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Part 1: Quick re-motivation

Part 2: Quick tutorial recap

Part 3: SIKE



• Quantum computers break elliptic curves, finite fields, 
factoring, everything currently used for PKC

• NIST calls for quantum-secure key exchange and 
signatures. Deadline Nov 30, 2017.

Quantum computers ↔ Cryptopocalypse 



Diffie-Hellman instantiations

𝑔𝑎 mod 𝑞

𝑔𝑏 mod 𝑞

𝑎 𝑃

𝑏 𝑃

𝜙𝐴(𝐸)

𝜙𝐵(𝐸)

ℤ𝑞 ℤ𝑞



Diffie-Hellman instantiations

DH ECDH SIDH

Elements integers 𝑔 modulo

prime

points 𝑃 in curve 

group

curves 𝐸 in

isogeny class

Secrets exponents 𝑥 scalars 𝑘 isogenies 𝜙

computations 𝑔, 𝑥 ↦ 𝑔𝑥 𝑘, 𝑃 ↦ 𝑘 𝑃 𝜙, 𝐸 ↦ 𝜙(𝐸)

hard problem given 𝑔, 𝑔𝑥

find 𝑥
given 𝑃, 𝑘 𝑃

find 𝑘
given 𝐸,𝜙(𝐸)

find 𝜙



Part 1: Quick re-motivation

Part 2: Quick tutorial recap

Part 3: SIKE



W. Castryck (GIF): ”Elliptic curves are dead: long live elliptic curves” https://www.esat.kuleuven.be/cosic/?p=7404

https://www.esat.kuleuven.be/cosic/?p=7404


Supersingular isogeny graph for ℓ = 2:  𝑋(𝑆2412, 2)

Credit to Fre Vercauteren for example and pictures…



Supersingular isogeny graph for ℓ = 3:  𝑋(𝑆2412, 3)

Credit to Fre Vercauteren for example and pictures…



𝐸0 𝐸𝐴 = 𝐸0/〈𝐴〉

𝐸0/〈𝐵〉 = 𝐸𝐵 𝐸𝐴𝐵 = 𝐸0/〈𝐴, 𝐵〉

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′

params public private

𝐸’s are isogenous curves 

𝑃’s, 𝑄’s, 𝑅’s, 𝑆’s are points

SIDH: in a nutshell



𝐸0 𝐸𝐴 = 𝐸0/〈𝑃𝐴 + 𝑠𝐴 𝑄𝐴〉

𝐸0/〈𝑃𝐵 + 𝑠𝐵 𝑄𝐵〉 = 𝐸𝐵 𝐸𝐴𝐵 = 𝐸0/〈𝐴, 𝐵〉

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′

params public private

𝐸’s are isogenous curves 

𝑃’s, 𝑄’s, 𝑅’s, 𝑆’s are points

SIDH: in a nutshell

(𝜙𝐵(𝑃𝐴), 𝜙𝐵(𝑄𝐴)) = (𝑅𝐵 , 𝑆𝐵)

(𝑅𝐴, 𝑆𝐴) = (𝜙𝐴(𝑃𝐵), 𝜙𝐴(𝑄𝐵))

𝐸𝐴/〈𝑅𝐴 + 𝑠𝐵 𝑆𝐴〉 ≅ 𝐸0/〈𝑃𝐴 + 𝑠𝐴 𝑄𝐴 , 𝑃𝐵 + 𝑠𝐵 𝑄𝐵〉 ≅ 𝐸𝐵/〈𝑅𝐵 + 𝑠𝐴 𝑆𝐵〉

Key: Alice sends her isogeny evaluated at Bob’s generators, and vice versa



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃0

𝐸6 = 𝐸0/⟨𝑃0⟩



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃0

𝐸5 = 𝐸0/⟨[2]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃0
𝐸4 = 𝐸0/⟨[4]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃0

𝐸3 = 𝐸0/⟨[8]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃0

𝐸2 = 𝐸0/⟨[16]𝑃0⟩

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[32]𝑃0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)

𝑃0



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1 = 𝜙0(𝑃0)

𝑃0

𝑃1

𝜙0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1

𝜙0

𝐸6 = 𝐸1/⟨𝑃1⟩



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃1

𝜙0

𝐸5 = 𝐸1/⟨[2]𝑃1⟩

𝑃1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃1

𝜙0

𝐸4 = 𝐸1/⟨[4]𝑃1⟩

𝑃1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃1

𝜙0

𝐸3 = 𝐸1/⟨[8]𝑃1⟩

𝑃1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃1

𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)

𝑃1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)

𝑃1

𝑃2 = 𝜙1(𝑃1)

𝑃2

𝜙1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸2/⟨𝑃2⟩
𝑃2

𝜙1



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸2/⟨[2]𝑃2⟩
𝑃2

𝜙1

[2]𝑃2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸2/⟨[4]𝑃2⟩
𝑃2

𝜙1

[4]𝑃2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸3 = 𝐸2/⟨[8]𝑃2⟩
= 𝜙2(𝐸2) 𝑃2

𝜙1

[8]𝑃2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸3 = 𝐸2/⟨[8]𝑃2⟩
= 𝜙2(𝐸2) 𝑃2

𝜙1

[8]𝑃2

𝑃3 = 𝜙2(𝑃2) 𝑃3

𝜙2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸3/⟨𝑃3⟩
𝜙1

𝑃3

𝜙2



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸3/⟨[2]𝑃3⟩
𝜙1

𝑃3

𝜙2

[2]𝑃3



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3

𝑃4 = 𝜙3(𝑃3)

𝑃4

𝜙3



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸4/⟨𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸4/⟨[2]𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

[2]𝑃4



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸4/⟨[2]𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

[2]𝑃4

𝑃5 = 𝜙4(𝑃4)

𝑃5

𝜙4



Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸5/⟨𝑃5⟩
𝜙1

𝜙2

𝜙3

𝑃5

𝜙4

𝜙5



Computing ℓ𝑒 degree isogenies

𝜙 ∶ 𝐸0 → 𝐸6

𝜙 = 𝜙5 ∘ 𝜙4 ∘ 𝜙3 ∘ 𝜙2 ∘ 𝜙1 ∘ 𝜙0

𝜙0
𝜙1

𝜙2
𝜙3

𝜙4
𝜙5

𝐸0 𝐸6



𝐸 𝐸′?



Claw algorithm

𝐸

𝐸′

Given 𝐸 and 𝐸′ = 𝜙(𝐸), with 𝜙 degree ℓ𝑒, find 𝜙



Claw algorithm

𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side



Claw algorithm

𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side



Claw algorithm

𝐸

𝐸′

… until you have all of them



Claw algorithm

𝐸

𝐸′

Now compute ℓ𝑒/2-isogenies on the other side



Claw algorithm

𝐸

𝐸′

… discarding them until you find a collision



Claw algorithm

𝐸

𝐸′

… discarding them until you find a collision



Claw algorithm

𝐸

𝐸′

… discarding them until you find a collision



Claw algorithm

𝐸

𝐸′

Collision will most likely be unique shortest path



Claw algorithm

𝐸

𝐸′

This path describes secret isogeny 𝜙 ∶ 𝐸 → 𝐸′



Claw algorithm: classical analysis

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes )

thus  𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical memory

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes    ), and 
there are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸 (the purple nodes    ) 

thus  𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical time 

• Best (known) attacks: classical 𝑂(𝑝1/4) and quantum 𝑂(𝑝1/6)

• Confidence: both complexities are optimal for a black-box claw attack



SIDH protocol summary

• Setting: supersingular elliptic curves 𝐸/𝔽𝑝2 where 𝑝 = 2𝑖3𝑗 − 1

• Parameters:

𝐸0/𝔽𝑝2 ∶ 𝑦
3 = 𝑥3 + 𝑥 with   #𝐸0 = 2𝑖3𝑗

2

𝑃𝐴, 𝑄𝐴 ∈ 𝐸0 2𝑖 and  𝑃𝐵, 𝑄𝐵 ∈ 𝐸0[3
𝑗]

• Public key generation (Alice):
𝑠 ∈ 0, 2𝑖

𝑆𝐴 = 𝑃𝐴 + 𝑠 𝑄𝐴
𝜙𝐴 ∶ 𝐸0 → 𝐸𝐴: = 𝐸0/⟨𝑆𝐴⟩

send  𝐸𝐴, 𝜙𝐴 𝑃𝐵 , 𝜙𝐴(𝑄𝐵) to Bob

• Shared key generation (Alice):
𝑆𝐴𝐵 = 𝜙𝐵 𝑃𝐴 + 𝑠 𝜙𝐵 𝑄𝐴 ∈ 𝐸𝐵

𝜙𝐴′ ∶ 𝐸𝐵 → 𝐸𝐴𝐵: = 𝐸𝐵/⟨𝑆𝐴𝐵⟩
𝑗𝐴𝐵 = 𝑗(𝐸𝐴𝐵)

𝐸0
𝐸1
𝐸2
𝐸3

𝐸𝐴

𝑆𝐴

𝐸𝐵
𝐸1′
𝐸2′
𝐸3′

𝐸𝐴𝐵

𝑆𝐴𝐵

𝐸0
𝐸𝐴 = 𝐸0/〈𝑆𝐴〉

𝐸0/〈𝑆𝐵〉 = 𝐸𝐵

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′



SIDH security summary

• Setting: supersingular elliptic curves 𝐸/𝔽𝑝2 where 𝑝 is a large prime

• Hard problem: Given 𝑃, 𝑄 ∈ 𝐸 and 𝜙 𝑃 ,𝜙 𝑄 ∈ 𝜙(𝐸), compute 𝜙
(where 𝜙 has fixed, smooth, public degree) 

• Best (known) attacks: classical 𝑂(𝑝1/4) and quantum 𝑂(𝑝1/6)



Part 1: Quick re-motivation

Part 2: Quick tutorial recap

Part 3: SIKE



“The poor user is given enough rope with which to 
hang himself – something a standard should not do.” 

- Ron Rivest, 1992 (on DSA standard)



public key compression



𝐸𝑎,𝑏 ∶ 𝑏𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑥

Point and isogeny arithmetic in ℙ1

𝐸𝐴

𝐶
,
𝐵

𝐶

: 𝐵𝑌2𝑍 = 𝐶𝑋3 + 𝐴𝑋2𝑍 + 𝐶𝑋𝑍2

𝑥, 𝑦 ↔ (𝑋 ∶ 𝑌 ∶ 𝑍) 𝑎, 𝑏 ↔ (𝐴 ∶ 𝐵 ∶ 𝐶)

ℙ1 point arithmetic:        𝑋 ∶ 𝑍 ↦ (𝑋′: 𝑍′)

ℙ1 isogeny arithmetic:    𝐴 ∶ 𝐶 ↦ 𝐴′: 𝐶′

ECDH: move around different points on a fixed curve. 

SIDH:  move around different points and different curves

𝐵 coefficient only 
fixes the quadratic 

twist, but 
𝑗 𝐸 = 𝑗(𝐸′)



𝜙3 ∶ 𝐸𝑎,𝑏 → 𝐸𝑎′,𝑏′

Point and isogeny arithmetic in ℙ1

𝑥, 𝑦 ↦ 𝑥 ⋅
𝑥 ⋅ 𝑥3 − 1

𝑥 − 𝑥3

2

,
𝑥 ⋅ 𝑥3 − 1 𝑥2 ⋅ 𝑥3 − 3𝑥 ⋅ 𝑥3

2 + 𝑥 + 𝑥3
𝑥 − 𝑥3

3

𝑎′, 𝑏′ = 𝑎 ⋅ 𝑥3 −6𝑥3
2 + 6 ⋅ 𝑥3, 𝑏 ⋅ 𝑥3

2

𝜙3 ∶ 𝐸𝐴/𝐶 ,𝐵/𝐶/{±1} → 𝐸𝐴′/𝐶′,𝐵′/𝐶′/{±1}

𝑋 ∶ 𝑍 ↦ 𝑋 𝑋3𝑋 − 𝑍3𝑍
2 ∶ 𝑍 𝑍3𝑋 − 𝑋3𝑍

2

𝐴′: 𝐶′ = 𝑍3
4 + 18𝑋3

2𝑍3
2 − 27𝑋3

2 ∶ 4𝑋3𝑍3
3



Public keys are in 𝔽𝑝2
3

𝑃𝐾𝐴 = 𝑥𝜙𝐴 𝑃𝐵 , 𝑥𝜙𝐴 𝑄𝐵 , 𝑥𝜙𝐴 𝑄𝐵−𝑃𝐵

Conversely, if 𝑅 = ±(𝑄 − 𝑃) on 𝐸𝑎 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑥, then

𝑎 =
1 − 𝑥𝑃𝑥𝑄 − 𝑥𝑃𝑥𝑅 − 𝑥𝑄𝑥𝑅

2

4𝑥𝑃𝑥𝑄𝑥𝑅
− 𝑥𝑃 − 𝑥𝑄 − 𝑥𝑅



The starting curve

𝐸0 ∶ 𝑦2 = 𝑥3 + 𝑥

Computing 𝜙 ∶ 𝐸0 → 𝐸′ is broadly equivalent to computing End(𝐸′)
(see Kohel’s thesis, Galbraith-Vercauteren survey, Galbraith-Petit-Shani-Ti)

Computing 𝜙 ∶ 𝐸0 → 𝐸′ is subexponential if 𝐸′ is defined over 𝔽𝑝
(see Biasse-Jao-Sankar, Galbraith-Delfs)

Known security not damaged, but perhaps we’d prefer to start on 
𝐸0/𝔽𝑝2 when End 𝐸 is not known. Don’t know how? 



Generating secret kernels
Recall

We take

• 𝑃𝐴, 𝑄𝐴 ∈ 𝐸0[2
𝑒𝐴] and 𝑃𝐵, 𝑄𝐵 ∈ 𝐸0[3

𝑒𝐵] with full order Weil pairings

• Alice’s secret is 𝑚𝐴 𝑃𝐴 + 𝑛𝐴 𝑄𝐴 , Bob’s is ⟨ 𝑚𝐵 𝑃𝐵 + 𝑛𝐵 𝑄𝐵⟩

• 𝑚𝐴 = 𝑚𝐵 = 1, 𝑛𝐴 ∈ [0,2ℓ) and 𝑛𝐵 ∈ [0,2ℓ
′
)

• 𝑄𝐴 = [3𝑒𝐵] 𝑧1, − and 𝑃𝐴 = [3𝑒𝐵](𝑧2 + 𝑖,−)

• 𝑄𝐵 = 2𝑒𝐴 𝑧3, − and 𝑃𝐵 = [2𝑒𝐴](𝑧4 + 𝑖,−)

Consequences

• Simple, uniform “3 point ladder” for computing 𝑃 + 𝑛 𝑄 [see FLOR’17] 

• 𝑅 = 𝑃 + 𝑛 𝑄 can never be such that [2𝑧]𝑅 = 0,0 , so one 4-isogeny function 

• Don’t reach all possible subgroups. Problem?

𝑧𝑖 ∈ ℕ smallest 
such that points 
span torsions

𝔽𝑝 𝔽𝑝2



The main loop 

Optimal strategy [DJP’11] is harder, but much fasterSimple, but slow

e.g.         𝟐𝟖𝟒𝟒𝟏× 3 + 𝟐𝟑𝟗 ×𝜙3 𝑥 e.g.         𝟖𝟏𝟏× 3 + 𝟏𝟏𝟐𝟒 ×𝜙3 𝑥

Spec/code gives concrete algorithm for deriving, checking and executing the optimal strategy  



• Galbraith-Petit-Shani-Ti: 𝑃, 𝑄 both order 2𝑒𝐴, and Alice’s static secret 𝛼 ∈ ℤ

𝑃 + 𝛼 𝑄 = ⟨𝑃 + 𝛼 𝑄 + 2𝑒𝐴−1 𝑃 ⟩ iff 𝛼 is even

• Send Alice ෨𝑃 = 𝑃 and ෨𝑄 = (𝑄 + 2𝑒𝐴−1 𝑃), if DH works fine, then 𝛼 is even, else odd

• Even case (𝛼 = 2 ො𝛼): 
𝑃 + 2 ො𝛼 𝑄 = ⟨𝑃 + 2 ො𝛼 𝑄 + 2𝑒𝐴−2 𝑃 ⟩ iff ො𝛼 is even

so send ෨𝑃 = 𝑃and ෨𝑄 = (𝑄 + 2𝑒𝐴−2 𝑃)

• Odd case (𝛼 = 2 ො𝛼 + 1):
𝑃 + 2 ො𝛼 + 1 𝑄 = ⟨𝑃 − 2𝑒𝐴−2 𝑄 + 2 ො𝛼 + 1 𝑄 + 2𝑒𝐴−2 𝑄 ⟩ iff ො𝛼 is even

so send ෨𝑃 = 1 − 2𝑒𝐴−2 𝑃 and ෨𝑄 = 1 + 2𝑒𝐴−2 𝑄

• … continuing yields 𝛼 in log2𝛼 adaptive interactions!!! 
No known Weil to detect foul play, provided ෨𝑃, ෨𝑄 are scaled correctly!

The problem with reusing static keys



Alice

Passively secure encryption (IND-CPA PKE), à la ElGamal

Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵 = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑃𝐾𝐵 , 𝐻1 𝑗 ⊕𝑚

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0



Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵 = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑃𝐾𝐵 , 𝐻1 𝑗 ⊕𝑚



Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵(𝑟) = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑃𝐾𝐵(𝑟) , 𝐻1 𝑗 ⊕𝑚

𝑠 ∈𝑅 0,1 ℓ
𝑚 ∈𝑅 0,1 ℓ

𝑟 = 𝐻2(𝑃𝐾𝐴, 𝑚)



Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵(𝑟) = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑐 = 𝑃𝐾𝐵(𝑟) , 𝐻1 𝑗 ⊕𝑚

𝑠 ∈𝑅 0,1 ℓ
𝑚 ∈𝑅 0,1 ℓ

𝑟 = 𝐻2(𝑃𝐾𝐴, 𝑚)

𝐾 = 𝐻3(𝑐,𝑚)



Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵(𝑟) = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑐 = 𝑃𝐾𝐵(𝑟) , 𝐻1 𝑗 ⊕𝑚

𝑠 ∈𝑅 0,1 ℓ
𝑚 ∈𝑅 0,1 ℓ

𝑟 = 𝐻2(𝑃𝐾𝐴, 𝑚)

𝐾 = 𝐻3(𝑐,𝑚)

𝑚′ = 𝑐 2 ⊕𝐻1(𝑗)



Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵(𝑟) = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑐 = 𝑃𝐾𝐵(𝑟) , 𝐻1 𝑗 ⊕𝑚

𝑠 ∈𝑅 0,1 ℓ
𝑚 ∈𝑅 0,1 ℓ

𝑟 = 𝐻2(𝑃𝐾𝐴, 𝑚)

𝐾 = 𝐻3(𝑐,𝑚)

𝑚′ = 𝑐 2 ⊕𝐻1(𝑗)

𝑟′ = 𝐻2(𝑃𝐾𝐴, 𝑚
′)



Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵(𝑟) = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑐 = 𝑃𝐾𝐵(𝑟) , 𝐻1 𝑗 ⊕𝑚

𝑠 ∈𝑅 0,1 ℓ
𝑚 ∈𝑅 0,1 ℓ

𝑟 = 𝐻2(𝑃𝐾𝐴, 𝑚)

𝐾 = 𝐻3(𝑐,𝑚)

𝑚′ = 𝑐 2 ⊕𝐻1(𝑗)

𝑟′ = 𝐻2(𝑃𝐾𝐴, 𝑚
′)

if 𝑃𝐾𝐵 𝑟′ = 𝑐[1] then 𝐾 = 𝐻3(𝑐,𝑚′) else 𝐾 = 𝐻3(𝑐, 𝑠)



Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵(𝑟) = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑐 = 𝑃𝐾𝐵(𝑟) , 𝐻1 𝑗 ⊕𝑚

𝑠 ∈𝑅 0,1 ℓ
𝑚 ∈𝑅 0,1 ℓ

𝑟 = 𝐻2(𝑃𝐾𝐴, 𝑚)

𝐾 = 𝐻3(𝑐,𝑚)

𝑚′ = 𝑐 2 ⊕𝐻1(𝑗)

𝑟′ = 𝐻2(𝑃𝐾𝐴, 𝑚
′)

if 𝑃𝐾𝐵 𝑟′ = 𝑐[1] then 𝐾 = 𝐻3(𝑐,𝑚′) else 𝐾 = 𝐻3(𝑐, 𝑠)

𝐻1 𝑗 = cSHAKE256(𝑗, 𝑘, " ", 2)

𝐻2 𝑃𝐾𝐴, 𝑚 = cSHAKE256(𝑚||𝑃𝐾𝐴, 𝑒2, " ", 0)

𝐻3 𝑐,𝑚 = cSHAKE256(𝑚||𝑐, 𝑘, " " , 1)



The curves and their security estimates

Name

(SIKEp+

⌈log2 𝑝⌉)
(𝒆𝑨, 𝒆𝑩) 𝒌 𝟐𝒌−𝟏

𝐦𝐢𝐧

( 𝟐𝒆𝑨 , 𝟑𝒆𝟑) √𝟐𝒌
𝐦𝐢𝐧

(∛𝟐𝒆𝟐 , ∛𝟑𝒆𝟑)

SIKEp503 (250,159) 128 2127 2125 264 283

SIKEp761 (372,239) 192 2191 2186 296 2124

SIKEp964 (486,301) 256 2255 2238 2128 2159

𝑝 = 2𝑒𝐴3eB − 1



SIKE vs. IND-CCA lattice KEMs

Name Primitive

Quantum  

sec 

(bits)

Encaps+

Decaps

(ms)

Size of 

Encaps.

(KB)

NTRU-KEM NTRU 123 0.03 1.3

Kyber M-LWE 161 0.07 1.2

FrodoKEM LWE 103-150 1.2 – 2.3 9.5 – 15.4

SIKE Supersingular

Isogeny

84-125 10 – 30 0.4 – 0.6

Results obtained on 3.4GHz Intel Haswell (Kyber and NTRU-KEM) or Skylake (FrodoKEM and SIKE)



Easy ECDH hybrid

There are exponentially many 𝑎 such that 
𝐸𝑎 /𝔽𝑝2: 𝑦

2 = 𝑥3 + 𝑎𝑥2 + 𝑥 is in the supersingular

isogeny class. These are all unsuitable for ECDH. 

There are also exponentially many 𝐴 such that 
𝐸𝑎 /𝔽𝑝: 𝑦

2 = 𝑥3 + 𝑎𝑥2 + 𝑥 is suitable for ECDH. 
E.g., smallest 𝑎 ∈ 𝔽𝑝 such that 𝐸𝑎 is twist-secure.

Public keys only 1.17x larger, slowdown less than this, but….

e.g., on smallest curve we replace 128-bit classical security 
(SSDDH) with 256-bit classical security (ECDLP)



Questions?


