$$

$$j = j(E_{AB}) = j\left(\phi_A(\phi_B(E_0))\right)$$

$$m' = c[2] \bigoplus H_1(j)$$

$$r' = H_2(PK_A, m')$$

$$PK_B(r') = c[1] \text{ then } K = H_3(c, m') \text{ else } K = H_3(c, m')$$

Bob $m \in_R \{0,1\}^\ell$ $r = H_2(PK_A, m)$

$$PK_B(r) = \left[\phi_B(E_0), \phi_B(P_A), \phi_B(Q_A)\right]$$
$$j = j(E_{BA}) = j\left(\phi_B(\phi_A(E_0))\right)$$
$$K = H_3(c, m)$$

 $H_1(j) = cSHAKE256(j, k, "", 2)$ $H_2(PK_A, m) = cSHAKE256(m||PK_A, e_2, "", 0)$ $H_3(c, m) = cSHAKE256(m||c, k, "", 1)$

The curves and their security estimates

$$p = 2^{e_A} 3^{e_B} - 1$$

Name (SIKEp+ [log ₂ p])	(<i>e</i> _{<i>A</i>} , <i>e</i> _{<i>B</i>})	k	2 ^{<i>k</i>-1}	$\min_{(\sqrt{2^{e_A}},\sqrt{3^{e_3}})}$	√2 ^k	$\min_{\left(\sqrt[3]{2^{e_2}},\sqrt[3]{3^{e_3}}\right)}$
SIKEp503	(250,159)	128	2 ¹²⁷	2 ¹²⁵	2 ⁶⁴	2 ⁸³
SIKEp761	(372,239)	192	2 ¹⁹¹	2 ¹⁸⁶	2 ⁹⁶	2124
SIKEp964	(486,301)	256	2 ²⁵⁵	2 ²³⁸	2 ¹²⁸	2 ¹⁵⁹

classical

quantum

SIKE vs. IND-CCA lattice KEMs

Name	Primitive	Encaps+ Decaps (ms)	Size of Encaps. (KB)
NTRU-KEM	NTRU	0.03	1.3
Kyber	M-LWE	0.07	1.2
FrodoKEM	LWE	1.2 – 2.3	9.5 – 15.4
SIKE	Supersingular Isogeny	10 – 30	0.4 – 0.6

Results obtained on 3.4GHz Intel Haswell (Kyber and NTRU-KEM) or Skylake (FrodoKEM and SIKE)

Other recent isogeny-based crypto

- **Compression**: Azarderakhsh et al (eprint 2016/229) and C- et al (2016/963) and Zanon et al (2017/1143) *Halve the keys for (now less than) twice the cost*
- **Signatures**: Yoo et al (2017/186) and Galbraith-Petit-Silva (2016/1154) *Fiat-Shamir bit-by-bit: big and slow*
- **OIDH**: De Feo-Kieffer-Smith (2018/485) *Optimising the ordinary/commutative case: cool, but slow and painful*
- CSIDH: Castryck et al (2018/383) As in 2018/485 but supersingular over \mathbb{F}_p : non-interactive!, interesting...

Questions?

