A simple and compact algorithm for

SIDH with arbitrary degree isogenies

Craig Costello and Huseyin Hisil

December 5, 2017 ASIACRYPT
Hong Kong, China

Microsoft ${ }^{*}$
Research

Diffie-Hellman instantiations

\mathbb{Z}_{q}^{*}

Diffie-Hellman instantiations

	DH	ECDH	SIDH
Elements	integers g modulo prime	points P in curve group	curves E in isogeny class
Secrets	exponents x	scalars k	isogenies ϕ
computations	$g, x \mapsto g^{x}$	$P, k \mapsto[k] P$	$E, \phi \mapsto \phi(E)$
hard problem	given g, g^{x} find x	given $P,[k] P$ find k	given $E, \phi(E)$ find ϕ

Setup: supersingular isogeny class over $\mathbb{F}_{p^{2}}$..
roughly $p / 12$ isomorphism classes within supersingular isogeny class...

W. Castryck (GIF): "Elliptic curves are dead: long live elliptic curves" https://www.esat.kuleuven.be/cosic/?p=7404

Supersingular isogeny graph for $\ell=2: \mathbb{F}_{p^{2}}$ with $p=241$

Supersingular isogeny graph for $\ell=3: \mathbb{F}_{p^{2}}$ with $p=241$

(separable) isogenies \leftrightarrow subgroups

- An isogeny is a group homomorphism from E to E^{\prime}
- Any finite subgroup $G \in E$, determines unique isogeny

$$
\phi: E \rightarrow E / G
$$

- SIDH currently uses cyclic isogenies of degree $d=2$ and $d=3$ e.g.,
$E / \mathbb{F}_{11^{2}}: y^{2}=x^{3}+4$
$\# E\left(\mathbb{F}_{11^{2}}\right)=12^{2}$
$d=3$

Computing isogenies with Vélu's formulas

- Consider the isogeny

$$
\begin{array}{cl}
\phi: E \rightarrow E / G, & (x, y) \mapsto\left(\frac{f_{1}(x, y)}{g_{1}(x, y)}, \frac{f_{2}(x, y)}{g_{2}(x, y)}\right) \\
E: y^{2}=x^{3}+a x+b & \\
E / G: & y^{2}=x^{3}+a^{\prime} x+b^{\prime}
\end{array}
$$

$$
\begin{gathered}
f_{1}, f_{2}, g_{1}, g_{2} \\
\left(a^{\prime}, b^{\prime}\right)
\end{gathered}
$$

In SIDH: we need to compute the isogenous curve and evaluate isogenies at points

Point and isogeny arithmetic in \mathbb{P}^{1}

$$
E_{a, b}: \quad b y^{2}=x^{3}+a x^{2}+x
$$

$$
(x, y) \leftrightarrow(X: Y: Z)
$$

$$
(a, b) \leftrightarrow(A: B: C)
$$

$$
E_{A / C, B / C}: \quad B Y^{2} Z=C X^{3}+A X^{2} Z+C X Z^{2}
$$

\mathbb{P}^{1} point arithmetic:
$(X: Z) \mapsto\left(X^{\prime}: Z^{\prime}\right)$
\mathbb{P}^{1} isogeny arithmetic:
$(A: C) \mapsto\left(A^{\prime}: C^{\prime}\right)$

Motivation

2^{e} and 3^{e} isogenies (on Montgomery curves) have been studied, but what about odd ℓ^{e} for $\ell \geq 5$?

Problems with Vélu's formulas on Montgomery curves...

- Let E be Montgomery. For the odd cyclic isogeny $\phi: E \rightarrow E /\langle P\rangle=: E^{\prime}, \quad(x, y) \mapsto(X, Y)$, Vélu's formula says

$$
X=x+\sum_{Q \in(P)} 2 \cdot \frac{3 x_{Q}^{2}+2 A x_{Q}+1}{x-x_{Q}}+\frac{4 y_{Q}^{2}}{\left(x-x_{Q}\right)^{2}}, \quad Y=y-\sum_{Q \in(P)} \frac{8 y_{Q}^{2} y}{\left(x-x_{Q}\right)^{3}}+2 \cdot\left(3 x_{Q}^{2}+2 A x_{Q}+1\right) \cdot \frac{\left(y+y_{Q}\right)}{\left(x-x_{Q}\right)^{2}}
$$

- Vélu's formula also says that

$$
\begin{array}{r}
E^{\prime}: B y^{2}=x^{3}+A_{2} x^{2}+A_{4} x+A_{6,} \quad A_{4} \neq 1 \text { and } A_{6} \neq 0 \\
\text { (i.e., that the image curve is not Montgomery) }
\end{array}
$$

- Can (always) use isomorphism to convert E^{\prime} to Montgomery form, but in general this requires root-finding

Theorem 1

Let P have odd order ℓ on Montgomery curve $E / K: B y^{2}=x^{3}+A x^{2}+x$, and let $\phi: E \rightarrow E^{\prime}$ with $E^{\prime}=E /\langle P\rangle$. Then

$$
\begin{gathered}
\phi:(x, y) \mapsto\left(f(x), y \cdot f^{\prime}(x)\right) \\
f(x)=x \cdot \prod_{1 \leq i \leq \ell-1}\left(\frac{x \cdot x_{[i] P}-1}{x-x_{[i] P}}\right) \\
E^{\prime}: \quad B^{\prime} y^{2}=x^{3}+A^{\prime} x^{2}+x \\
\text { where } \quad A^{\prime}=(6 \cdot \tilde{\sigma}-6 \cdot \sigma+A) \cdot \pi^{2} \\
B^{\prime}=B \cdot \pi^{2} \\
\text { with } \pi=\prod x_{[i] P}, \sigma=\sum x_{[i] P,}, \tilde{\sigma}=\sum 1 / x_{[i] P}
\end{gathered}
$$

Theorem 1 in the context of SIDH

Recall that in SIDH we only care about the x-coordinate and A coefficient

$$
\begin{gathered}
\phi: E /\langle\Theta\rangle \rightarrow E^{\prime} /\langle\Theta\rangle \\
x \mapsto x \cdot \prod_{1 \leq i \leq \ell-1}\left(\frac{x \cdot x_{[i] P}-1}{x-x_{[i] P}}\right) \\
A^{\prime}=(6 \cdot \tilde{\sigma}-6 \cdot \sigma+A) \cdot \pi^{2}
\end{gathered}
$$

Theorem 1 in the context of SIDH

Recall that in SIDH we only care about the x-coordinate and A coefficient

$$
\begin{gathered}
\phi: E /\langle\Theta\rangle \rightarrow E^{\prime} /\langle\Theta\rangle \\
x \mapsto x \cdot \prod_{\substack{1 \leq i \leq d \\
d=(\ell-1) / 2}}\left(\frac{x \cdot x_{[i] P}-1}{x-x_{[i] P}}\right)^{2} \quad x_{[i] P}=x_{[\ell-i] P} \\
A^{\prime}=(6 \cdot \tilde{\sigma}-6 \cdot \sigma+A) \cdot \pi^{2}
\end{gathered}
$$

Theorem 1 in the context of SIDH

Recall that in SIDH we only care about the x-coordinate and A coefficient

$$
\begin{gathered}
\phi: E /\langle\Theta\rangle \rightarrow E^{\prime} /\langle\Theta\rangle \\
(X: Z) \mapsto\left(X^{\prime}: Z^{\prime}\right) \\
X^{\prime}=X \cdot\left(\prod_{i}\left(X \cdot X_{[i] P}-Z_{[i] P} \cdot Z\right)\right)^{2} \quad Z^{\prime}=Z \cdot\left(\prod_{i}\left(X \cdot Z_{[i] P}-X_{[i] P} \cdot Z\right)\right)^{2}
\end{gathered}
$$

$$
A^{\prime}=(6 \cdot \tilde{\sigma}-6 \cdot \sigma+A) \cdot \pi^{2}
$$

$$
\text { with } \pi=\prod X_{[i] P} / Z_{[i] P}, \sigma=\sum X_{[i] P} / Z_{[i] P}, \tilde{\sigma}=\sum Z_{[i] P} / X_{[i] P}
$$

Theorem 1 in the context of SIDH

$$
\begin{aligned}
& X^{\prime}=X \cdot\left(\prod_{i}\left((X-Z)\left(X_{[i] P}+Z_{[i] P}\right)+(X+Z)\left(X_{[i] P}-Z_{[i] P}\right)\right)\right)^{2} \\
& Z^{\prime}=Z \cdot\left(\prod_{i}\left((X-Z)\left(X_{[i] P}+Z_{[i] P}\right)-(X+Z)\left(X_{[i] P}-Z_{[i] P)}\right)\right)^{2}\right.
\end{aligned}
$$

The simple and compact algorithm

Input: $\quad \boldsymbol{x}(P)=\left(X_{P}: Z_{P}\right)$ and $\boldsymbol{x}(Q)=(X: Z)$ with $Q \notin\langle P\rangle$
Output: $\quad \boldsymbol{x}(\phi(Q))=\left(X_{\phi(Q)}: Z_{\phi(Q)}\right)$ where $\operatorname{ker}(\phi)=\langle P\rangle$
Initialise: $\quad T \leftarrow O_{E^{\prime}} X^{\prime} \leftarrow 1, \quad Z^{\prime} \leftarrow 1$
for $i \in[1 . . d]$ do

$$
\begin{aligned}
& \left(X_{T}: Z_{T}\right)=x(T+P) \\
& X^{\prime} \leftarrow X^{\prime} \cdot\left((X-Z) \cdot\left(X_{T}+Z_{T}\right)+(X+Z) \cdot\left(X_{T}-Z_{T}\right)\right) \\
& Z^{\prime} \leftarrow Z^{\prime} \cdot\left((X-Z) \cdot\left(X_{T}+Z_{T}\right)-(X+Z) \cdot\left(X_{T}-Z_{T}\right)\right)
\end{aligned}
$$

end for
return $\left(X \cdot X^{\prime 2}: Z \cdot Z^{\prime 2}\right)$

What about computing the isogenous curve?

- Recall that the isogenous Montgomery curve has coefficient

$$
\begin{gathered}
A^{\prime}=(6 \cdot \tilde{\sigma}-6 \cdot \sigma+A) \cdot \pi^{2} \\
\text { with } \pi=\prod X_{[i] P} / Z_{[i] P}, \sigma=\sum X_{[i] P} / Z_{[i] P}, \tilde{\sigma}=\sum Z_{[i] P} / X_{[i] P}
\end{gathered}
$$

- Relative to computing $x(P) \mapsto x(\phi(P))$, computing $A \mapsto A^{\prime}$ becomes much more expensive as ℓ grows large...
- But for Montgomery curves, $A=-\alpha-1 / \alpha$ where $(\alpha, 0)$ is a point of order 2 , so we can compute $\left(\alpha^{\prime}: 0\right)=\phi((\alpha: 0))$ and recover $A^{\prime}=-\alpha^{\prime}-1 / \alpha^{\prime}$ instead
- Now we only need one function for computing ℓ-isogenies on curves and points!

Upshot...

- Performance slowly degrades for odd ℓ-isogenies as ℓ increases, but not too bad...
- In traditional ECC, we are free to cherry-pick fastest prime characteristics, e.g.,

$$
p=2^{127}-1, \quad p=2^{255}-19, \quad p=2^{448}-2^{224}-1
$$

- In SIDH, we are currently forced to choose much slower primes, like

$$
p=2^{250} 3^{159}-1, \quad p=2^{372} 3^{239}-1, \quad p=2^{486} 3^{301}-1
$$

- Bos-Friedberger'17 get faster results for $p=2^{391} 19^{88}-1$ than for $p=2^{372} 3^{239}-1$, so the bottleneck party (e.g., server) computing 2 -isogenies could be faster overall
- $p=2^{448}-2^{224}-1$ and $p=2^{480}-2^{240}-1$ are almost* SIDH-friendly, e.g., $(p+1)=$ $2^{224} \cdot \prod_{i} p_{i}^{e_{i}}$, but the larger p_{i} are just too big... is there some nice middle ground?

Some related stuff...

- Moody-Shumow had already figured this out in the case of (twisted) Edwards curves: see https://eprint.iacr.org/2011/430
- Renes has, among several other things, recently solved the last piece of the Montgomery isogeny puzzle: efficient 2-isogenies
- SIKE - supersingular isogeny key encapsulation was submitted to NIST last week. More work needed!

Questions?

