Supersingular Isogeny Key Encapsulation

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, David Jao, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev

UNIVERSITÉ DE
VERSAILLES
ST-QUENTIN-EN-YVELINES

Microsoft ${ }^{\circ}$

Research

Radboud University

November 14

FAU
FLORIDA ATLANTIC UNIVERSITY

Supersingular Key Encapsulation

Part 1:
 Quick re-motivation

Part 2: Quick tutorial recap

Quantum computers \leftrightarrow Cryptopocalypse

- Quantum computers break elliptic curves, finite fields, factoring, everything currently used for PKC

NGT National Institute of Standards and Technology

- NIST calls for quantum-secure key exchange and signatures. Deadline Nov 30, 2017.

Diffie-Hellman instantiations

Diffie-Hellman instantiations

	DH	ECDH	SIDH
Elements	integers g modulo prime	points P in curve group	curves E in isogeny class
Secrets	exponents x	scalars k	isogenies ϕ
computations	$g, x \mapsto g^{x}$	$k, P \mapsto[k] P$	$\phi, E \mapsto \phi(E)$
hard problem	given g, g^{x} find x	given $P,[k] P$ find k	given $E, \phi(E)$ find ϕ

Part 1:
 Quick re-motivation

Part 2:
Quick tutorial recap

W. Castryck (GIF): "Elliptic curves are dead: long live elliptic curves" https://www.esat.kuleuven.be/cosic/?p=7404

Supersingular isogeny graph for $\ell=2: X\left(S_{241^{2}}, 2\right)$

Supersingular isogeny graph for $\ell=3: X\left(S_{241^{2}}, 3\right)$

SIDH: in a nutshell

SIDH: in a nutshell

params public private
E 's are isogenous curves $P^{\prime} \mathrm{s}, Q^{\prime} \mathrm{s}, R^{\prime} \mathrm{s}, S^{\prime}$ s are points

$E_{0} /\left\langle P_{B}+\left[s_{B}\right] Q_{B}\right\rangle=E_{B} \Longrightarrow E_{A B}=E_{0} /\langle A, B\rangle$
$\left(\phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)\right)=\left(R_{B}, S_{B}\right)$

Key: Alice sends her isogeny evaluated at Bob's generators, and vice versa

$$
E_{A} /\left\langle R_{A}+\left[s_{B}\right] S_{A}\right\rangle \cong E_{0} /\left\langle P_{A}+\left[s_{A}\right] Q_{A}, P_{B}+\left[s_{B}\right] Q_{B}\right\rangle \cong E_{B} /\left\langle R_{B}+\left[s_{A}\right] S_{B}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{6}=E_{0} /\left\langle P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64 64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{0} /\left\langle[2] P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64 64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$
$E_{4}=E_{0} /\left\langle[4] P_{0}\right\rangle$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{3}=E_{0} /\left\langle[8] P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{2}=E_{0} /\left\langle[16] P_{0}\right\rangle
$$

Computing ℓ^{e} degree isogenies

(suppose $\ell=2$ and $e=6$)

$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel
$\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{1} & =E_{0} /\left\langle[32] P_{0}\right\rangle \\
& =\phi_{0}\left(E_{0}\right)
\end{aligned}
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64 64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{1} & =E_{0} /\left\langle[32] P_{0}\right\rangle \\
& =\phi_{0}\left(E_{0}\right)
\end{aligned}
$$

$$
P_{1}=\phi_{0}\left(P_{0}\right)
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{1} /\left[[2] P_{1}\right\rangle
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{4}=E_{1} /\left\langle[4] P_{1}\right\rangle
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{3}=E_{1} /\left\langle[8] P_{1}\right\rangle
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{2} & =E_{1} /\left\langle[16] P_{1}\right\rangle \\
& =\phi_{1}\left(E_{1}\right)
\end{aligned}
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{2} & =E_{1} /\left\langle[16] P_{1}\right\rangle \\
& =\phi_{1}\left(E_{1}\right)
\end{aligned}
$$

$$
P_{2}=\phi_{1}\left(P_{1}\right)
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{2} /\left\langle\left[[2] P_{2}\right\rangle\right.
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{3} & =E_{2} /\left\langle[8] P_{2}\right\rangle \\
& =\phi_{2}\left(E_{2}\right)
\end{aligned}
$$

बत

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
\begin{aligned}
E_{3} & =E_{2} /\left\langle[8] P_{2}\right\rangle \\
& =\phi_{2}\left(E_{2}\right)
\end{aligned}
$$

$$
P_{3}=\phi_{2}\left(P_{2}\right)
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{5}=E_{3} /\left[[2] P_{3}\right\rangle
$$

Computing ℓ^{e} degree isogenies
(suppose $\ell=2$ and $e=6$)
$\phi: E_{0} \rightarrow E_{6}$ is degree 64
64 elements in its kernel $\operatorname{ker}(\phi)=\left\langle P_{0}\right\rangle$

$$
E_{4}=E_{3} /\left\langle[4] P_{3}\right\rangle
$$

Computing ℓ^{e} degree isogenies

Computing ℓ^{e} degree isogenies

$$
\begin{gathered}
\phi: E_{0} \rightarrow E_{6} \\
\phi=\phi_{5} \circ \phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1} \circ \phi_{0}
\end{gathered}
$$

: ?

Claw algorithm

${ }_{-} E$

$$
E^{\prime}
$$

Given E and $E^{\prime}=\phi(E)$, with ϕ degree ℓ^{e}, find ϕ

Claw algorithm

Compute and store $\ell^{e / 2}$-isogenies on one side

Claw algorithm

Compute and store $\ell^{e / 2}$-isogenies on one side

Claw algorithm

Claw algorithm

E^{\prime}

Claw algorithm

Claw algorithm

Claw algorithm

Claw algorithm

E^{\prime}

Claw algorithm

This path describes secret isogeny $\phi: E \rightarrow E^{\prime}$

Claw algorithm: classical analysis

- There are $O\left(\ell^{e / 2}\right)$ curves $\ell^{e / 2}$-isogenous to E^{\prime} (the blue nodes \bullet)

$$
\text { thus } O\left(\ell^{e / 2}\right)=O\left(p^{1 / 4}\right) \text { classical memory }
$$

- There are $O\left(\ell^{e / 2}\right)$ curves $\ell^{e / 2}$-isogenous to E^{\prime} (the blue nodes), and there are $O\left(\ell^{e / 2}\right)$ curves $\ell^{e / 2}$-isogenous to E (the purple nodes)

$$
\text { thus } O\left(\ell^{e / 2}\right)=O\left(p^{1 / 4}\right) \text { classical time }
$$

- Best (known) attacks: classical $O\left(p^{1 / 4}\right)$ and quantum $O\left(p^{1 / 6}\right)$
- Confidence: both complexities are optimal for a black-box claw attack

SIDH protocol summary

- Setting: supersingular elliptic curves $E / \mathbb{F}_{p^{2}}$ where $p=2^{i} 3^{j}-1$
- Parameters:

$$
\begin{aligned}
& E_{0} / \mathbb{F}_{p^{2}}: y^{3}=x^{3}+x \text { with } \# E_{0}=\left(2^{i} 3^{j}\right)^{2} \\
& P_{A}, Q_{A} \in E_{0}\left[2^{i}\right] \text { and } P_{B}, Q_{B} \in E_{0}\left[3^{j}\right]
\end{aligned}
$$

- Public key generation (Alice):

$$
\begin{gathered}
s \in\left[0,2^{i}\right) \\
S_{A}=P_{A}+[s] Q_{A} \\
\phi_{A}: E_{0} \rightarrow E_{A}:=E_{0} /\left\langle S_{A}\right\rangle \\
\text { send } E_{A}, \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right) \text { to Bob }
\end{gathered}
$$

- Shared key generation (Alice):

$$
\begin{gathered}
S_{A B}=\phi_{B}\left(P_{A}\right)+[s] \phi_{B}\left(Q_{A}\right) \in E_{B} \\
\phi_{A^{\prime}}: E_{B} \rightarrow E_{A B}:=E_{B} /\left\langle S_{A B}\right\rangle \\
j_{A B}=j\left(E_{A B}\right)
\end{gathered}
$$

SIDH security summary

- Setting: supersingular elliptic curves $E / \mathbb{F}_{p^{2}}$ where p is a large prime
- Hard problem: Given $P, Q \in E$ and $\phi(P), \phi(Q) \in \phi(E)$, compute ϕ (where ϕ has fixed, smooth, public degree)
- Best (known) attacks: classical $O\left(p^{1 / 4}\right)$ and quantum $O\left(p^{1 / 6}\right)$

Part 3:

SIKE

"The poor user is given enough rope with which to hang himself - something a standard should not do."

- Ron Rivest, 1992 (on DSA standard)
public key compression

Point and isogeny arithmetic in \mathbb{P}^{1}

ECDH: move around different points on a fixed curve.
SIDH: move around different points and different curves

$$
\begin{gathered}
E_{a, b}: b y^{2}=x^{3}+a x^{2}+x \\
(x, y) \leftrightarrow(X: Y: Z) \quad(a, b) \leftrightarrow(A: B: C) \quad \begin{array}{c}
B \text { coefficient only } \\
\text { fixes the quadratic } \\
\text { twist, but } \\
j(E)=j\left(E^{\prime}\right)
\end{array} \\
\hline \begin{array}{c}
E_{\bar{A},}, \bar{C}:
\end{array} \quad B Y^{2} Z=C X^{3}+A X^{2} Z+C X Z^{2}
\end{gathered}
$$

\mathbb{P}^{1} point arithmetic: $\quad(X: Z) \mapsto\left(X^{\prime}: Z^{\prime}\right)$
\mathbb{P}^{1} isogeny arithmetic:
$(A: C) \mapsto\left(A^{\prime}: C^{\prime}\right)$

Point and isogeny arithmetic in \mathbb{P}^{1}

$$
\begin{gathered}
\phi_{3}: E_{a, b} \rightarrow E_{a^{\prime}, b \prime} \\
(x, y) \mapsto\left(x \cdot\left(\frac{x \cdot x_{3}-1}{x-x_{3}}\right)^{2}, \frac{\left(x \cdot x_{3}-1\right)\left(x^{2} \cdot x_{3}-3 x \cdot x_{3}^{2}+x+x_{3}\right)}{\left(x-x_{3}\right)^{3}}\right) \\
\left(a^{\prime}, b^{\prime}\right)=\left(\left(a \cdot x_{3}-6 x_{3}^{2}+6\right) \cdot x_{3}, b \cdot x_{3}^{2}\right)
\end{gathered}
$$

$$
\phi_{3}: E_{A / C, B / C} /\{ \pm 1\} \rightarrow E_{A^{\prime} / C, B^{\prime} / C^{\prime} /} /\{ \pm 1\}
$$

$$
\begin{gathered}
(X: Z) \mapsto\left(X\left(X_{3} X-Z_{3} Z\right)^{2}: Z\left(Z_{3} X-X_{3} Z\right)^{2}\right) \\
\left(A^{\prime}: C^{\prime}\right)=\left(Z_{3}^{4}+18 X_{3}^{2} Z_{3}^{2}-27 X_{3}^{2}: 4 X_{3} Z_{3}^{3}\right)
\end{gathered}
$$

Public keys are in $\mathbb{F}_{p^{2}}^{3}$

$$
P K_{A}=\left(x_{\phi_{A}\left(P_{B}\right)}, x_{\phi_{A}\left(Q_{B}\right)}, x_{\phi_{A}\left(Q_{B}-P_{B}\right)}\right)
$$

Conversely, if $R= \pm(Q-P)$ on $E_{a}: y^{2}=x^{3}+a x^{2}+x$, then

$$
a=\frac{\left(1-x_{P} x_{Q}-x_{P} x_{R}-x_{Q} x_{R}\right)^{2}}{4 x_{P} x_{Q} x_{R}}-x_{P}-x_{Q}-x_{R}
$$

The starting curve

$$
E_{0}: y^{2}=x^{3}+x
$$

Computing $\phi: E_{0} \rightarrow E^{\prime}$ is broadly equivalent to computing $\operatorname{End}\left(E^{\prime}\right)$ (see Kohel's thesis, Galbraith-Vercauteren survey, Galbraith-Petit-Shani-Ti)

Computing $\phi: E_{0} \rightarrow E^{\prime}$ is subexponential if E^{\prime} is defined over \mathbb{F}_{p} (see Biasse-Jao-Sankar, Galbraith-Delfs)

Known security not damaged, but perhaps we'd prefer to start on $E_{0} / \mathbb{F}_{p^{2}}$ when $\operatorname{End}(E)$ is not known. Don't know how?

Generating secret kernels

Recall

- $P_{A}, Q_{A} \in E_{0}\left[2^{e_{A}}\right]$ and $P_{B}, Q_{B} \in E_{0}\left[3^{e_{B}}\right]$ with full order Weil pairings
- Alice's secret is $\left\langle\left[m_{A}\right] P_{A}+\left[n_{A}\right] Q_{A}\right\rangle$, Bob's is $\left\langle\left[m_{B}\right] P_{B}+\left[n_{B}\right] Q_{B}\right\rangle$

We take

- $m_{A}=m_{B}=1, n_{A} \in\left[0,2^{\ell}\right)$ and $n_{B} \in\left[0,2^{\ell^{\prime}}\right)$
- $Q_{A}=\left[3^{e_{B}}\right]\left(z_{1},-\right)$ and $P_{A}=\left[3^{e_{B}}\right]\left(z_{2}+i,-\right)$
- $Q_{B}=\left[2^{e_{A}}\right]\left(z_{3},-\right)$ and $P_{B}=\left[2^{e_{A}}\right]\left(z_{4}+i,-\right)$

Consequences

such that points span torsions

- Simple, uniform "3 point ladder" for computing $P+[n] Q$ [see FLOR'17]
- $R=P+[n] Q$ can never be such that $\left[2^{z}\right] R=(0,0)$, so one 4 -isogeny function
- Don't reach all possible subgroups. Problem?

The main loop

Spec/code gives concrete algorithm for deriving, checking and executing the optimal strategy

The problem with reusing static keys

- Galbraith-Petit-Shani-Ti: P, Q both order $2^{e_{A}}$, and Alice's static secret $\alpha \in \mathbb{Z}$

$$
\langle P+[\alpha] Q\rangle=\left\langle P+[\alpha]\left(Q+\left[2^{e_{A}-1}\right] P\right)\right\rangle \quad \text { iff } \alpha \text { is even }
$$

- Send Alice $\tilde{P}=P$ and $\tilde{Q}=\left(Q+\left[2^{e_{A}-1}\right] P\right)$, if DH works fine, then α is even, else odd
- Even case $(\alpha=2 \hat{\alpha})$:

$$
\begin{array}{r}
\langle P+[2 \hat{\alpha}] Q\rangle=\left\langle P+[2 \hat{\alpha}]\left(Q+\left[2^{e_{A}-2}\right] P\right)\right\rangle \quad \text { iff } \hat{\alpha} \text { is even } \\
\text { so send } \tilde{P}=P \text { and } \tilde{Q}=\left(Q+\left[2^{e_{A}-2}\right] P\right)
\end{array}
$$

- Odd case ($\alpha=2 \hat{\alpha}+1$):

$$
\begin{gathered}
\langle P+[2 \hat{\alpha}+1] Q\rangle=\left\langle P-\left[2^{e_{A}-2}\right] Q+[2 \hat{\alpha}+1]\left(Q+\left[2^{e_{A}-2}\right] Q\right)\right\rangle \quad \text { iff } \hat{\alpha} \text { is even } \\
\text { so send } \tilde{P}=\left[1-2^{e_{A}-2}\right] P \text { and } \tilde{Q}=\left[1+2^{e_{A}-2}\right] Q
\end{gathered}
$$

- ... continuing yields α in $\log _{2} \alpha$ adaptive interactions!!!

No known Weil to detect foul play, provided \tilde{P}, \tilde{Q} are scaled correctly!

Passively secure encryption (IND-CPA PKE), à la ElGamal

$$
\begin{aligned}
& \text { Alice } \\
& \text { Bob } \\
& P K_{A}=\left[\phi_{A}\left(E_{0}\right), \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)\right] \\
& P K_{B}=\left[\phi_{B}\left(E_{0}\right), \phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)\right] \\
& j=j\left(E_{B A}\right)=j\left(\phi_{B}\left(\phi_{A}\left(E_{0}\right)\right)\right) \\
& {\left[P K_{B}, H_{1}(j) \oplus m\right]} \\
& j=j\left(E_{A B}\right)=j\left(\phi_{A}\left(\phi_{B}\left(E_{0}\right)\right)\right)
\end{aligned}
$$

Actively secure key encapsulation (IND-CCA KEM)

Alice

$$
P K_{A}=\left[\phi_{A}\left(E_{0}\right), \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)\right]
$$

Bob

$$
\begin{aligned}
P K_{B} & =\left[\phi_{B}\left(E_{0}\right), \phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)\right] \\
j & =j\left(E_{B A}\right)=j\left(\phi_{B}\left(\phi_{A}\left(E_{0}\right)\right)\right)
\end{aligned}
$$

$$
\left[P K_{B}, H_{1}(j) \oplus m\right]
$$

$$
j=j\left(E_{A B}\right)=j\left(\phi_{A}\left(\phi_{B}\left(E_{0}\right)\right)\right)
$$

Actively secure key encapsulation (IND-CCA KEM)

Alice

$$
\begin{gathered}
P K_{A}=\left[\phi_{A}\left(E_{0}\right), \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)\right] \\
s \in_{R}\{0,1\}^{\ell}
\end{gathered}
$$

$$
\begin{gathered}
P K_{B}(r)=\left[\phi_{B}\left(E_{0}\right), \phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)\right] \\
j=j\left(E_{B A}\right)=j\left(\phi_{B}\left(\phi_{A}\left(E_{0}\right)\right)\right)
\end{gathered}
$$

$$
j=j\left(E_{A B}\right)=j\left(\phi_{A}\left(\phi_{B}\left(E_{0}\right)\right)\right)
$$

Actively secure key encapsulation (IND-CCA KEM)

Alice

$$
\begin{gathered}
P K_{A}=\left[\phi_{A}\left(E_{0}\right), \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)\right] \\
s \in_{R}\{0,1\}^{\ell}
\end{gathered}
$$

$$
j=j\left(E_{A B}\right)=j\left(\phi_{A}\left(\phi_{B}\left(E_{0}\right)\right)\right)
$$

Bob

$$
m \in_{R}\{0,1\}^{\ell}
$$

$$
r=H_{2}\left(P K_{A}, m\right)
$$

$$
P K_{B}(r)=\left[\phi_{B}\left(E_{0}\right), \phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)\right]
$$

$$
j=j\left(E_{B A}\right)=j\left(\phi_{B}\left(\phi_{A}\left(E_{0}\right)\right)\right)
$$

$$
K=H_{3}(c, m)
$$

Actively secure key encapsulation (IND-CCA KEM)

Alice

$$
\begin{gathered}
P K_{A}=\left[\phi_{A}\left(E_{0}\right), \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)\right] \\
s \in_{R}\{0,1\}^{\ell}
\end{gathered}
$$

$$
\begin{gathered}
j=j\left(E_{A B}\right)=j\left(\phi_{A}\left(\phi_{B}\left(E_{0}\right)\right)\right) \\
m^{\prime}=c[2] \oplus H_{1}(j)
\end{gathered}
$$

Bob

$$
m \in_{R}\{0,1\}^{\ell}
$$

$$
r=H_{2}\left(P K_{A}, m\right)
$$

$$
P K_{B}(r)=\left[\phi_{B}\left(E_{0}\right), \phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)\right]
$$

$$
j=j\left(E_{B A}\right)=j\left(\phi_{B}\left(\phi_{A}\left(E_{0}\right)\right)\right)
$$

$$
K=H_{3}(c, m)
$$

Actively secure key encapsulation (IND-CCA KEM)

Alice

$$
\begin{gathered}
P K_{A}=\left[\phi_{A}\left(E_{0}\right), \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)\right] \\
s \in_{R}\{0,1\}^{\ell}
\end{gathered}
$$

$$
\begin{gathered}
j=j\left(E_{A B}\right)=j\left(\phi_{A}\left(\phi_{B}\left(E_{0}\right)\right)\right) \\
m^{\prime}=c[2] \oplus H_{1}(j) \\
r^{\prime}=H_{2}\left(P K_{A}, m^{\prime}\right)
\end{gathered}
$$

Bob

$m \in_{R}\{0,1\}^{\ell}$

$$
r=H_{2}\left(P K_{A}, m\right)
$$

$$
P K_{B}(r)=\left[\phi_{B}\left(E_{0}\right), \phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)\right]
$$

$$
j=j\left(E_{B A}\right)=j\left(\phi_{B}\left(\phi_{A}\left(E_{0}\right)\right)\right)
$$

$$
K=H_{3}(c, m)
$$

Actively secure key encapsulation (IND-CCA KEM)

Alice

$$
\begin{gathered}
P K_{A}=\left[\phi_{A}\left(E_{0}\right), \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)\right] \\
s \in_{R}\{0,1\}^{\ell}
\end{gathered}
$$

$$
\begin{gathered}
j=j\left(E_{A B}\right)=j\left(\phi_{A}\left(\phi_{B}\left(E_{0}\right)\right)\right) \\
m^{\prime}=c[2] \oplus H_{1}(j) \\
r^{\prime}=H_{2}\left(P K_{A}, m^{\prime}\right)
\end{gathered}
$$

if $P K_{B}\left(r^{\prime}\right)=c[1]$ then $K=H_{3}\left(c, m^{\prime}\right)$ else $K=H_{3}(c, s)$

Actively secure key encapsulation (IND-CCA KEM)

Alice

$$
\begin{gathered}
P K_{A}=\left[\phi_{A}\left(E_{0}\right), \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)\right] \\
s \in_{R}\{0,1\}^{\ell}
\end{gathered}
$$

Bob

$$
c=\left[P K_{B}(r), H_{1}(j) \oplus m\right]
$$

$$
j=j\left(E_{A B}\right)=j\left(\phi_{A}\left(\phi_{B}\left(E_{0}\right)\right)\right)
$$

$$
m^{\prime}=c[2] \oplus H_{1}(j)
$$

$$
r^{\prime}=H_{2}\left(P K_{A}, m^{\prime}\right)
$$

$$
\begin{gathered}
m \in_{R}\{0,1\}^{\ell} \\
r=H_{2}\left(P K_{A}, m\right) \\
P K_{B}(r)=\left[\phi_{B}\left(E_{0}\right), \phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)\right] \\
j=j\left(E_{B A}\right)=j\left(\phi_{B}\left(\phi_{A}\left(E_{0}\right)\right)\right) \\
K=H_{3}(c, m) \\
H_{1}(j)=\operatorname{cSHAKE} 256\left(j, k,{ }^{\prime \prime \prime}, 2\right) \\
H_{2}\left(P K_{A}, m\right)=\operatorname{cSHAKE} 256\left(m \| P K_{A}, e_{2}, "^{\prime \prime}, 0\right) \\
H_{3}(c, m)=\operatorname{cSHAKE} 256(m \| c, k, ", 1)
\end{gathered}
$$

if $P K_{B}\left(r^{\prime}\right)=c[1]$ then $K=H_{3}\left(c, m^{\prime}\right)$ else $K=H_{3}(c, s)$

The curves and their security estimates

$$
p=2^{e_{A}} 3^{\mathrm{e}_{\mathrm{B}}}-1
$$

Name $($ SIKEp+ $\left.\left\lceil\log _{2} p\right\rceil\right)$	$\left(\boldsymbol{e}_{\boldsymbol{A}}, \boldsymbol{e}_{\boldsymbol{B}}\right)$	\boldsymbol{k}	$\mathbf{2}^{\boldsymbol{k}-\mathbf{1}}$	min		
$\left(\sqrt{\mathbf{2}^{\boldsymbol{e}_{\boldsymbol{A}}}}, \sqrt{\mathbf{3}^{\boldsymbol{e}_{\mathbf{3}}}}\right)$	${\sqrt{\mathbf{2}^{\boldsymbol{k}}}}^{\text {min }}$					
SIKEp503	$(250,159)$	128	2^{127}	$\left.2^{\boldsymbol{e}_{\mathbf{2}}}, \sqrt[3]{\mathbf{3}^{\boldsymbol{e}_{\mathbf{3}}}}\right)$		
SIKEp761	$(372,239)$	192	2^{191}	2^{186}	2^{64}	2^{96}
SIKEp964	$(486,301)$	256	2^{255}	2^{238}	2^{128}	2^{124}

SIKE vs. IND-CCA lattice KEMs

Name	Primitive	Quantum sec (bits)	Encaps+ Decaps (ms)	Size of Encaps. (KB)
NTRU-KEM	NTRU	123	0.03	1.3
Kyber	M-LWE	161	0.07	1.2
FrodoKEM	LWE	$103-150$	$1.2-2.3$	$9.5-15.4$
SIKE	Supersingular Isogeny	$84-125$	$10-30$	$0.4-0.6$

Results obtained on 3.4 GHz Intel Haswell (Kyber and NTRU-KEM) or Skylake (FrodoKEM and SIKE)

Easy ECDH hybrid

There are exponentially many a such that $E_{a} / \mathbb{F}_{p^{2}}: y^{2}=x^{3}+a x^{2}+x$ is in the supersingular isogeny class. These are all unsuitable for ECDH.

There are also exponentially many A such that $E_{a} / \mathbb{F}_{p}: y^{2}=x^{3}+a x^{2}+x$ is suitable for ECDH. E.g., smallest $a \in \mathbb{F}_{p}$ such that E_{a} is twist-secure.

Public keys only $1.17 x$ larger, slowdown less than this, but....
e.g., on smallest curve we replace 128-bit classical security (SSDDH) with 256-bit classical security (ECDLP)

Questions?

