Supersingular Isogeny Key Encapsulation

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, David Jao,
Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Viadimir Soukharev

UNIVERSITY OF Q% »
N VERSAILLES ks i3 TEXAS
a m azo n @ WATE R Loo ST-QUENTIN-EN YVELINES INSTRUMENTS
Microsoft: %d
Resea rch overnbor 14 Radboud University § X ?
E&U
FLORIDA ATLANTIC =CC 2017 0O)) INF OSEC

UNIVERSITY Nijmegen, The Netherlands \K:_ GLOBAL

Reza Azarderakhsh, N
Brian LaMacchi

 Feo, Basil Hess, Brian Koziel,
s, Vladimir Soukharev

I3 TEXAS
INSTRUMENTS

UNIVERSITY OF

WATERLOO

VERSAI

ST-QUENTI}

amazon

Microsoft-
Resea adboud University § :
E@U INE"
FLORIDA ATLANTIC 0)) INFOSEC

UNIVERSITY Nijmege e Netherlands @ GLOBAL

Part 1: Quick re-motivation

Quantum computers « Cryptopocalypse

p.q « Quantum computers break elliptic curves, finite fields,
factoring, everything currently used for PKC

NIST . NIST calls for quantum-secure key exchange and

National Institute

ond Technology signatures. Deadline Nov 30, 2017.

I0ONS

tantiat

NS

Hellman |

[&

Diff

g% mod ¢q

g? mod ¢

la]P

Pa(E)

¢ (E)

Diffie-Hellman instantiations

DH ECDH SIDH
Elements integers g modulo | points P in curve curves E in
orime group isogeny class
Secrets exponents x scalars k Isogenies ¢
computations g,x — g* k,P — [k]P ¢, E - ¢(E)
hard problem given g, g* given P, [k]P given E, ¢(E)
find x find k find ¢

Part 2 Quick tutorial recap

Bob

W. Castryck (GIF): “Elliptic curves are dead: long live elliptic curves” https://www.esat.kuleuven.be/cosic/?p=7404

https://www.esat.kuleuven.be/cosic/?p=7404

Supersingular isogeny graph for € = 2. X(S,442,2)

@ Credit to Fre Vercauteren for example and pictures...

Supersingular isogeny graph for € = 3. X(S,442,3)

Credit to Fre Vercauteren for example and pictures...

SIDH: in a nutshell

params private qu
o : Eo') — EO/<A>
S are iSOgenous curves _ _
P’s, Q's, R’s, S’'s are points
b5 b5
!
A\ ¢A

Eo/(BY = £, > Eap = Eo/{(A, B)

SIDH: in a nutshell

params private qu

. Eq vEy = Eo/{Ps + |541Q4)
s are isogenous curves ! i

P's, Q's, R's, S's are points () = (P, (Pg),d4(05))

Pp s

Pa’

Eo/(Py + [55105) = L > Eap = Eo/{(A, B)

(Pp(Pa), P5(Q4)) = ()

Key: Alice sends her isogeny evaluated at Bob’s generators, and vice versa
[(Ra+ [splSs) 2 Eo/(Pa+ [salQ4,Pp + IsplQp) = En/(Rp + [s4]55)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Pp) E |

Ee = Eo/{(Fp)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64

64 elements in its kemel

ker(¢p) = (Py)

Es = Ey/{[2]P)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Pp) E |

Ey = Eo/{[4]P)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Pp) E |

E; = Ey/{[8]F)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Pp) E |

E, = Ey/{[16]P,)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kernel P,

ker(¢) = (Pp) E |

Ey = Eo/(|32]Fp)
= ¢o(Ep)

[32]Po

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64

64 elements in its kemel

ker(¢p) = (Py)

Ey = Eo/(|32]F)
= ¢o(Ep)

Py = ¢o(Fo)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

E¢ = E1/(Py)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

Es = E1 /(|2]P;)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

E, = E; /{[4]P1)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

E; = E1 /(|8]Py)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

E, = E; /{[16]P;)
= ¢1(E71)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

E, = E; /{[16]P;)
= ¢1(E71)

P, = ¢,(P1)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

Ee = E5/(P;)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

Es = E5 /{[2]P;)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

E, = E5 /{[4]P;)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

E; = E>/([8]P;)
= ¢, (E3)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

E; = E>/([8]P;)
= ¢, (E3)

Py = ¢,(P,)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

E¢ = E3/(Ps3)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

Es = E3/{[2]P5)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

E, = E3/([4]P5)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

E, = E3/([4]P5)

Py = ¢3(P3)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

Ee = Ey/(Py)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

Es = Ey/([2]Py)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

Es = Ey/([2]Py)

Ps = ¢4 (Py)

Computing €€ degree isogenies
(suppose £ =2 and e = 6)
¢ : Ey— Eg isdegree 64 Eg
64 elements in its kemel

ker(¢p) = (Py)

E¢ = Es/(Ps)

Computing ¢ degree isogenies
¢ : Eg — Eg
® = @soPyopzodyodgoy

Po P, P4
P1 R

Ps

Claw algorithm

Given E and E' = ¢(E), with ¢ degree #¢, find ¢

Claw algorithm

Compute and store £¢/2-isogenies on one side

Claw algorithm

Compute and store £¢/2-isogenies on one side

Claw algorithm

... until you have all of them

Claw algorithm

Now compute £¢/2-isogenies on the other side

Claw algorithm

.. discarding them until you find a collision'

Claw algorithm

.. discarding them until you find a collision'

Claw algorithm

.. discarding them until you find a collision'

Claw algorithm

Collision will most likely be unique shortest path

Claw algorithm

This path describes secret isogeny ¢ : E — E’

Claw algorithm: classical analysis

» There are 0(£¢/?) curves £¢/2-isogenous to E’ (the blue nodes @)

thus 0(£¢/?) = 0(p/*) classical memory

* There are 0(£¢/?) curves £¢/2-isogenous to E’ (the blue nodes @), and
there are 0(€%/?) curves £¢/?-isogenous to E (the purple nodes @)

thus 0(£¢/2) = 0(p'/*) classical time

» Best (known) attacks: classical O(p*/*) and quantum 0 (p1/®)
» Confidence: both complexities are optimal for a black-box claw attack

Eu_(m_' = Eo/(Sa)
SIDH protocol summary

s P

* Setting: supersingular elliptic curves E /2 where p = 230 -1 b5y

* Parameters:; ,
Eo/Fz:y®=x3+x with #E,=(2'3/)
Pa, Q4 € Eo[2'| and Py, Qp € Eo[3/]

» Public key generation (Alice): |
s €]0,2Y)
Sa =Py +[5s]Q4
$a Eq = Egr= Eo/(54)
send Ey, ¢a(Pg), $a(Qp) to Bob

» Shared key generation (Alice):
Sap = ¢p(Py) + [s]l¢pp(Q4) € Ep
Gart Ep = Egpi= Ep/{(SaB)
Jap = J(EaB)

SIDH security summary

* Setting: supersingular elliptic curves E/IF,,2 where p is a large prime

* Hard problem: Given P,Q € E and ¢(P), p(Q) € ¢(E), compute ¢
(where ¢ has fixed, smooth, public degree)

» Best (known) attacks: classical 0(p'/*) and quantum 0(p1/¢)

Part 3: SIKE

"The poor user (S given enough rope with which to
hang himself — something a standard should not do.”

- Ron Rivest, 1992 (on DSA standard)

\\§\\
N\
9
U
D
Ite
k
ey C
O
m
9
re
SS
10
N

Point and isogeny arithmetic in P?

ECDH: move around different points on a fixed curve.
SIDH: move around different points and different curves

Eup @ by =x+ax*+ux

(r,y) & (XY :2) ﬁ (a,b) & (A: B+ C)

E BY?Z = CX3 + AX?Z + CXZ?

Qlx

B.
'C

P! point arithmetic: X:Z) (X’:Z’)/
P! isogeny arithmetic: (4:C) » (4":C")

B coefficient only
fixes the quadratic
twist, but

J(E) = j(E")

Point and isogeny arithmetic in P

“t®

¢3 : EA/C ,B/C/{il} - EAI/CI,BI/C//{il}
X:2) o (X(X3X—1Z32)2 : Z(Z3X —X3Z)?)

(A':C) = (Z% +18X222 —27X% : 4X,Z%)

Public keys are in IF;;Z

PKs = (Xp,Pp) +Xp4(05) » X 4(Q5~P5))

Conversely, if R =4+(Q —P)on E, : y? = x3 + ax* + x, then

2
B (1 — XpXg — XpXR — xQxR)
dxpXoXp

a — Xp — X — Xg

The starting curve

Ey : y*=x3+x

Computing ¢ : Ey — E' is broadly equivalent to computing End(E")

(see Kohel's thesis, Galbraith-Vercauteren survey, Galbraith-Petit-Shani-Ti)

Computing ¢ : Eq = E’ is subexponential if E is defined over IF,,
(see Biasse-Jao-Sankar, Galbraith-Delfs)

Known security not damaged, but perhaps we'd prefer to start on
Ey/F,2 when End(E) is not known. Don't know how?

Generating secret kernels

Recall

« P,,0Q4 € Ey[2°4] and Py, Qg € Ey[3¢B] with full order Weil pairings

« Alice’s secret is {[my]P,4 + [ny4]Q4), Bob's is {{mg]|Pg + [n5]Qg)
Wetake o mp =11, €020 andng €[02¢) N cmallest

. Zi
* Qq =[3°8](z1,—) and Py = [3°B](z; + i, —) ~ such that points
* O =\[28A](23» —)’ and P = [2°4](z4 + i, —) span torsions
\ J
! v

Consequences s 2

 Simple, uniform "3 point ladder” for computing P + [n]Q [see FLOR'17] ,\E;‘
* R =P + [n]Q can never be such that [2?]R = (0,0), so one 4-isogeny function _ &
. Don't reach all possible subgroups. Problem? EQ'

JdT

The main loop

Simple, but slow Optimal strategy [DJP'11] is harder; but much faster
eq. 28441 x [3] + 239 X ¢3 (x) eq. 811 x [3] + 1124 X ¢35 (x)

Spec/code gives concrete algorithm for deriving, checking and executing the optimal strategy

The problem with reusing static keys

« Galbraith-Petit-Shani-Ti: P, Q both order 2€4, and Alice’s static secret a € Z

(P + [a]Q) = (P + [«](Q + [2°471]P)) iff a is even
« Send Alice P =P and Q = (Q + [2¢471]P), if DH works fine, then a is even, else odd

« Even case (a = 2 Q):
(P + [2a]Q) = (P + [2a](Q + [28472]P)) iff @ is even

so send P = Pand Q = (Q + [2¢472]P)
« Odd case (

a=2a+1):
(P+[2a + 1]Q) = (P — [2472]Q + [2a + 1](Q + [26472]Q)) iff @ is even
sosend P =[1—2%72]Ppand Q = [1 4+ 2¢472](Q

D I

» .. continuing yields a in log,a adaptive interactions!!!
No known Weil to detect foul play, provided P, Q are scaled correctly!

Passively secure encryption (IND-CPA PKE), a la ElGamal

Alice Bob

PK, = [¢A(EO): ¢A(PB):¢A(QB)]
PKp = [¢B(EO): ¢B(PA):¢B(QA)]

J = j(EBA) =] (¢B(¢A(Eo)))
< [PKp , Hy (j) @ m]

J = j(EAB) =] (¢A(¢B(Eo)))

Actively secure key encapsulation (IND-CCA KEM)

Alice Bob

PK, = [¢A(EO): ¢A(PB)r¢A(QB)]
PKp = [(PB(EO): ¢B(PA):¢B(QA)]

J = j(EBA) =] (¢B(¢A(Eo)))
< [PKp , Hy (j) @ m]

J = j(EAB) =] (¢A(¢B(Eo)))

Actively secure key encapsulation (IND-CCA KEM)

Alice RBob
PKy = [pa(Ep), pa(Pp), 0a(Q5) | ?
s €, (0,1} m € {0,1}
r = H,(PK4, m)

QDKB(@ ,Hi(j) @ m] PKp(r) = [¢5(Ep), $5(Pa), p5(Q4) |
j = j(EBA) =] (¢B(¢A(Eo)))

j =i Eap) = (Ga($5(E)))

Actively secure key encapsulation (IND-CCA KEM)

Alice RBob
PKy = [pa(Ep), pa(Pp), 0a(Q5) | ?
s €p (0,1} m &g 10,13
r = Hy(PKy,m)

<: [PKp(r),H,1(j) @ m] PKp(r) = [¢(Eo), ¢p(Pa), $5(Q4) |
j=J(Ega) = (¢B(¢A(Eo)))

Jj=J(Esg) = (¢A(¢B(Eo))) K = Hs(c,m)

Actively secure key encapsulation (IND-CCA KEM)

Alice RBob
PKy = [pa(Ep), pa(Pp), 0a(Q5) | ?
s €p (0,1} m &g 10,13
r = Hy(PKy,m)

<: [PKp(r),H,1(j) @ m] PKp(r) = [¢(Eo), ¢p(Pa), $5(Q4) |
j=J(Ega) = (¢B(¢A(Eo)))

Jj=J(Esg) = (¢A(¢B(Eo))) K = Hs(c,m)
m' = c[2] @ H,(j)

Actively secure key encapsulation (IND-CCA KEM)

Alice RBob
PKy = [pa(Ep), pa(Pp), 0a(Q5) | ?
s €, {01} m € {0,1}
r = H,(PK4, m)

<: [PKp(r),H,1(j) @ m] PKp(r) = [¢(Eo), ¢p(Pa), $5(Q4) |
j = j(EBA) =] (¢B(¢A(Eo)))
J=J(Epp) =] (¢A(¢B(Eo))) K = Hs(c,m)

m' = c[2] @ H1(j)
r' = H,(PKy,m")

Actively secure key encapsulation (IND-CCA KEM)

Alice RBob
PKy = [pa(Ep), pa(Pp), 0a(Q5) | ?
s €p (0,1} m €g 10,13
r = Hy(PKy,m)

<: [PKp(r),H,1(j) @ m] PKp(r) = [¢(Eo), ¢p(Pa), $5(Q4) |
j=J(Ega) = (¢B(¢A(Eo)))

j=Jj(Eag) =] (¢A(¢B(Eo))) K = Hz(c,m)
m' = c[2] ® H,())
r' = Hy(PK,,m")
if PKg(r') = c[1] then K = H5(c,m") else K = H;(c, s)

Actively secure key encapsulation (IND-CCA KEM)

Alice RBob
PKy = [pa(Ep), pa(Pp), 0a(Q5) | ?
s €p (0,1} m €g 10,13
r = Hy(PKy,m)

<: [PKp(r),H,1(j) @ m] PKp(r) = [¢(Eo), ¢p(Pa), $5(Q4) |
j=J(Ega) = (¢B(¢A(Eo)))

j=J(Eap) =] (¢A(¢B(E0))) £ = ikem
m' = c[2] @ Hy(j) H,(j) = cSHAKE256(j, k, " " 2)
r' = H,(PK,,m") H,(PK,,m) = cSHAKE256(m||PKy4,e5," ", 0)

if PKp(r') = c[1] then K = H3(c,m’) else K = H3(c,s) | Hy(c,m) = cSHAKE256(ml|c, k," ", 1)

The curves and their security estimates

p — ZeABeB — 1
Name min min
(SIKEp+ | (eg,ep) | k |2K71 |(\/2¢€a,+/3e3) | V2K | (3/2°2,4/33)
[log, p1)
SIKEp503 (250,159) [128 e 2125 264 283
SIKEp761 |(372,239) 192 JueL 2186 296 2124
SIKEp964 |(486,301) |256 2255 DEIE 2128 2159

SIKE vs. IN

D-CCA |3

s

1ce KEMS

Quantum Encaps+ Size of
Name Primitive sec Decaps Encaps.
(bits) (ms) (KB)
NTRU-KEM NTRU 123 0.03 1.3
Kyber M-LWE 161 0.07 1.2
FrodoKEM LWE 103-150 1.2-2.3 95-154
SIKE Supersingular 84-125 10 - 30 04-0.6
Isogeny

Results obtained on 3.4GHz Intel Haswell (Kyber and NTRU-KEM) or Skylake (FrodoKEM and SIKE)

Fasy ECDH hybric

There are exponentially many a such that
Eq [F,2:y% = x° + ax?® + x is in the supersingular
isogeny class. These are all unsuitable for ECDH.

There are also exponentially many A such that
E, /F,iy® = x° + ax® + x is suitable for ECDH.
E.g., smallest a € [F,, such that E, is twist-secure.

Public keys only 1.17x larger, slowdown less than this, but....

e.g., on smallest curve we replace 128-bit classical security
(SSDDH) with 256-bit classical security (ECDLP)

Questions?

w..{;} Alice

- Y
e

S
¢

Bob

(‘?-

