Supersingular Isogeny Key Encapsulation

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, David Jao, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev

Microsoft[®] Research

Radboud University November 14 ECC 2017 Nijmegen, The Netherlands

Part 1: Quick re-motivation

Part 2: Quick tutorial recap

Part 3: SIKE

Quantum computers ↔ Cryptopocalypse

• Quantum computers break elliptic curves, finite fields, factoring, everything currently used for PKC

• NIST calls for quantum-secure key exchange and signatures. Deadline Nov 30, 2017.

Diffie-Hellman instantiations

Diffie-Hellman instantiations

	DH	ECDH	SIDH
Elements	integers <i>g</i> modulo prime	points <i>P</i> in curve group	curves <i>E</i> in isogeny class
Secrets	exponents x	scalars <i>k</i>	isogenies ϕ
computations	$g, x \mapsto g^x$	$k, P \mapsto [k]P$	$\phi, E \mapsto \phi(E)$
hard problem	given <i>g,g^x</i> find <i>x</i>	given P, [k]P find k	given $E, \phi(E)$ find ϕ

Part 1: Quick re-motivation

Part 2: Quick tutorial recap

Part 3: SIKE

W. Castryck (GIF): "Elliptic curves are dead: long live elliptic curves" <u>https://www.esat.kuleuven.be/cosic/?p=7404</u>

Supersingular isogeny graph for $\ell = 2$: $X(S_{241^2}, 2)$

Supersingular isogeny graph for $\ell = 3$: $X(S_{241^2}, 3)$

SIDH: in a nutshell

SIDH: in a nutshell

Key: Alice sends her isogeny evaluated at Bob's generators, and vice versa $E_A/\langle R_A + [s_B]S_A \rangle \cong E_0/\langle P_A + [s_A]Q_A, P_B + [s_B]Q_B \rangle \cong E_B/\langle R_B + [s_A]S_B \rangle$

Computing ℓ^e degree isogenies

$$\phi : E_0 \to E_6$$
$$\phi = \phi_5 \circ \phi_4 \circ \phi_3 \circ \phi_2 \circ \phi_1 \circ \phi_0$$

E

E'

Given E and $E' = \phi(E)$, with ϕ degree ℓ^e , find ϕ

E

Compute and store $\ell^{e/2}$ -isogenies on one side

E

E'

Compute and store $\ell^{e/2}$ -isogenies on one side

Claw algorithm E<u>E</u>' ... discarding them until you find a collision

This path describes secret isogeny $\phi: E \to E'$

Claw algorithm: classical analysis

• There are $O(\ell^{e/2})$ curves $\ell^{e/2}$ -isogenous to E' (the blue nodes \bigcirc)

thus $O(\ell^{e/2}) = O(p^{1/4})$ classical memory

• There are $O(\ell^{e/2})$ curves $\ell^{e/2}$ -isogenous to E' (the blue nodes \bigcirc), and there are $O(\ell^{e/2})$ curves $\ell^{e/2}$ -isogenous to E (the purple nodes \bigcirc)

thus $O(\ell^{e/2}) = O(p^{1/4})$ classical time

- Best (known) attacks: classical $O(p^{1/4})$ and quantum $O(p^{1/6})$
- Confidence: both complexities are optimal for a black-box claw attack

SIDH protocol summary

- Setting: supersingular elliptic curves E/\mathbb{F}_{p^2} where $p = 2^i 3^j 1$
- Parameters:

$$E_0/\mathbb{F}_{p^2}: y^3 = x^3 + x \text{ with } \#E_0 = (2^i 3^j)^2$$

 $P_A, Q_A \in E_0[2^i] \text{ and } P_B, Q_B \in E_0[3^j]$

• Public key generation (Alice):

$$s \in [0, 2^{i})$$

$$S_{A} = P_{A} + [s]Q_{A}$$

$$\phi_{A} : E_{0} \rightarrow E_{A} := E_{0}/\langle S_{A} \rangle$$
send $E_{A}, \phi_{A}(P_{B}), \phi_{A}(Q_{B})$ to Bob

• Shared key generation (Alice):

$$S_{AB} = \phi_B(P_A) + [s]\phi_B(Q_A) \in E_B$$

$$\phi_{A'}: E_B \to E_{AB}:= E_B/\langle S_{AB} \rangle$$

$$j_{AB} = j(E_{AB})$$

 $E_0/\langle S_B \rangle = E_B$

 $S_A E_0$

 ϕ_A $E_A = E_0 / \langle S_A \rangle$

SIDH security summary

- Setting: supersingular elliptic curves E/\mathbb{F}_{p^2} where p is a large prime
- Hard problem: Given $P, Q \in E$ and $\phi(P), \phi(Q) \in \phi(E)$, compute ϕ (where ϕ has fixed, smooth, public degree)
- Best (known) attacks: classical $O(p^{1/4})$ and quantum $O(p^{1/6})$

Part 1: Quick re-motivation

Part 2: Quick tutorial recap

Part 3: SIKE

"The poor user is given enough rope with which to hang himself – something a standard should not do."

- Ron Rivest, 1992 (on DSA standard)

public key compression

Point and isogeny arithmetic in \mathbb{P}^1

ECDH: move around different points on a fixed curve. SIDH: move around different points and different curves

$$E_{a,b}: by^{2} = x^{3} + ax^{2} + x$$

$$(x, y) \leftrightarrow (X : Y : Z) \qquad (a, b) \leftrightarrow (A : B : C)$$

 $E_{\underline{A}\,\underline{B}}: \quad BY^2Z = CX^3 + AX^2Z + CXZ^2$

B coefficient only fixes the quadratic twist, but j(E) = j(E')

 \mathbb{P}^1 point arithmetic: $(X:Z) \mapsto (X':Z')$ \mathbb{P}^1 isogeny arithmetic: $(A:C) \mapsto (A':C') <$

Point and isogeny arithmetic in \mathbb{P}^1

$$\phi_3: E_{a,b} \to E_{a',b'}$$

$$(x,y) \mapsto \left(x \cdot \left(\frac{x \cdot x_3 - 1}{x - x_3} \right)^2, \frac{(x \cdot x_3 - 1)(x^2 \cdot x_3 - 3x \cdot x_3^2 + x + x_3)}{(x - x_3)^3} \right) \xrightarrow{(a',b')} = \left((a \cdot x_3 - 6x_3^2 + 6) \cdot x_3, b \cdot x_3^2 \right)$$

$$\phi_3: E_{A/C,B/C} / \{\pm 1\} \to E_{A'/C',B'/C'} / \{\pm 1\}$$

$$(X:Z) \mapsto (X(X_3X - Z_3Z)^2 : Z(Z_3X - X_3Z)^2)$$

$$(A':C') = \left(Z_3^4 + 18X_3^2Z_3^2 - 27X_3^2 : 4X_3Z_3^3\right)$$

Public keys are in $\mathbb{F}^3_{p^2}$

$$PK_A = \left(x_{\phi_A(P_B)} , x_{\phi_A(Q_B)} , x_{\phi_A(Q_B - P_B)} \right)$$

Conversely, if
$$R = \pm (Q - P)$$
 on E_a : $y^2 = x^3 + ax^2 + x$, then

$$a = \frac{\left(1 - x_P x_Q - x_P x_R - x_Q x_R\right)^2}{4x_P x_Q x_R} - x_P - x_Q - x_R$$

The starting curve

$$E_0 : y^2 = x^3 + x$$

Computing $\phi : E_0 \rightarrow E'$ is broadly equivalent to computing End(E')(see Kohel's thesis, Galbraith-Vercauteren survey, Galbraith-Petit-Shani-Ti)

Computing $\phi : E_0 \to E'$ is subexponential if E' is defined over \mathbb{F}_p (see Biasse-Jao-Sankar, Galbraith-Delfs)

Known security not damaged, but perhaps we'd prefer to start on E_0/\mathbb{F}_{p^2} when $\operatorname{End}(E)$ is not known. Don't know how?

Generating secret kernels

Recall

- $P_A, Q_A \in E_0[2^{e_A}]$ and $P_B, Q_B \in E_0[3^{e_B}]$ with full order Weil pairings
- Alice's secret is $\langle [m_A]P_A + [n_A]Q_A \rangle$, Bob's is $\langle [m_B]P_B + [n_B]Q_B \rangle$

Consequences

- Simple, uniform "3 point ladder" for computing P + [n]Q [see FLOR'17]
- R = P + [n]Q can never be such that $[2^{z}]R = (0,0)$, so one 4-isogeny function
- Don't reach all possible subgroups. Problem? 🐅 👰

The main loop

Spec/code gives concrete algorithm for deriving, checking and executing the optimal strategy

The problem with reusing static keys

• Galbraith-Petit-Shani-Ti: P, Q both order 2^{e_A} , and Alice's static secret $\alpha \in \mathbb{Z}$

 $\langle P + [\alpha]Q \rangle = \langle P + [\alpha](Q + [2^{e_A - 1}]P) \rangle$ iff α is even

- Send Alice $\tilde{P} = P$ and $\tilde{Q} = (Q + [2^{e_A 1}]P)$, if DH works fine, then α is even, else odd
- Even case $(\alpha = 2 \hat{\alpha})$: $\langle P + [2\hat{\alpha}]Q \rangle = \langle P + [2\hat{\alpha}](Q + [2^{e_A - 2}]P) \rangle$ iff $\hat{\alpha}$ is even so send $\tilde{P} = P$ and $\tilde{Q} = (Q + [2^{e_A - 2}]P)$
- Odd case $(\alpha = 2 \hat{\alpha} + 1)$: $\langle P + [2\hat{\alpha} + 1]Q \rangle = \langle P - [2^{e_A-2}]Q + [2\hat{\alpha} + 1](Q + [2^{e_A-2}]Q) \rangle$ iff $\hat{\alpha}$ is even so send $\tilde{P} = [1 - 2^{e_A-2}]P$ and $\tilde{Q} = [1 + 2^{e_A-2}]Q$
- ... continuing yields α in $\log_2 \alpha$ adaptive interactions!!! No known *Weil* to detect foul play, provided \tilde{P}, \tilde{Q} are scaled correctly!

Passively secure encryption (IND-CPA PKE), à la ElGamal

 $PK_A = \left[\phi_A(E_0), \phi_A(P_B), \phi_A(Q_B) \right]$

Alice

Bob

 $PK_B = [\phi_B(E_0), \phi_B(P_A), \phi_B(Q_A)]$ $j = j(E_{BA}) = j(\phi_B(\phi_A(E_0)))$

 $j = j(E_{AB}) = j\left(\phi_A(\phi_B(E_0))\right)$

Actively secure key encapsulation (IND-CCA KEM) Alice Bob $PK_A = \left[\phi_A(E_0), \phi_A(P_B), \phi_A(Q_B) \right]$ $PK_B = \left[\phi_B(E_0), \phi_B(P_A), \phi_B(Q_A)\right]$ $j = j(E_{BA}) = j\left(\phi_B(\phi_A(E_0))\right)$ $[PK_B, H_1(j) \oplus m]$ $j = j(E_{AB}) = j\left(\phi_A(\phi_B(E_0))\right)$

Actively secure key encapsulation (IND-CCA KEM) Alice Bob $PK_A = \left[\phi_A(E_0), \phi_A(P_B), \phi_A(Q_B) \right]$ $m \in_{R} \{0,1\}^{\ell}$ $s \in_{R} \{0,1\}^{\ell}$ $r = H_2(PK_A, m)$ $PK_B(\mathbf{r}) = \left[\phi_B(E_0), \phi_B(P_A), \phi_B(Q_A)\right]$ $< [PK_B(\mathbf{r}), H_1(j) \oplus m]$

 $j = j(E_{BA}) = j\left(\phi_B(\phi_A(E_0))\right)$

 $j = j(E_{AB}) = j\left(\phi_A(\phi_B(E_0))\right)$

 $PK_A = [\phi_A(E_0), \phi_A(P_B), \phi_A(Q_B)]$ $s \in_R \{0,1\}^{\ell}$

Alice

$$\boldsymbol{c} = [PK_B(r), H_1(j) \oplus m]$$

 $j = j(E_{AB}) = j\left(\phi_A(\phi_B(E_0))\right)$

Bob $m \in_{R} \{0,1\}^{\ell}$ $r = H_2(PK_A, m)$ $PK_B(r) = [\phi_B(E_0), \phi_B(P_A), \phi_B(Q_A)]$ $j = j(E_{BA}) = j\left(\phi_B(\phi_A(E_0))\right)$ $K = H_3(c,m)$

 $PK_A = [\phi_A(E_0), \phi_A(P_B), \phi_A(Q_B)]$ $s \in_R \{0,1\}^{\ell}$

Alice

$$\boldsymbol{c} = [PK_B(r), H_1(j) \oplus m]$$

 $j = j(E_{AB}) = j\left(\phi_A(\phi_B(E_0))\right)$ $m' = c[2] \bigoplus H_1(j)$

Bob $m \in_{R} \{0,1\}^{\ell}$ $r = H_2(PK_A, m)$ $PK_B(r) = \left[\phi_B(E_0), \phi_B(P_A), \phi_B(Q_A)\right]$ $j = j(E_{BA}) = j\left(\phi_B(\phi_A(E_0))\right)$ $K = H_3(c, m)$

 $PK_A = [\phi_A(E_0), \phi_A(P_B), \phi_A(Q_B)]$ $s \in_R \{0,1\}^{\ell}$

Alice

$$c = [PK_B(r), H_1(j) \oplus m]$$

$$j = j(E_{AB}) = j\left(\phi_A(\phi_B(E_0))\right)$$
$$m' = c[2] \bigoplus H_1(j)$$
$$r' = H_2(PK_A, m')$$

Bob $m \in_R \{0,1\}^{\ell}$ $r = H_2(PK_A, m)$

$$PK_B(r) = [\phi_B(E_0), \phi_B(P_A), \phi_B(Q_A)]$$
$$j = j(E_{BA}) = j(\phi_B(\phi_A(E_0)))$$
$$K = H_3(c, m)$$

 $PK_A = [\phi_A(E_0), \phi_A(P_B), \phi_A(Q_B)]$ $s \in_R \{0,1\}^{\ell}$

Alice

$$c = [PK_B(r), H_1(j) \oplus m]$$

Bob $m \in_R \{0,1\}^\ell$ $r = H_2(PK_A, m)$

$$PK_B(r) = \left[\phi_B(E_0), \phi_B(P_A), \phi_B(Q_A)\right]$$
$$j = j(E_{BA}) = j\left(\phi_B(\phi_A(E_0))\right)$$
$$K = H_3(c, m)$$

 $j = j(E_{AB}) = j\left(\phi_A(\phi_B(E_0))\right)$ $m' = c[2] \bigoplus H_1(j)$ $r' = H_2(PK_A, m')$ if $PK_B(r') = c[1]$ then $K = H_3(c, m')$ else $K = H_3(c, s)$

 $PK_A = [\phi_A(E_0), \phi_A(P_B), \phi_A(Q_B)]$ $s \in_R \{0,1\}^{\ell}$

if

Alice

$$c = [PK_B(r), H_1(j) \oplus m]$$

$$j = j(E_{AB}) = j\left(\phi_A(\phi_B(E_0))\right)$$

$$m' = c[2] \bigoplus H_1(j)$$

$$r' = H_2(PK_A, m')$$

$$PK_B(r') = c[1] \text{ then } K = H_3(c, m') \text{ else } K = H_3(c, s)$$

Bob $m \in_R \{0,1\}^{\ell}$ $r = H_2(PK_A, m)$

$$PK_B(r) = \left[\phi_B(E_0), \phi_B(P_A), \phi_B(Q_A)\right]$$
$$j = j(E_{BA}) = j\left(\phi_B(\phi_A(E_0))\right)$$
$$K = H_3(c, m)$$

 $H_1(j) = cSHAKE256(j, k, "", 2)$ $H_2(PK_A, m) = cSHAKE256(m||PK_A, e_2, "", 0)$ $H_3(c, m) = cSHAKE256(m||c, k, "", 1)$

The curves and their security estimates

$$p = 2^{e_A} 3^{e_B} - 1$$

Name (SIKEp+ [log ₂ p])	$(\boldsymbol{e}_A, \boldsymbol{e}_B)$	k	2 ^{<i>k</i>-1}	$\min_{\left(\sqrt{2^{e_A}},\sqrt{3^{e_3}}\right)}$	√2 ^k	min $(\sqrt[3]{2^{e_2}}, \sqrt[3]{3^{e_3}})$
SIKEp503	(250,159)	128	2 ¹²⁷	2 ¹²⁵	2 ⁶⁴	2 ⁸³
SIKEp761	(372,239)	192	2 ¹⁹¹	2 ¹⁸⁶	2 ⁹⁶	2124
SIKEp964	(486,301)	256	2 ²⁵⁵	2 ²³⁸	2 ¹²⁸	2 ¹⁵⁹
SIKE vs. IND-CCA lattice KEMs

Name	Primitive	Quantum sec (bits)	Encaps+ Decaps (ms)	Size of Encaps. (KB)
NTRU-KEM	NTRU	123	0.03	1.3
Kyber	M-LWE	161	0.07	1.2
FrodoKEM	LWE	103-150	1.2 – 2.3	9.5 – 15.4
SIKE	Supersingular Isogeny	84-125	10 – 30	0.4 – 0.6

Results obtained on 3.4GHz Intel Haswell (Kyber and NTRU-KEM) or Skylake (FrodoKEM and SIKE)

Easy ECDH hybrid

There are exponentially many a such that E_a / \mathbb{F}_{p^2} : $y^2 = x^3 + ax^2 + x$ is in the supersingular isogeny class. These are all unsuitable for ECDH.

There are also exponentially many A such that E_a / \mathbb{F}_p : $y^2 = x^3 + ax^2 + x$ is suitable for ECDH. E.g., smallest $a \in \mathbb{F}_p$ such that E_a is twist-secure.

Public keys only 1.17x larger, slowdown less than this, but....

e.g., on smallest curve we replace 128-bit classical security (SSDDH) with 256-bit classical security (ECDLP)

Questions?

