
Supersingular Isogeny Key Encapsulation

November 14
ECC 2017

Nijmegen, The Netherlands

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, David Jao,
Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev

Supersingular Isogeny Key Encapsulation

November 14
ECC 2017

Nijmegen, The Netherlands

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Brian Koziel,
Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev

Part 1: Quick re-motivation

Part 2: Quick tutorial recap

Part 3: SIKE

• Quantum computers break elliptic curves, finite fields,
factoring, everything currently used for PKC

• NIST calls for quantum-secure key exchange and
signatures. Deadline Nov 30, 2017.

Quantum computers ↔ Cryptopocalypse

Diffie-Hellman instantiations

𝑔𝑎 mod 𝑞

𝑔𝑏 mod 𝑞

𝑎 𝑃

𝑏 𝑃

𝜙𝐴(𝐸)

𝜙𝐵(𝐸)

ℤ𝑞 ℤ𝑞

Diffie-Hellman instantiations

DH ECDH SIDH

Elements integers 𝑔 modulo

prime

points 𝑃 in curve

group

curves 𝐸 in

isogeny class

Secrets exponents 𝑥 scalars 𝑘 isogenies 𝜙

computations 𝑔, 𝑥 ↦ 𝑔𝑥 𝑘, 𝑃 ↦ 𝑘 𝑃 𝜙, 𝐸 ↦ 𝜙(𝐸)

hard problem given 𝑔, 𝑔𝑥

find 𝑥
given 𝑃, 𝑘 𝑃

find 𝑘
given 𝐸,𝜙(𝐸)

find 𝜙

Part 1: Quick re-motivation

Part 2: Quick tutorial recap

Part 3: SIKE

W. Castryck (GIF): ”Elliptic curves are dead: long live elliptic curves” https://www.esat.kuleuven.be/cosic/?p=7404

https://www.esat.kuleuven.be/cosic/?p=7404

Supersingular isogeny graph for ℓ = 2: 𝑋(𝑆2412, 2)

Credit to Fre Vercauteren for example and pictures…

Supersingular isogeny graph for ℓ = 3: 𝑋(𝑆2412, 3)

Credit to Fre Vercauteren for example and pictures…

𝐸0 𝐸𝐴 = 𝐸0/〈𝐴〉

𝐸0/〈𝐵〉 = 𝐸𝐵 𝐸𝐴𝐵 = 𝐸0/〈𝐴, 𝐵〉

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′

params public private

𝐸’s are isogenous curves

𝑃’s, 𝑄’s, 𝑅’s, 𝑆’s are points

SIDH: in a nutshell

𝐸0 𝐸𝐴 = 𝐸0/〈𝑃𝐴 + 𝑠𝐴 𝑄𝐴〉

𝐸0/〈𝑃𝐵 + 𝑠𝐵 𝑄𝐵〉 = 𝐸𝐵 𝐸𝐴𝐵 = 𝐸0/〈𝐴, 𝐵〉

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′

params public private

𝐸’s are isogenous curves

𝑃’s, 𝑄’s, 𝑅’s, 𝑆’s are points

SIDH: in a nutshell

(𝜙𝐵(𝑃𝐴), 𝜙𝐵(𝑄𝐴)) = (𝑅𝐵 , 𝑆𝐵)

(𝑅𝐴, 𝑆𝐴) = (𝜙𝐴(𝑃𝐵), 𝜙𝐴(𝑄𝐵))

𝐸𝐴/〈𝑅𝐴 + 𝑠𝐵 𝑆𝐴〉 ≅ 𝐸0/〈𝑃𝐴 + 𝑠𝐴 𝑄𝐴 , 𝑃𝐵 + 𝑠𝐵 𝑄𝐵〉 ≅ 𝐸𝐵/〈𝑅𝐵 + 𝑠𝐴 𝑆𝐵〉

Key: Alice sends her isogeny evaluated at Bob’s generators, and vice versa

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃0

𝐸6 = 𝐸0/⟨𝑃0⟩

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃0

𝐸5 = 𝐸0/⟨[2]𝑃0⟩

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃0
𝐸4 = 𝐸0/⟨[4]𝑃0⟩

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃0

𝐸3 = 𝐸0/⟨[8]𝑃0⟩

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃0

𝐸2 = 𝐸0/⟨[16]𝑃0⟩

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[32]𝑃0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)

𝑃0

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1 = 𝜙0(𝑃0)

𝑃0

𝑃1

𝜙0

𝐸1 = 𝐸0/⟨[32]𝑃0⟩
= 𝜙0(𝐸0)

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

𝑃1

𝜙0

𝐸6 = 𝐸1/⟨𝑃1⟩

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[2]𝑃1

𝜙0

𝐸5 = 𝐸1/⟨[2]𝑃1⟩

𝑃1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[4]𝑃1

𝜙0

𝐸4 = 𝐸1/⟨[4]𝑃1⟩

𝑃1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[8]𝑃1

𝜙0

𝐸3 = 𝐸1/⟨[8]𝑃1⟩

𝑃1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩

[16]𝑃1

𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)

𝑃1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸2 = 𝐸1/⟨[16]𝑃1⟩
= 𝜙1(𝐸1)

𝑃1

𝑃2 = 𝜙1(𝑃1)

𝑃2

𝜙1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸2/⟨𝑃2⟩
𝑃2

𝜙1

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸2/⟨[2]𝑃2⟩
𝑃2

𝜙1

[2]𝑃2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸2/⟨[4]𝑃2⟩
𝑃2

𝜙1

[4]𝑃2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸3 = 𝐸2/⟨[8]𝑃2⟩
= 𝜙2(𝐸2) 𝑃2

𝜙1

[8]𝑃2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸3 = 𝐸2/⟨[8]𝑃2⟩
= 𝜙2(𝐸2) 𝑃2

𝜙1

[8]𝑃2

𝑃3 = 𝜙2(𝑃2) 𝑃3

𝜙2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸3/⟨𝑃3⟩
𝜙1

𝑃3

𝜙2

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸3/⟨[2]𝑃3⟩
𝜙1

𝑃3

𝜙2

[2]𝑃3

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸4 = 𝐸3/⟨[4]𝑃3⟩
𝜙1

𝑃3

𝜙2

[4]𝑃3

𝑃4 = 𝜙3(𝑃3)

𝑃4

𝜙3

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸4/⟨𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸4/⟨[2]𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

[2]𝑃4

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸5 = 𝐸4/⟨[2]𝑃4⟩
𝜙1

𝜙2

𝑃4

𝜙3

[2]𝑃4

𝑃5 = 𝜙4(𝑃4)

𝑃5

𝜙4

Computing ℓ𝑒 degree isogenies

𝐸0

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

(suppose ℓ = 2 and 𝑒 = 6)
𝜙 ∶ 𝐸0 → 𝐸6 is degree 64

64 elements in its kernel
ker 𝜙 = ⟨𝑃0⟩ 𝜙0

𝐸6 = 𝐸5/⟨𝑃5⟩
𝜙1

𝜙2

𝜙3

𝑃5

𝜙4

𝜙5

Computing ℓ𝑒 degree isogenies

𝜙 ∶ 𝐸0 → 𝐸6

𝜙 = 𝜙5 ∘ 𝜙4 ∘ 𝜙3 ∘ 𝜙2 ∘ 𝜙1 ∘ 𝜙0

𝜙0
𝜙1

𝜙2
𝜙3

𝜙4
𝜙5

𝐸0 𝐸6

𝐸 𝐸′?

Claw algorithm

𝐸

𝐸′

Given 𝐸 and 𝐸′ = 𝜙(𝐸), with 𝜙 degree ℓ𝑒, find 𝜙

Claw algorithm

𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side

Claw algorithm

𝐸

𝐸′

Compute and store ℓ𝑒/2-isogenies on one side

Claw algorithm

𝐸

𝐸′

… until you have all of them

Claw algorithm

𝐸

𝐸′

Now compute ℓ𝑒/2-isogenies on the other side

Claw algorithm

𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm

𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm

𝐸

𝐸′

… discarding them until you find a collision

Claw algorithm

𝐸

𝐸′

Collision will most likely be unique shortest path

Claw algorithm

𝐸

𝐸′

This path describes secret isogeny 𝜙 ∶ 𝐸 → 𝐸′

Claw algorithm: classical analysis

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes)

thus 𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical memory

• There are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸′ (the blue nodes), and
there are 𝑂(ℓ𝑒/2) curves ℓ𝑒/2-isogenous to 𝐸 (the purple nodes)

thus 𝑂(ℓ𝑒/2) = 𝑂(𝑝1/4) classical time

• Best (known) attacks: classical 𝑂(𝑝1/4) and quantum 𝑂(𝑝1/6)

• Confidence: both complexities are optimal for a black-box claw attack

SIDH protocol summary

• Setting: supersingular elliptic curves 𝐸/𝔽𝑝2 where 𝑝 = 2𝑖3𝑗 − 1

• Parameters:

𝐸0/𝔽𝑝2 ∶ 𝑦
3 = 𝑥3 + 𝑥 with #𝐸0 = 2𝑖3𝑗

2

𝑃𝐴, 𝑄𝐴 ∈ 𝐸0 2𝑖 and 𝑃𝐵, 𝑄𝐵 ∈ 𝐸0[3
𝑗]

• Public key generation (Alice):
𝑠 ∈ 0, 2𝑖

𝑆𝐴 = 𝑃𝐴 + 𝑠 𝑄𝐴
𝜙𝐴 ∶ 𝐸0 → 𝐸𝐴: = 𝐸0/⟨𝑆𝐴⟩

send 𝐸𝐴, 𝜙𝐴 𝑃𝐵 , 𝜙𝐴(𝑄𝐵) to Bob

• Shared key generation (Alice):
𝑆𝐴𝐵 = 𝜙𝐵 𝑃𝐴 + 𝑠 𝜙𝐵 𝑄𝐴 ∈ 𝐸𝐵

𝜙𝐴′ ∶ 𝐸𝐵 → 𝐸𝐴𝐵: = 𝐸𝐵/⟨𝑆𝐴𝐵⟩
𝑗𝐴𝐵 = 𝑗(𝐸𝐴𝐵)

𝐸0
𝐸1
𝐸2
𝐸3

𝐸𝐴

𝑆𝐴

𝐸𝐵
𝐸1′
𝐸2′
𝐸3′

𝐸𝐴𝐵

𝑆𝐴𝐵

𝐸0
𝐸𝐴 = 𝐸0/〈𝑆𝐴〉

𝐸0/〈𝑆𝐵〉 = 𝐸𝐵

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′

SIDH security summary

• Setting: supersingular elliptic curves 𝐸/𝔽𝑝2 where 𝑝 is a large prime

• Hard problem: Given 𝑃, 𝑄 ∈ 𝐸 and 𝜙 𝑃 ,𝜙 𝑄 ∈ 𝜙(𝐸), compute 𝜙
(where 𝜙 has fixed, smooth, public degree)

• Best (known) attacks: classical 𝑂(𝑝1/4) and quantum 𝑂(𝑝1/6)

Part 1: Quick re-motivation

Part 2: Quick tutorial recap

Part 3: SIKE

“The poor user is given enough rope with which to
hang himself – something a standard should not do.”

- Ron Rivest, 1992 (on DSA standard)

public key compression

𝐸𝑎,𝑏 ∶ 𝑏𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑥

Point and isogeny arithmetic in ℙ1

𝐸𝐴

𝐶
,
𝐵

𝐶

: 𝐵𝑌2𝑍 = 𝐶𝑋3 + 𝐴𝑋2𝑍 + 𝐶𝑋𝑍2

𝑥, 𝑦 ↔ (𝑋 ∶ 𝑌 ∶ 𝑍) 𝑎, 𝑏 ↔ (𝐴 ∶ 𝐵 ∶ 𝐶)

ℙ1 point arithmetic: 𝑋 ∶ 𝑍 ↦ (𝑋′: 𝑍′)

ℙ1 isogeny arithmetic: 𝐴 ∶ 𝐶 ↦ 𝐴′: 𝐶′

ECDH: move around different points on a fixed curve.

SIDH: move around different points and different curves

𝐵 coefficient only
fixes the quadratic

twist, but
𝑗 𝐸 = 𝑗(𝐸′)

𝜙3 ∶ 𝐸𝑎,𝑏 → 𝐸𝑎′,𝑏′

Point and isogeny arithmetic in ℙ1

𝑥, 𝑦 ↦ 𝑥 ⋅
𝑥 ⋅ 𝑥3 − 1

𝑥 − 𝑥3

2

,
𝑥 ⋅ 𝑥3 − 1 𝑥2 ⋅ 𝑥3 − 3𝑥 ⋅ 𝑥3

2 + 𝑥 + 𝑥3
𝑥 − 𝑥3

3

𝑎′, 𝑏′ = 𝑎 ⋅ 𝑥3 −6𝑥3
2 + 6 ⋅ 𝑥3, 𝑏 ⋅ 𝑥3

2

𝜙3 ∶ 𝐸𝐴/𝐶 ,𝐵/𝐶/{±1} → 𝐸𝐴′/𝐶′,𝐵′/𝐶′/{±1}

𝑋 ∶ 𝑍 ↦ 𝑋 𝑋3𝑋 − 𝑍3𝑍
2 ∶ 𝑍 𝑍3𝑋 − 𝑋3𝑍

2

𝐴′: 𝐶′ = 𝑍3
4 + 18𝑋3

2𝑍3
2 − 27𝑋3

2 ∶ 4𝑋3𝑍3
3

Public keys are in 𝔽𝑝2
3

𝑃𝐾𝐴 = 𝑥𝜙𝐴 𝑃𝐵 , 𝑥𝜙𝐴 𝑄𝐵 , 𝑥𝜙𝐴 𝑄𝐵−𝑃𝐵

Conversely, if 𝑅 = ±(𝑄 − 𝑃) on 𝐸𝑎 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑥, then

𝑎 =
1 − 𝑥𝑃𝑥𝑄 − 𝑥𝑃𝑥𝑅 − 𝑥𝑄𝑥𝑅

2

4𝑥𝑃𝑥𝑄𝑥𝑅
− 𝑥𝑃 − 𝑥𝑄 − 𝑥𝑅

The starting curve

𝐸0 ∶ 𝑦2 = 𝑥3 + 𝑥

Computing 𝜙 ∶ 𝐸0 → 𝐸′ is broadly equivalent to computing End(𝐸′)
(see Kohel’s thesis, Galbraith-Vercauteren survey, Galbraith-Petit-Shani-Ti)

Computing 𝜙 ∶ 𝐸0 → 𝐸′ is subexponential if 𝐸′ is defined over 𝔽𝑝
(see Biasse-Jao-Sankar, Galbraith-Delfs)

Known security not damaged, but perhaps we’d prefer to start on
𝐸0/𝔽𝑝2 when End 𝐸 is not known. Don’t know how?

Generating secret kernels
Recall

We take

• 𝑃𝐴, 𝑄𝐴 ∈ 𝐸0[2
𝑒𝐴] and 𝑃𝐵, 𝑄𝐵 ∈ 𝐸0[3

𝑒𝐵] with full order Weil pairings

• Alice’s secret is 𝑚𝐴 𝑃𝐴 + 𝑛𝐴 𝑄𝐴 , Bob’s is ⟨ 𝑚𝐵 𝑃𝐵 + 𝑛𝐵 𝑄𝐵⟩

• 𝑚𝐴 = 𝑚𝐵 = 1, 𝑛𝐴 ∈ [0,2ℓ) and 𝑛𝐵 ∈ [0,2ℓ
′
)

• 𝑄𝐴 = [3𝑒𝐵] 𝑧1, − and 𝑃𝐴 = [3𝑒𝐵](𝑧2 + 𝑖,−)

• 𝑄𝐵 = 2𝑒𝐴 𝑧3, − and 𝑃𝐵 = [2𝑒𝐴](𝑧4 + 𝑖,−)

Consequences

• Simple, uniform “3 point ladder” for computing 𝑃 + 𝑛 𝑄 [see FLOR’17]

• 𝑅 = 𝑃 + 𝑛 𝑄 can never be such that [2𝑧]𝑅 = 0,0 , so one 4-isogeny function

• Don’t reach all possible subgroups. Problem?

𝑧𝑖 ∈ ℕ smallest
such that points
span torsions

𝔽𝑝 𝔽𝑝2

The main loop

Optimal strategy [DJP’11] is harder, but much fasterSimple, but slow

e.g. 𝟐𝟖𝟒𝟒𝟏× 3 + 𝟐𝟑𝟗 ×𝜙3 𝑥 e.g. 𝟖𝟏𝟏× 3 + 𝟏𝟏𝟐𝟒 ×𝜙3 𝑥

Spec/code gives concrete algorithm for deriving, checking and executing the optimal strategy

• Galbraith-Petit-Shani-Ti: 𝑃, 𝑄 both order 2𝑒𝐴, and Alice’s static secret 𝛼 ∈ ℤ

𝑃 + 𝛼 𝑄 = ⟨𝑃 + 𝛼 𝑄 + 2𝑒𝐴−1 𝑃 ⟩ iff 𝛼 is even

• Send Alice ෨𝑃 = 𝑃 and ෨𝑄 = (𝑄 + 2𝑒𝐴−1 𝑃), if DH works fine, then 𝛼 is even, else odd

• Even case (𝛼 = 2 ො𝛼):
𝑃 + 2 ො𝛼 𝑄 = ⟨𝑃 + 2 ො𝛼 𝑄 + 2𝑒𝐴−2 𝑃 ⟩ iff ො𝛼 is even

so send ෨𝑃 = 𝑃and ෨𝑄 = (𝑄 + 2𝑒𝐴−2 𝑃)

• Odd case (𝛼 = 2 ො𝛼 + 1):
𝑃 + 2 ො𝛼 + 1 𝑄 = ⟨𝑃 − 2𝑒𝐴−2 𝑄 + 2 ො𝛼 + 1 𝑄 + 2𝑒𝐴−2 𝑄 ⟩ iff ො𝛼 is even

so send ෨𝑃 = 1 − 2𝑒𝐴−2 𝑃 and ෨𝑄 = 1 + 2𝑒𝐴−2 𝑄

• … continuing yields 𝛼 in log2𝛼 adaptive interactions!!!
No known Weil to detect foul play, provided ෨𝑃, ෨𝑄 are scaled correctly!

The problem with reusing static keys

Alice

Passively secure encryption (IND-CPA PKE), à la ElGamal

Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵 = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑃𝐾𝐵 , 𝐻1 𝑗 ⊕𝑚

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵 = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑃𝐾𝐵 , 𝐻1 𝑗 ⊕𝑚

Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵(𝑟) = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑃𝐾𝐵(𝑟) , 𝐻1 𝑗 ⊕𝑚

𝑠 ∈𝑅 0,1 ℓ
𝑚 ∈𝑅 0,1 ℓ

𝑟 = 𝐻2(𝑃𝐾𝐴, 𝑚)

Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵(𝑟) = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑐 = 𝑃𝐾𝐵(𝑟) , 𝐻1 𝑗 ⊕𝑚

𝑠 ∈𝑅 0,1 ℓ
𝑚 ∈𝑅 0,1 ℓ

𝑟 = 𝐻2(𝑃𝐾𝐴, 𝑚)

𝐾 = 𝐻3(𝑐,𝑚)

Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵(𝑟) = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑐 = 𝑃𝐾𝐵(𝑟) , 𝐻1 𝑗 ⊕𝑚

𝑠 ∈𝑅 0,1 ℓ
𝑚 ∈𝑅 0,1 ℓ

𝑟 = 𝐻2(𝑃𝐾𝐴, 𝑚)

𝐾 = 𝐻3(𝑐,𝑚)

𝑚′ = 𝑐 2 ⊕𝐻1(𝑗)

Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵(𝑟) = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑐 = 𝑃𝐾𝐵(𝑟) , 𝐻1 𝑗 ⊕𝑚

𝑠 ∈𝑅 0,1 ℓ
𝑚 ∈𝑅 0,1 ℓ

𝑟 = 𝐻2(𝑃𝐾𝐴, 𝑚)

𝐾 = 𝐻3(𝑐,𝑚)

𝑚′ = 𝑐 2 ⊕𝐻1(𝑗)

𝑟′ = 𝐻2(𝑃𝐾𝐴, 𝑚
′)

Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵(𝑟) = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑐 = 𝑃𝐾𝐵(𝑟) , 𝐻1 𝑗 ⊕𝑚

𝑠 ∈𝑅 0,1 ℓ
𝑚 ∈𝑅 0,1 ℓ

𝑟 = 𝐻2(𝑃𝐾𝐴, 𝑚)

𝐾 = 𝐻3(𝑐,𝑚)

𝑚′ = 𝑐 2 ⊕𝐻1(𝑗)

𝑟′ = 𝐻2(𝑃𝐾𝐴, 𝑚
′)

if 𝑃𝐾𝐵 𝑟′ = 𝑐[1] then 𝐾 = 𝐻3(𝑐,𝑚′) else 𝐾 = 𝐻3(𝑐, 𝑠)

Actively secure key encapsulation (IND-CCA KEM)

Alice Bob
𝑃𝐾𝐴 = 𝜙𝐴 𝐸0 , 𝜙𝐴 𝑃𝐵 , 𝜙𝐴 𝑄𝐵

𝑃𝐾𝐵(𝑟) = 𝜙𝐵 𝐸0 , 𝜙𝐵 𝑃𝐴 , 𝜙𝐵 𝑄𝐴

𝑗 = 𝑗 𝐸𝐵𝐴 = 𝑗 𝜙𝐵 𝜙𝐴 𝐸0

𝑗 = 𝑗 𝐸𝐴𝐵 = 𝑗 𝜙𝐴 𝜙𝐵 𝐸0

𝑐 = 𝑃𝐾𝐵(𝑟) , 𝐻1 𝑗 ⊕𝑚

𝑠 ∈𝑅 0,1 ℓ
𝑚 ∈𝑅 0,1 ℓ

𝑟 = 𝐻2(𝑃𝐾𝐴, 𝑚)

𝐾 = 𝐻3(𝑐,𝑚)

𝑚′ = 𝑐 2 ⊕𝐻1(𝑗)

𝑟′ = 𝐻2(𝑃𝐾𝐴, 𝑚
′)

if 𝑃𝐾𝐵 𝑟′ = 𝑐[1] then 𝐾 = 𝐻3(𝑐,𝑚′) else 𝐾 = 𝐻3(𝑐, 𝑠)

𝐻1 𝑗 = cSHAKE256(𝑗, 𝑘, " ", 2)

𝐻2 𝑃𝐾𝐴, 𝑚 = cSHAKE256(𝑚||𝑃𝐾𝐴, 𝑒2, " ", 0)

𝐻3 𝑐,𝑚 = cSHAKE256(𝑚||𝑐, 𝑘, " " , 1)

The curves and their security estimates

Name

(SIKEp+

⌈log2 𝑝⌉)
(𝒆𝑨, 𝒆𝑩) 𝒌 𝟐𝒌−𝟏

𝐦𝐢𝐧

(𝟐𝒆𝑨 , 𝟑𝒆𝟑) √𝟐𝒌
𝐦𝐢𝐧

(∛𝟐𝒆𝟐 , ∛𝟑𝒆𝟑)

SIKEp503 (250,159) 128 2127 2125 264 283

SIKEp761 (372,239) 192 2191 2186 296 2124

SIKEp964 (486,301) 256 2255 2238 2128 2159

𝑝 = 2𝑒𝐴3eB − 1

SIKE vs. IND-CCA lattice KEMs

Name Primitive

Quantum

sec

(bits)

Encaps+

Decaps

(ms)

Size of

Encaps.

(KB)

NTRU-KEM NTRU 123 0.03 1.3

Kyber M-LWE 161 0.07 1.2

FrodoKEM LWE 103-150 1.2 – 2.3 9.5 – 15.4

SIKE Supersingular

Isogeny

84-125 10 – 30 0.4 – 0.6

Results obtained on 3.4GHz Intel Haswell (Kyber and NTRU-KEM) or Skylake (FrodoKEM and SIKE)

Easy ECDH hybrid

There are exponentially many 𝑎 such that
𝐸𝑎 /𝔽𝑝2: 𝑦

2 = 𝑥3 + 𝑎𝑥2 + 𝑥 is in the supersingular

isogeny class. These are all unsuitable for ECDH.

There are also exponentially many 𝐴 such that
𝐸𝑎 /𝔽𝑝: 𝑦

2 = 𝑥3 + 𝑎𝑥2 + 𝑥 is suitable for ECDH.
E.g., smallest 𝑎 ∈ 𝔽𝑝 such that 𝐸𝑎 is twist-secure.

Public keys only 1.17x larger, slowdown less than this, but….

e.g., on smallest curve we replace 128-bit classical security
(SSDDH) with 256-bit classical security (ECDLP)

Questions?

