An introduction to supersingular isogeny-based cryptography

Craig Costello

Summer School on Real-World Crypto and Privacy June 8, 2017
Šibenik, Croatia

Microsoft ${ }^{\text { }}$

Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies LUCA DE FEO, DAVID JAO, JÉRÔME PLÛT http://eprint.iacr.org/2011/506

Full version of Crypto'16 paper (joint with P. Longa and M. Naehrig) http://eprint.iacr.org/2016/413
Full version of Eurocrypt'17 paper
(joint with D. Jao, P. Longa, M. Naehrig, D. Urbanik, J. Renes)
http://eprint.iacr.org/2016/963
Preprint of recent work on flexible SIDH (joint with H. Hisil)
http://eprint.iacr.org/2017/504

SIDH library v2.0
https://www.microsoft.com/en-us/research/project/sidh-library/

W. Castryck (GIF): "Elliptic curves are dead: long live elliptic curves" https://www.esat.kuleuven.be/cosic/?p=7404

Part 1: Motivation

Quantum computers \leftrightarrow Cryptopocalypse

- Quantum computers break elliptic curves, finite fields, factoring, everything currently used for PKC
- Aug 2015: NSA announces plans to transition to quantum-resistant algorithms
- Feb 2016: NIST calls for quantum-secure submissions. Deadline Nov 30, 2017

Post-quantum key exchange

Which hard problem(s) to use now???
This talk: supersingular isogenies

Diffie-Hellman(ish) instantiations

	DH	ECDH	R -LWE $\left[\mathrm{BCNS}^{\prime} 15\right.$, newhope, NTRU]	LWE [Frodo]	SIDH [DJP14, CLN16]
elements	integers g modulo prime	points P in curve group	elements a in ring $R=\mathbb{Z}_{q}[x] /\left\langle\Phi_{n}(x)\right\rangle$	matrices A in $\mathbb{Z}_{q}^{n \times n}$	curves E in isogeny class
secrets	exponents x	scalars k	small errors $s, e \in R$	small $s, e \in \mathbb{Z}_{q}^{n}$	isogenies ϕ
computations	$g, x \mapsto g^{x}$	$k, P \mapsto[k] P$	$a, s, e \mapsto a s+e$	$A, s, e \mapsto A s+e$	$\phi, E \mapsto \phi(E)$
hard problem	given g, g^{x} find x	given $P,[k] P$ find k	given $a, a s+e$ find s	given $A, A s+e$ find s	given $E, \phi(E)$ find ϕ

Part 2:

Preliminaries
Motivation

Extension fields

To construct degree n extension field $\mathbb{F}_{q^{n}}$ of a finite field \mathbb{F}_{q}, take $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(\alpha)$ where $f(\alpha)=0$ and $f(x)$ is irreducible of degree n in $\mathbb{F}_{q}[x]$.

Example: for any prime $p \equiv 3 \bmod 4$, can take $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(i)$ where $i^{2}+1=0$

Elliptic Curves and j-invariants

- Recall that every elliptic curve E over a field K with $\operatorname{char}(K)>3$ can be defined by

$$
\begin{aligned}
& E: y^{2}=x^{3}+a x+b \\
& \quad \text { where } a, b \in K, 4 a^{3}+27 b^{2} \neq 0
\end{aligned}
$$

- For any extension K^{\prime} / K, the set of K^{\prime}-rational points forms a group with identity
- The j-invariant $j(E)=j(a, b)=1728 \cdot \frac{4 a^{3}}{4 a^{3}+27 b^{2}}$ determines isomorphism class over \bar{K}
- E.g., $E^{\prime}: y^{2}=x^{3}+a u^{2} x+b u^{3}$ is isomorphic to E for all $u \in K^{*}$
- Recover a curve from j : e.g., set $a=-3 c$ and $b=2 c$ with $c=j /(j-1728)$

Example

Over \mathbb{F}_{13}, the curves

$$
E_{1}: y^{2}=x^{3}+9 x+8
$$

and

$$
E_{2}: y^{2}=x^{3}+3 x+5
$$

are isomorphic, since

$$
j\left(E_{1}\right)=1728 \cdot \frac{4 \cdot 9^{3}}{4 \cdot 9^{3}+27 \cdot 8^{2}}=3=1728 \cdot \frac{4 \cdot 3^{3}}{4 \cdot 3^{3}+27 \cdot 5^{2}}=j\left(E_{2}\right)
$$

An isomorphism is given by

$$
\begin{array}{ll}
\psi: E_{1} \rightarrow E_{2}, & (x, y) \mapsto(10 x, 5 y) \\
\psi^{-1}: E_{2} \rightarrow E_{1}, & (x, y) \mapsto(4 x, 8 y)
\end{array}
$$

noting that $\psi\left(\infty_{1}\right)=\infty_{2}$

Torsion subgroups

- The multiplication-by-n map:

$$
n: E \rightarrow E, \quad P \mapsto[n] P
$$

- The n-torsion subgroup is the kernel of $[n]$

$$
E[n]=\{P \in E(\bar{K}):[n] P=\infty\}
$$

- Found as the roots of the $n^{\text {th }}$ division polynomial ψ_{n}
- If $\operatorname{char}(K)$ doesn't divide n, then

$$
E[n] \simeq \mathbb{Z}_{n} \times \mathbb{Z}_{n}
$$

Example $(n=3)$

- Consider $E / \mathbb{F}_{11}: y^{2}=x^{3}+4$ with $\# E\left(\mathbb{F}_{11}\right)=12$
- 3-division polynomial $\psi_{3}(x)=3 x^{4}+4 x$ partially splits as $\psi_{3}(x)=x(x+3)\left(x^{2}+8 x+9\right)$
- Thus, $x=0$ and $x=-3$ give 3 -torsion points. The points $(0,2)$ and $(0,9)$ are in $E\left(\mathbb{F}_{11}\right)$, but the rest lie in $E\left(\mathbb{F}_{11^{2}}\right)$
- Write $\mathbb{F}_{11^{2}}=\mathbb{F}_{11}(i)$ with $i^{2}+1=0$. $\psi_{3}(x)$ splits over $\mathbb{F}_{11^{2}}$ as $\psi_{3}(x)=x(x+3)(x+9 i+4)(x+2 i+4)$

- Observe $E[3] \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, i.e., 4 cyclic subgroups of order 3

Subgroup isogenies

- Isogeny: morphism (rational map)

$$
\phi: E_{1} \rightarrow E_{2}
$$

that preserves identity, i.e. $\phi\left(\infty_{1}\right)=\infty_{2}$

- Degree of (separable) isogeny is number of elements in kernel, same as its degree as a rational map
- Given finite subgroup $G \in E_{1}$, there is a unique curve E_{2} and isogeny $\phi: E_{1} \rightarrow E_{2}$ (up to isomorphism) having kernel G. Write $E_{2}=\phi\left(E_{1}\right)=E_{1} /\langle G\rangle$.

Subgroup isogenies: special cases

- Isomorphisms are a special case of isogenies where the kernel is trivial

$$
\phi: E_{1} \rightarrow E_{2,} \quad \operatorname{ker}(\phi)=\infty_{1}
$$

- Endomorphisms are a special case of isogenies where the domain and codomain are the same curve

$$
\phi: E_{1} \rightarrow E_{1}, \quad \operatorname{ker}(\phi)=G, \quad|G|>1
$$

- Perhaps think of isogenies as a generalization of either/both: isogenies allow non-trivial kernel and allow different domain/co-domain
- Isogenies are *almost* isomorphisms

Velu's formulas

Given any finite subgroup of G of E, we may form a quotient isogeny

$$
\phi: E \rightarrow E^{\prime}=E / G
$$

with kernel G using Velu's formulas

Example: $E: y^{2}=\left(x^{2}+b_{1} x+b_{0}\right)(x-a)$. The point $(a, 0)$ has order 2; the quotient of E by $\langle(a, 0)\rangle$ gives an isogeny

$$
\phi: E \rightarrow E^{\prime}=E /\langle(a, 0)\rangle,
$$

where

$$
E^{\prime}: \mathrm{y}^{2}=\mathrm{x}^{3}+\left(-\left(4 \mathrm{a}+2 \mathrm{~b}_{1}\right)\right) \mathrm{x}^{2}+\left(\mathrm{b}_{1}^{2}-4 \mathrm{~b}_{0}\right) \mathrm{x}
$$

And where ϕ maps (x, y) to

$$
\left(\frac{x^{3}-\left(a-b_{1}\right) x^{2}-\left(b_{1} a-b_{0}\right) x-b_{0} a}{x-a}, \frac{\left(\mathrm{x}^{2}-(2 \mathrm{a}) \mathrm{x}-\left(\mathrm{b}_{1} \mathrm{a}+\mathrm{b}_{0}\right)\right) \mathrm{y}}{(\mathrm{x}-\mathrm{a})^{2}}\right)
$$

Velu's formulas

Given curve coefficients a, b for E, and all of the x-coordinates x_{i} of the subgroup $G \in E$, Velu's formulas output a^{\prime}, b^{\prime} for E^{\prime}, and the map

$$
\begin{gathered}
\phi: E \rightarrow E^{\prime}, \\
(x, y) \mapsto\left(\frac{f_{1}(x, y)}{g_{1}(x, y)}, \frac{f_{2}(x, y)}{g_{2}(x, y)}\right)
\end{gathered}
$$

Example, cont.

$G=E[3]$

- Recall $E / \mathbb{F}_{11}: y^{2}=x^{3}+4$ with $\# E\left(\mathbb{F}_{11}\right)=12$
- Consider [3] : $E \rightarrow E$, the multiplication-by-3 endomorphism
- $G=\operatorname{ker}([3])$, which is not cyclic
- Conversely, given the subgroup G, the unique isogeny ϕ with $\operatorname{ker}(\phi)=G$ turns out to be the endormorphism $\phi=[3]$
- But what happens if we instead take G as one
 of the cyclic subgroups of order 3?

Example, cont. $E / \mathbb{F}_{11}: y^{2}=x^{3}+4$

$E_{1}, E_{2}, E_{3}, E_{4}$ all 3 -isogenous to E, but what's the relation to each other?

Isomorphisms and isogenies

- Fact 1: E_{1} and E_{2} isomorphic iff $j\left(E_{1}\right)=j\left(E_{2}\right)$
- Fact 2: E_{1} and E_{2} isogenous iff $\# E_{1}=\# E_{2}$ (Tate)
- Fact 3: $q+1-2 \sqrt{q} \leq \# E\left(\mathbb{F}_{q}\right) \leq q+1+2 \sqrt{q}$ (Hasse)

Upshot for fixed q
$O(\sqrt{q})$ isogeny classes
$O(q)$ isomorphism classes

Supersingular curves

- E / \mathbb{F}_{q} with $q=p^{n}$ supersingular iff $E[p]=\{\infty\}$
- Fact: all supersingular curves can be defined over $\mathbb{F}_{p^{2}}$
- Let $S_{p^{2}}$ be the set of supersingular j-invariants

$$
\text { Theorem: } \# S_{p^{2}}=\left\lfloor\frac{p}{12}\right\rfloor+b, \quad b \in\{0,1,2\}
$$

The supersingular isogeny graph

- We are interested in the set of supersingular curves (up to isomorphism) over a specific field
- Thm (Mestre): all supersingular curves over $\mathbb{F}_{p^{2}}$ in same isogeny class
- Fact (see previous slides): for every prime ℓ not dividing p, there exists $\ell+1$ isogenies of degree ℓ originating from any supersingular curve

Upshot: immediately leads to $(\ell+1)$ directed regular graph $X\left(S_{p^{2}}, \ell\right)$

E.g. a supersingular isogeny graph

- Let $p=241, \mathbb{F}_{p^{2}}=\mathbb{F}_{p}[w]=\mathbb{F}_{p}[x] /\left(x^{2}-3 x+7\right)$
- $\# S_{p^{2}}=20$
- $S_{p^{2}}=\{93,51 w+30,190 w+183,240,216,45 w+211,196 w+$ $105,64,155 w+3,74 w+50,86 w+227,167 w+31,175 w+237$, $66 w+39,8,23 w+193,218 w+21,28,49 w+112,192 w+18\}$

Supersingular isogeny graph for $\ell=2: X\left(S_{241^{2}}, 2\right)$

Supersingular isogeny graph for $\ell=3: X\left(S_{241^{2}}, 3\right)$

Supersingular isogeny graphs are Ramanujan graphs

Rapid mixing property: Let S be any subset of the vertices of the graph G, and x be any vertex in G. A "long enough" random walk will land in S with probability at least $\frac{|S|}{2|G|^{\text {. }}}$.

See De Feo, Jao, Plut (Prop 2.1) for precise formula describing what's "long enough"

Part 1:
 Motivation

Part 2:

Preliminaries

Part 3:

SIDH

SIDH: history

- 1999: Couveignes gives talk "Hard homogenous spaces" (eprint.iacr.org/2006/291)
- 2006 (OIDH): Rostovsev and Stolbunov propose ordinary isogeny DH
- 2010 (OIDH break): Childs-Jao-Soukharev give quantum subexponential alg.
- 2011 (SIDH): Jao and De Feo fix by choosing supersingular curves

Crucial difference: supersingular (i.e., non-ordinary) endomorphism ring is not commutative (resists above attack)

. WARNING

DO NOT BE DETERRED

 BY THE WORD SUPERSINGULAR
W. Castryck (GIF): "Elliptic curves are dead: long live elliptic curves" https://www.esat.kuleuven.be/cosic/?p=7404

SIDH: in a nutshell

SIDH: in a nutshell

Key: Alice sends her isogeny evaluated at Bob's generators, and vice versa

$$
E_{A} /\left\langle R_{A}+\left[s_{B}\right] S_{A}\right\rangle \cong E_{0} /\left\langle P_{A}+\left[s_{A}\right] Q_{A}, P_{B}+\left[s_{B}\right] Q_{B}\right\rangle \cong E_{B} /\left\langle R_{B}+\left[s_{A}\right] S_{B}\right\rangle
$$

- Why $E^{\prime}=E /\langle P+[s] Q\rangle$, etc?

$E[n] \cong \mathbb{Z}_{n} \times \mathbb{Z}_{n}$

(n prime depicted below)
$n+1$ cyclic subgroups order n

- Why not just $E^{\prime}=E /\langle[s] Q\rangle$?... because here E^{\prime} is \approx independent of s
- Need two-dimensional basis to span two-dimensional torsion
- Every different s now gives a different order n subgroup, i.e., kernel, i.e. isogeny
- Composite same thing, just uglier picture

- Why $E^{\prime}=E /\langle P+[s] Q\rangle$, etc?

$E[n] \cong \mathbb{Z}_{n} \times \mathbb{Z}_{n}$

- Why not just $E^{\prime}=E /\langle[s] Q\rangle$? ... because here E^{\prime} is \approx independent of s
- Need two-dimensional basis to span two-dimensional torsion
- Every different s now gives a different order n subgroup, i.e., kernel, i.e. isogeny
- Composite same thing, just uglier picture

- Why $E^{\prime}=E /\langle P+[s] Q\rangle$, etc?

$E[n] \cong \mathbb{Z}_{n} \times \mathbb{Z}_{n}$

(n prime depicted below) $n+1$ cyclic subgroups order n

- Why not just $E^{\prime}=E /\langle[s] Q\rangle$?... because here E^{\prime} is \approx independent of s
- Need two-dimensional basis to span two-dimensional torsion
- Every different s now gives a different order n subgroup, i.e., kernel, i.e. isogeny
- Composite same thing, just uglier picture

- Why $E^{\prime}=E /\langle P+[s] Q\rangle$, etc?

$E[n] \cong \mathbb{Z}_{n} \times \mathbb{Z}_{n}$

(n prime depicted below) $n+1$ cyclic subgroups order n

- Why not just $E^{\prime}=E /\langle[s] Q\rangle$?... because here E^{\prime} is \approx independent of s
- Need two-dimensional basis to span two-dimensional torsion
- Every different s now gives a different order n subgroup, i.e., kernel, i.e. isogeny
- Composite same thing, just uglier picture

Exploiting smooth degree isogenies

- Computing isogenies of prime degree ℓ at least $O(\ell)$, e.g., Velu's formulas need the whole kernel specified
- We (obviously) need exp. set of kernels, meaning exp. sized isogenies, which we can't compute unless they're smooth
- Here (for efficiency/ease) we will only use isogenies of degree ℓ^{e} for $\ell \in\{2,3\}$

Exploiting smooth degree isogenies

- Suppose our secret point R_{0} has order ℓ^{5} with, e.g., $\ell \in\{2,3\}$, we need $\phi: E \rightarrow E /\left\langle R_{0}\right\rangle$
- Could compute all ℓ^{5} elements in kernel (but only because exp is 5)
- Better to factor $\phi=\phi_{4} \phi_{3} \phi_{2} \phi_{1} \phi_{0}$ where all ϕ_{i} have degree $\boldsymbol{\ell}$, and

$$
\phi_{4}=E_{4} \rightarrow E_{4} /\left\langle R_{4}\right\rangle .
$$

$$
\begin{aligned}
& \phi_{0}=E_{0} \rightarrow E_{0} /\left\langle\left[\ell^{4}\right] R_{0}\right\rangle, R_{1}=\phi_{0}\left(R_{0}\right) \text {; } \\
& \phi_{1}=E_{1} \rightarrow E_{1} /\left\langle\left[\ell^{3}\right] R_{1}\right\rangle, R_{2}=\phi_{1}\left(R_{1}\right) ; \quad\left[\ell^{5}\right] R_{0} \\
& \phi_{2}=E_{2} \rightarrow E_{2} /\left\langle\left[\ell^{2}\right] R_{2}\right\rangle, R_{3}=\phi_{2}\left(R_{2}\right) ; \\
& \begin{array}{cccc}
{\left[\ell^{4}\right] R_{1}} & {\left[\ell^{3}\right] R_{2}} & {\left[\ell^{2}\right] R_{3}} & {\left[\ell^{1}\right] R_{4}}
\end{array}
\end{aligned}
$$

SIDH: security

- Setting: supersingular elliptic curves $E / \mathbb{F}_{p^{2}}$ where p is a large prime
- Hard problem: Given $P, Q \in E$ and $\phi(P), \phi(Q) \in \phi(E)$, compute ϕ (where ϕ has fixed, smooth, public degree)
- Best (known) attacks: classical $O\left(p^{1 / 4}\right)$ and quantum $O\left(p^{1 / 6}\right)$
- Confidence: above complexities are optimal for (above generic) claw attack

(Our) parameters

$$
p=2^{372} 3^{239}-1
$$

$p \approx 2^{768}$ gives ≈ 192 bits classical and 128 bits quantum security against best known attacks

$$
\begin{gathered}
E_{0} / \mathbb{F}_{p^{2}}: y^{2}=x^{3}+x \\
\# E_{0}=(p+1)^{2}=\left(2^{372} 3^{239}\right)^{2} \quad \text { Easy ECDLP } \\
P_{A}, P_{B} \in E_{0}\left(\mathbb{F}_{p}\right), Q_{A}=\tau\left(P_{A}\right), Q_{B}=\tau\left(P_{B}\right) 376 \text { bytes } \\
48 \text { bytes } s_{A}, s_{B} \in \mathbb{Z} \\
\mathrm{PK}=[x(P), x(Q), x(Q-P)] \in\left(\mathbb{F}_{p^{2}}\right)^{3} 564 \text { bytes } \\
188 \text { bytes } j\left(E_{A B}\right) \in \mathbb{F}_{p^{2}}
\end{gathered}
$$

Point and isogeny arithmetic in \mathbb{P}^{1}

ECDH: move around different points on a fixed curve. SIDH: move around different points and different curves

$$
\begin{gathered}
E_{\mathrm{a}, \mathrm{~b}}: \quad b y^{2}=x^{3}+a x^{2}+x \\
(x, y) \leftrightarrow(X: Y: Z) \quad(a, b) \leftrightarrow(A: B: C) \\
E_{(\mathrm{A}: \mathrm{B}: \mathrm{C})}: \quad B Y^{2} Z=C X^{3}+A X^{2} Z+C X Z^{2}
\end{gathered}
$$

The Montgomery B coefficient only fixes the quadratic twist. Can ignore it in SIDH since $j(E)=j\left(E^{\prime}\right)$
\mathbb{P}^{1} point arithmetic (Montgomery): $(X: Z) \mapsto\left(X^{\prime}: Z^{\prime}\right)$ \mathbb{P}^{1} isogeny arithmetic (this work): $\quad(A: C) \mapsto\left(A^{\prime}: C^{\prime}\right)$

Performance

comparison		our work	prior work
public key size	uncompressed	564	768
(bytes)	compressed	330	385
uncompressed speed (cc x 106)	Alice total	90	267
compressed speed (cc x 106)	Bob total	102	274
	Alice total	239	6887

(see papers for references and benchmarking details)

SIDH vs. lattice "DH" primitives

Name	Primitive	Full DH (ms)	PK size (bytes)
Frodo	LWE	2.600	11,300
NewHope	R-LWE	0.310	1,792
NTRU	NTRU	2.429	1,024
SIDH	Supersingular Isogeny	900	564

Table: ms for full DH round (Alice + Bob) on 2.6 GHz Intel Xeon i5 (Sandy Bridge) See "Frodo" for benchmarking details.

Compressed SIDH vs. lattice "DH" primitives

Name	Primitive	Full DH (ms)	PK size (bytes)
Frodo	LWE	2.600	11,300
NewHope	R-LWE	0.310	1,792
NTRU	NTRU	2.429	1,024
SIDH	Supersingular Isogeny	$\approx \mathbf{2 3 9 0}$	330

Compressed SIDH roughly 2-3 slower than uncompressed SIDH.

Further topics and recent work...

Validating public keys

- Issues regarding public key validation: Asiacrypt2016 paper by Galbraith-Petit-Shani-Ti
- NSA countermeasure: "Failure is not an option: standardization issues for PQ key agreement"
- Thus, library currently supports ephemeral DH only
- But all PQ key establishment (codes, lattice) suffer from this

BigMont: a strong SIDH+ECDH hybrid

- No clear frontrunner for PQ key exchange
- Hybrid particularly good idea for (relatively young) SIDH
- Hybrid particularly easy for SIDH

There are exponentially many A such that $E_{A} / \mathbb{F}_{p^{2}}: y^{2}=x^{3}+A x^{2}+x$ is in the supersingular isogeny class. These are all unsuitable for ECDH.

There are also exponentially many A such that $E_{A} / \mathbb{F}_{p^{2}}: y^{2}=x^{3}+A x^{2}+x$ is suitable for ECDH, e.g. $A=624450$.

SIDH vs. SIDH+ECDH hybrid

comparison		SIDH	SIDH+ECDH	
bit security (hard problem)	classical	192 (SSDDH)	384 (ECDHP)	
	quantum	128 (SSDDH)	128 (SSDDH)	
	public key size (bytes)		564	658
Speed $\left(\right.$ (cc $\left.\times 10^{6}\right)$	Alice key gen.	46	52	
	Bob key gen.	52	58	
	Alice shared sec.	44	50	
	Bob shared sec.	50	57	

Colossal amount of classical security almost-for-free (\approx no more code)

Simple, compact, (relatively) efficient isogenies of arbitrary degree

C-Hisil: For odd order $\ell=2 d+1$ point P on Montgomery curve E, map

$$
\phi: E \rightarrow E^{\prime}, \quad(x, y) \mapsto\left(\phi_{x}(x), y \cdot \phi_{x}^{\prime}(x)\right)
$$

with

$$
\phi_{x}(x)=x \cdot \prod_{1 \leq i \leq d}\left(\frac{x \cdot x_{[i] P}-1}{x-x_{[i] P}}\right)^{2}
$$

is ℓ-isogeny with $\operatorname{ker}(\phi)=\langle P\rangle$, and moreover, E^{\prime} is Montgomery curve.

Arbitrary degree isogenies

Need not have $p=2^{i} 3^{j}-1$, can easily implement

$$
p=\left(\Pi q_{i}^{m_{i}}\right) \cdot\left(\Pi r_{j}^{n_{j}}\right)-1
$$

with $\operatorname{gcd}\left(\Pi q_{i}, \Pi r_{j}\right)=1$

Questions?

