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W. Castryck (GIF): ”Elliptic curves are dead: long live elliptic curves” https://www.esat.kuleuven.be/cosic/?p=7404

Setup: supersingular isogeny class over 𝔽𝑝2 … 

roughly 𝑝/12 isomorphism classes within supersingular isogeny class… 

https://www.esat.kuleuven.be/cosic/?p=7404


Supersingular isogeny graph for ℓ = 2: 𝔽𝑝2 with 𝑝 = 241

Credit to Fre Vercauteren for example and pictures…



Credit to Fre Vercauteren for example and pictures…

Supersingular isogeny graph for ℓ = 3: 𝔽𝑝2 with 𝑝 = 241



• An isogeny is a group homomorphism from 𝐸 to 𝐸′

• Any finite subgroup 𝐺 ∈ 𝐸, determines unique isogeny  
𝜙 ∶ 𝐸 → 𝐸/𝐺

• SIDH currently uses cyclic isogenies of degree 𝑑 = 2 and 𝑑 = 3
e.g., 

(separable) isogenies ↔ subgroups

𝐸/𝔽112: 𝑦
2= 𝑥3 +4

#𝐸(𝔽112) = 122

𝑑 = 3

𝜙1𝐸1: 𝑦
2= 𝑥3 + 2

𝜙3
𝐸3: 𝑦

2= 𝑥3 + 7𝑖 + 3 𝑥

𝜙2 𝐸2: 𝑦
2= 𝑥3 + 5𝑥

𝜙4 𝐸4: 𝑦
2= 𝑥3 + (4𝑖 + 3)𝑥



• Consider the isogeny 

Computing isogenies with Vélu’s formulas

𝜙 ∶ 𝐸 → 𝐸/𝐺, 𝑥, 𝑦 ↦
𝑓1 𝑥, 𝑦

𝑔1 𝑥, 𝑦
,
𝑓2 𝑥, 𝑦

𝑔2 𝑥, 𝑦

𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝐸/𝐺 ∶ 𝑦2 = 𝑥3 + 𝑎′𝑥 + 𝑏′

𝑎, 𝑏

𝐺

𝑎′, 𝑏′

𝑓1, 𝑓2, 𝑔1, 𝑔2
Vélu

In SIDH: we need to compute the isogenous curve and evaluate isogenies at points



𝐸𝑎,𝑏 ∶ 𝑏𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑥

Point and isogeny arithmetic in ℙ1

𝐸𝐴/𝐶 , 𝐵/𝐶: 𝐵𝑌2𝑍 = 𝐶𝑋3 + 𝐴𝑋2𝑍 + 𝐶𝑋𝑍2

𝑥, 𝑦 ↔ (𝑋 ∶ 𝑌 ∶ 𝑍) 𝑎, 𝑏 ↔ (𝐴 ∶ 𝐵 ∶ 𝐶)

ℙ1 point arithmetic:        𝑋 ∶ 𝑍 ↦ (𝑋′: 𝑍′)

ℙ1 isogeny arithmetic:    𝐴 ∶ 𝐶 ↦ 𝐴′: 𝐶′



2𝑒 and 3𝑒 isogenies (on Montgomery curves) have 
been studied, but what about odd ℓ𝑒 for ℓ ≥ 5?

Motivation



• Let 𝐸 be Montgomery. For the odd cyclic isogeny  𝜙 ∶ 𝐸 → 𝐸/ 𝑃 =: 𝐸′,     𝑥, 𝑦 ↦ (𝑋, 𝑌),
Vélu’s formula says 

• Vélu’s formula also says that 
𝐸′: 𝐵𝑦2 = 𝑥3 + 𝐴2𝑥

2 + 𝐴4𝑥 + 𝐴6,     𝐴4 ≠ 1 and 𝐴6 ≠ 0
(i.e., that the image curve is not Montgomery)

• Can (always) use isomorphism to convert 𝐸′ to Montgomery form, but in general 
this requires root-finding

Problems with Vélu’s formulas on Montgomery curves…

𝑋 = 𝑥 + 

𝑄∈ 𝑃

2 ⋅
3𝑥𝑄

2 + 2𝐴𝑥𝑄 + 1

𝑥 − 𝑥𝑄
+

4𝑦𝑄
2

𝑥 − 𝑥𝑄
2 , 𝑌 = 𝑦 − 

𝑄∈ 𝑃

8𝑦𝑄
2𝑦

𝑥 − 𝑥𝑄
3 + 2 ⋅ 3𝑥𝑄

2 + 2𝐴𝑥𝑄 + 1 ⋅
𝑦 + 𝑦𝑄

𝑥 − 𝑥𝑄
2



𝜙 ∶ 𝑥, 𝑦 ↦ 𝑓 𝑥 , 𝑦 ⋅ 𝑓′ 𝑥

Theorem 1

𝑓 𝑥 = 𝑥 ⋅ ෑ

1≤𝑖≤ℓ−1

𝑥 ⋅ 𝑥 𝑖 𝑃 − 1

𝑥 − 𝑥 𝑖 𝑃

Let 𝑃 have odd order ℓ on Montgomery curve 𝐸/𝐾: 𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥, and let 𝜙 ∶ 𝐸 → 𝐸′
with 𝐸′ = 𝐸/ 𝑃 . Then

𝐸′: 𝐵′𝑦2 = 𝑥3 + 𝐴′𝑥2 + 𝑥

𝐴′ = 6 ⋅ 𝜎 − 6 ⋅ 𝜎 + 𝐴 ⋅ 𝜋2

𝐵′ = 𝐵 ⋅ 𝜋2

with  𝜋 = ∏𝑥 𝑖 𝑃 , 𝜎 = ∑𝑥 𝑖 𝑃, 𝜎 = ∑1/𝑥 𝑖 𝑃

where



𝜙 ∶ 𝐸/ ⊖ → 𝐸′/⟨⊖⟩

Theorem 1 in the context of SIDH

𝑥 ↦ 𝑥 ⋅ ෑ

1≤𝑖≤ℓ−1

𝑥 ⋅ 𝑥 𝑖 𝑃 − 1

𝑥 − 𝑥 𝑖 𝑃

Recall that in SIDH we only care about the 𝑥-coordinate and 𝐴 coefficient

𝐴′ = 6 ⋅ 𝜎 − 6 ⋅ 𝜎 + 𝐴 ⋅ 𝜋2



𝜙 ∶ 𝐸/ ⊖ → 𝐸′/⟨⊖⟩

𝑥 ↦ 𝑥 ⋅ ෑ
1≤𝑖≤𝑑

𝑑=(ℓ−1)/2

𝑥 ⋅ 𝑥 𝑖 𝑃 − 1

𝑥 − 𝑥 𝑖 𝑃

2

Recall that in SIDH we only care about the 𝑥-coordinate and 𝐴 coefficient

𝐴′ = 6 ⋅ 𝜎 − 6 ⋅ 𝜎 + 𝐴 ⋅ 𝜋2

𝑥 𝑖 𝑃 = 𝑥 ℓ−𝑖 𝑃

Theorem 1 in the context of SIDH



𝜙 ∶ 𝐸/ ⊖ → 𝐸′/⟨⊖⟩

𝑋 ∶ 𝑍 ↦ (𝑋′ : 𝑍′)

Recall that in SIDH we only care about the 𝑥-coordinate and 𝐴 coefficient

𝐴′ = 6 ⋅ 𝜎 − 6 ⋅ 𝜎 + 𝐴 ⋅ 𝜋2

Theorem 1 in the context of SIDH

𝑋′ = 𝑋 ⋅ ෑ

𝑖

𝑋 ⋅ 𝑋 𝑖 𝑃 − 𝑍 𝑖 𝑃 ⋅ 𝑍

2

𝑍′ = 𝑍 ⋅ ෑ

𝑖

𝑋 ⋅ 𝑍 𝑖 𝑃 − 𝑋 𝑖 𝑃 ⋅ 𝑍

2

with  𝜋 = ∏𝑋 𝑖 𝑃/𝑍 𝑖 𝑃 , 𝜎 = ∑𝑋 𝑖 𝑃/𝑍 𝑖 𝑃, 𝜎 = ∑𝑍 𝑖 𝑃/𝑋 𝑖 𝑃



Theorem 1 in the context of SIDH

𝑋′ = 𝑋 ⋅ ෑ

𝑖

𝑋 − 𝑍 𝑋 𝑖 𝑃 + 𝑍 𝑖 𝑃 + (𝑋 + 𝑍)(𝑋 𝑖 𝑃 − 𝑍 𝑖 𝑃)

2

𝑍′ = 𝑍 ⋅ ෑ

𝑖

𝑋 − 𝑍 𝑋 𝑖 𝑃 + 𝑍 𝑖 𝑃 − (𝑋 + 𝑍)(𝑋 𝑖 𝑃 − 𝑍 𝑖 𝑃)

2



The simple and compact algorithm

𝑋′ ← 𝑋′ ⋅ 𝑋 − 𝑍 ⋅ 𝑋𝑇 + 𝑍𝑇 + 𝑋 + 𝑍 ⋅ 𝑋𝑇 − 𝑍𝑇
𝑍′ ← 𝑍′ ⋅ 𝑋 − 𝑍 ⋅ 𝑋𝑇 + 𝑍𝑇 − 𝑋 + 𝑍 ⋅ 𝑋𝑇 − 𝑍𝑇

Input:         𝒙 𝑃 = (𝑋𝑃 ∶ 𝑍𝑃) and 𝒙 𝑄 = (𝑋 ∶ 𝑍) with 𝑄 ∉ ⟨𝑃⟩

Initialise:       𝑇 ← 𝑂𝐸, 𝑋′ ← 1,   𝑍′ ← 1

for 𝑖 ∈ 1. . 𝑑 do

end for

return (𝑋 ⋅ 𝑋′2 ∶ 𝑍 ⋅ 𝑍′2)

Output:       𝒙 𝜙(𝑄) = (𝑋𝜙 𝑄 ∶ 𝑍𝜙 𝑄 ) where ker 𝜙 = ⟨𝑃⟩

𝑋𝑇 ∶ 𝑍𝑇 = 𝒙(𝑇 + 𝑃)𝑃
=

2𝑑 + 1



What about computing the isogenous curve?

𝐴′ = 6 ⋅ 𝜎 − 6 ⋅ 𝜎 + 𝐴 ⋅ 𝜋2

with  𝜋 = ∏𝑋 𝑖 𝑃/𝑍 𝑖 𝑃 , 𝜎 = ∑𝑋 𝑖 𝑃/𝑍 𝑖 𝑃, 𝜎 = ∑𝑍 𝑖 𝑃/𝑋 𝑖 𝑃

• Recall that the isogenous Montgomery curve has coefficient

• Relative to computing 𝑥 𝑃 ↦ 𝑥(𝜙 𝑃 ), computing 𝐴 ↦ 𝐴′ becomes much more 
expensive as ℓ grows large…

• But for Montgomery curves, 𝐴 = −𝛼 − 1/𝛼 where (𝛼, 0) is a point of order 2, so we can 
compute (𝛼′: 0) = 𝜙((𝛼: 0)) and recover 𝐴′ = −𝛼′ − 1/𝛼′ instead

• Now we only need one function for computing ℓ-isogenies on curves and points!



Upshot…
• Performance slowly degrades for odd ℓ-isogenies as ℓ increases, but not too bad… 

• In traditional ECC, we are free to cherry-pick fastest prime characteristics, e.g.,  

𝑝 = 2127 − 1, 𝑝 = 2255 − 19, 𝑝 = 2448 − 2224 − 1

• In SIDH, we are currently forced to choose much slower primes, like

𝑝 = 22503159 − 1, 𝑝 = 23723239 − 1,       𝑝 = 24863301 − 1

• Bos-Friedberger’17 get faster results for 𝑝 = 23911988 − 1 than for 𝑝 = 23723239 − 1 , so 
the bottleneck party (e.g., server) computing 2-isogenies could be faster overall 

• 𝑝 = 2448 − 2224 − 1 and 𝑝 = 2480 − 2240 − 1 are almost* SIDH-friendly, e.g., 𝑝 + 1 =
2224 ⋅ ∏𝑖 𝑝𝑖

𝑒𝑖 , but the larger 𝑝𝑖 are just too big… is there some nice middle ground?

* Depends heavily on your definition of almost



• Moody-Shumow had already figured this out in the case of 
(twisted) Edwards curves: see  https://eprint.iacr.org/2011/430

• Renes has, among several other things, recently solved the last 
piece of the Montgomery isogeny puzzle: efficient 2-isogenies

• SIKE – supersingular isogeny key encapsulation was submitted to 
NIST last week. More work needed!

Some related stuff…

https://eprint.iacr.org/2011/430


Questions?


