
Craig Costello

An introduction to supersingular
isogeny-based cryptography

Summer School on Real-World Crypto and Privacy
June 8, 2017

Šibenik, Croatia 



https://www.microsoft.com/en-us/research/project/sidh-library/
SIDH library v2.0

Full version of Crypto’16 paper
(joint with P. Longa and M. Naehrig)

http://eprint.iacr.org/2016/413

Full version of Eurocrypt’17 paper
(joint with D. Jao, P. Longa, M. Naehrig, D. Urbanik, J. Renes)

http://eprint.iacr.org/2016/963

Preprint of recent work on flexible SIDH 
(joint with H. Hisil)

http://eprint.iacr.org/2017/504

Towards quantum-resistant cryptosystems from 
supersingular elliptic curve isogenies

LUCA DE FEO, DAVID JAO, JÉRÔME PLÛT
http://eprint.iacr.org/2011/506

https://www.microsoft.com/en-us/research/project/sidh-library/
http://eprint.iacr.org/2016/413
http://eprint.iacr.org/2016/963
http://eprint.iacr.org/2017/504
http://eprint.iacr.org/2011/506


W. Castryck (GIF): ”Elliptic curves are dead: long live elliptic curves” https://www.esat.kuleuven.be/cosic/?p=7404

https://www.esat.kuleuven.be/cosic/?p=7404


Part 1: Motivation

Part 2: Preliminaries

Part 3: SIDH



• Quantum computers break elliptic curves, finite 
fields, factoring, everything currently used for PKC

• Aug 2015: NSA announces plans to transition to 
quantum-resistant algorithms

• Feb 2016: NIST calls for quantum-secure 
submissions. Deadline Nov 30, 2017

Quantum computers ↔ Cryptopocalypse 



Post-quantum key exchange

This talk: supersingular isogenies

Which hard problem(s) to use now???



Diffie-Hellman(ish) instantiations

DH ECDH R-LWE
[BCNS’15, newhope, NTRU]

LWE
[Frodo]

SIDH
[DJP14, CLN16]

elements integers 𝑔
modulo prime

points 𝑃 in 

curve group

elements 𝑎 in ring 

𝑅 = ℤ𝑞 𝑥 /〈Φ𝑛 𝑥 〉
matrices 𝐴 in

ℤ𝑞
𝑛×𝑛

curves 𝐸 in

isogeny class

secrets exponents 𝑥 scalars 𝑘 small errors 𝑠, 𝑒 ∈ 𝑅 small 𝑠, 𝑒 ∈ ℤ𝑞
𝑛 isogenies 𝜙

computations 𝑔, 𝑥 ↦ 𝑔𝑥 𝑘, 𝑃 ↦ 𝑘 𝑃 𝑎, 𝑠, 𝑒 ↦ 𝑎𝑠 + 𝑒 𝐴, 𝑠, 𝑒 ↦ 𝐴𝑠 + 𝑒 𝜙, 𝐸 ↦ 𝜙(𝐸)

hard problem given 𝑔, 𝑔𝑥

find 𝑥
given 𝑃, 𝑘 𝑃

find 𝑘
given 𝑎, 𝑎𝑠 + 𝑒

find 𝑠
given 𝐴, 𝐴𝑠 + 𝑒

find 𝑠
given 𝐸, 𝜙(𝐸)

find 𝜙
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To construct degree 𝑛 extension field 𝔽𝑞𝑛 of a finite field 𝔽𝑞, take 𝔽𝑞𝑛 = 𝔽𝑞(𝛼)
where 𝑓 𝛼 = 0 and 𝑓(𝑥) is irreducible of degree 𝑛 in 𝔽𝑞[𝑥].

Extension fields

Example: for any prime 𝑝 ≡ 3 mod 4, can take 𝔽𝑝2 = 𝔽𝑝 𝑖 where 𝑖2 + 1 = 0



• Recall that every elliptic curve 𝐸 over a field 𝐾 with char 𝐾 > 3 can be 
defined by

𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏,

where  𝑎, 𝑏 ∈ 𝐾,  4𝑎3 + 27𝑏2 ≠ 0

• For any extension 𝐾′/𝐾, the set of 𝐾′-rational points forms a group with 
identity

• The 𝑗-invariant 𝑗 𝐸 = 𝑗 𝑎, 𝑏 = 1728 ⋅
4𝑎3

4𝑎3+27𝑏2
determines isomorphism 

class over ഥ𝐾

• E.g., 𝐸′: 𝑦2 = 𝑥3 + 𝑎𝑢2𝑥 + 𝑏𝑢3 is isomorphic to 𝐸 for all 𝑢 ∈ 𝐾∗

• Recover a curve from 𝑗: e.g., set 𝑎 = −3𝑐 and 𝑏 = 2𝑐 with 𝑐 = 𝑗/(𝑗 − 1728)

Elliptic Curves and 𝑗-invariants



Over 𝔽13, the curves 
𝐸1 ∶ 𝑦

2 = 𝑥3 + 9𝑥 + 8
and 

𝐸2 ∶ 𝑦
2 = 𝑥3 + 3𝑥 + 5

are isomorphic, since

𝑗 𝐸1 = 1728 ⋅
4⋅93

4⋅93+27⋅82
= 3 = 1728 ⋅

4⋅33

4⋅33+27⋅52
= 𝑗(𝐸2)

An isomorphism is given by 
𝜓 ∶ 𝐸1 → 𝐸2 ,         𝑥, 𝑦 ↦ 10𝑥, 5𝑦 ,
𝜓−1: 𝐸2 → 𝐸1, 𝑥, 𝑦 ↦ 4𝑥, 8𝑦 ,

noting that 𝜓 ∞1 = ∞2

Example



• The multiplication-by-𝑛 map: 
𝑛 ∶ 𝐸 → 𝐸, 𝑃 ↦ 𝑛 𝑃

• The 𝑛-torsion subgroup is the kernel of 𝑛
𝐸 𝑛 = 𝑃 ∈ 𝐸 ഥ𝐾 ∶ 𝑛 𝑃 = ∞

• Found as the roots of the 𝑛𝑡ℎ division polynomial 𝜓𝑛

• If char 𝐾 doesn’t divide 𝑛, then 
𝐸 𝑛 ≃ ℤ𝑛 × ℤ𝑛

Torsion subgroups



• Consider 𝐸/𝔽11: 𝑦
2 = 𝑥3 + 4 with #𝐸(𝔽11) = 12

• 3-division polynomial 𝜓3(𝑥) = 3𝑥4 + 4𝑥 partially
splits as 𝜓3 𝑥 = 𝑥 𝑥 + 3 𝑥2 + 8𝑥 + 9

• Thus, 𝑥 = 0 and 𝑥 = −3 give 3-torsion points.
The points (0,2) and (0,9) are in 𝐸 𝔽11 , but the 
rest lie in 𝐸(𝔽112)

• Write 𝔽112 = 𝔽11(𝑖) with 𝑖2 + 1 = 0. 
𝜓3 𝑥 splits over 𝔽112 as 
𝜓3 𝑥 = 𝑥 𝑥 + 3 𝑥 + 9𝑖 + 4 (𝑥 + 2𝑖 + 4)

• Observe 𝐸 3 ≃ ℤ3 × ℤ3 , i.e., 4 cyclic subgroups of order 3

Example (𝑛 = 3)



Subgroup isogenies

• Isogeny: morphism (rational map)
𝜙 ∶ 𝐸1 → 𝐸2
that preserves identity, i.e. 𝜙 ∞1 = ∞2

• Degree of (separable) isogeny is number of elements in kernel, 
same as its degree as a rational map

• Given finite subgroup 𝐺 ∈ 𝐸1, there is a unique curve 𝐸2 and 
isogeny 𝜙 ∶ 𝐸1 → 𝐸2 (up to isomorphism) having kernel 𝐺. Write 
𝐸2 = 𝜙(𝐸1) = 𝐸1/〈𝐺〉. 



Subgroup isogenies: special cases

• Isomorphisms are a special case of isogenies where the kernel is trivial 
𝜙 ∶ 𝐸1 → 𝐸2,     ker 𝜙 = ∞1

• Endomorphisms are a special case of isogenies where the domain and co-
domain are the same curve 

𝜙 ∶ 𝐸1 → 𝐸1, ker 𝜙 = 𝐺,          |𝐺| > 1

• Perhaps think of isogenies as a generalization of either/both: isogenies allow 
non-trivial kernel and allow different domain/co-domain 

• Isogenies are *almost* isomorphisms



Velu’s formulas

Given any finite subgroup of 𝐺 of 𝐸, we may form a quotient isogeny 

𝜙: 𝐸 → 𝐸′ = 𝐸/𝐺

with kernel 𝐺 using Velu’s formulas

Example: 𝐸 ∶ 𝑦2 = (𝑥2 + 𝑏1𝑥 + 𝑏0)(𝑥 − 𝑎). The point (𝑎, 0) has order 2; 
the quotient of 𝐸 by 〈 𝑎, 0 〉 gives an isogeny 

𝜙 ∶ 𝐸 → 𝐸′ = 𝐸/〈 𝑎, 0 〉,
where 

𝐸′ ∶ y2 = x3 + − 4a + 2b1 x2 + b1
2 − 4b0 x

And where 𝜙 maps 𝑥, 𝑦 to 
𝑥3− 𝑎−𝑏1 𝑥2− 𝑏1𝑎−𝑏0 𝑥−𝑏0𝑎

𝑥−𝑎
,
x2− 2a x− b1a+b0 y

x−a 2



Velu’s formulas

Given curve coefficients 𝑎, 𝑏 for 𝐸, and all of the 𝑥-coordinates 𝑥𝑖 of the 
subgroup 𝐺 ∈ 𝐸, Velu’s formulas output 𝑎′, 𝑏′ for 𝐸′, and the map

𝜙 ∶ 𝐸 → 𝐸′,

𝑥, 𝑦 ↦
𝑓1 𝑥,𝑦

𝑔1 𝑥,𝑦
,
𝑓2 𝑥,𝑦

𝑔2 𝑥,𝑦



• Recall 𝐸/𝔽11: 𝑦
2 = 𝑥3 + 4 with #𝐸(𝔽11) = 12

• Consider 3 ∶ 𝐸 → 𝐸, the multiplication-by-3 
endomorphism

• 𝐺 = ker 3 , which is not cyclic

• Conversely, given the subgroup 𝐺,
the unique isogeny 𝜙 with ker 𝜙 = 𝐺 turns 
out to be the endormorphism 𝜙 = [3]

• But what happens if we instead take 𝐺 as one 
of the cyclic subgroups of order 3?

𝐺 = 𝐸[3]Example, cont.



Example, cont.  𝐸/𝔽11: 𝑦
2= 𝑥3 + 4

𝜙2

𝜙4

𝜙1

𝜙3

𝐸2/𝔽11: 𝑦
2= 𝑥3 + 5𝑥

𝐸4/𝔽112: 𝑦
2= 𝑥3 + (4𝑖 + 3)𝑥

𝐸1/𝔽11: 𝑦
2= 𝑥3 + 2

𝐸3/𝔽112: 𝑦
2= 𝑥3 + 7𝑖 + 3 𝑥

𝐸1, 𝐸2, 𝐸3, 𝐸4 all 3-isogenous to 𝐸, but what’s the relation to each other?



• Fact 1: 𝐸1 and 𝐸2 isomorphic iff 𝑗 𝐸1 = 𝑗(𝐸2)

• Fact 2: 𝐸1 and 𝐸2 isogenous iff #𝐸1 = #𝐸2 (Tate)

• Fact 3: 𝑞 + 1 − 2 𝑞 ≤ #𝐸 𝔽𝑞 ≤ 𝑞 + 1 + 2 𝑞 (Hasse)

Upshot for fixed 𝑞

𝑂 𝑞 isogeny classes
𝑂(𝑞) isomorphism classes

Isomorphisms and isogenies



• 𝐸/𝔽𝑞 with 𝑞 = 𝑝𝑛 supersingular iff 𝐸 𝑝 = {∞}

• Fact: all supersingular curves can be defined over 𝔽𝑝2

• Let 𝑆𝑝2 be the set of supersingular 𝑗-invariants

Supersingular curves

Theorem: #𝑆𝑝2 =
𝑝

12
+ 𝑏,   𝑏 ∈ {0,1,2}



• We are interested in the set of supersingular curves (up to isomorphism) 
over a specific field

• Thm (Mestre): all supersingular curves over 𝔽𝑝2 in same isogeny class

• Fact (see previous slides): for every prime ℓ not dividing 𝑝, there exists
ℓ + 1 isogenies of degree ℓ originating from any supersingular curve

The supersingular isogeny graph

Upshot: immediately leads to (ℓ + 1) directed regular graph 𝑋(𝑆𝑝2 , ℓ)



• Let 𝑝 = 241, 𝔽𝑝2 = 𝔽𝑝 𝑤 = 𝔽𝑝 𝑥 /(𝑥2 − 3𝑥 + 7)

• #𝑆𝑝2 = 20

• 𝑆𝑝2 = {93, 51𝑤 + 30, 190𝑤 + 183, 240, 216, 45𝑤 + 211, 196𝑤 +
105, 64, 155𝑤 + 3, 74𝑤 + 50, 86𝑤 + 227, 167𝑤 + 31, 175𝑤 + 237,
66𝑤 + 39, 8, 23𝑤 + 193, 218𝑤 + 21, 28, 49𝑤 + 112, 192𝑤 + 18}

E.g. a supersingular isogeny graph

Credit to Fre Vercauteren for example and pictures…



Supersingular isogeny graph for ℓ = 2:  𝑋(𝑆2412, 2)



Supersingular isogeny graph for ℓ = 3:  𝑋(𝑆2412, 3)



Rapid mixing property: Let 𝑆 be any subset of the vertices of the 
graph 𝐺, and 𝑥 be any vertex in 𝐺. A “long enough” random 

walk will land in 𝑆 with probability at least 
𝑆

2|𝐺|
.

Supersingular isogeny graphs are Ramanujan graphs

See De Feo, Jao, Plut (Prop 2.1) for precise formula describing what’s “long enough”
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SIDH: history

• 1999: Couveignes gives talk “Hard homogenous spaces” (eprint.iacr.org/2006/291) 

• 2006 (OIDH): Rostovsev and Stolbunov propose ordinary isogeny DH

• 2010 (OIDH break): Childs-Jao-Soukharev give quantum subexponential alg. 

• 2011 (SIDH): Jao and De Feo fix by choosing supersingular curves

Crucial difference: supersingular (i.e., non-ordinary) endomorphism ring             

is not commutative (resists above attack) 

http://eprint.iacr.org/2006/291




W. Castryck (GIF): ”Elliptic curves are dead: long live elliptic curves” https://www.esat.kuleuven.be/cosic/?p=7404

https://www.esat.kuleuven.be/cosic/?p=7404


𝐸0 𝐸𝐴 = 𝐸0/〈𝐴〉

𝐸0/〈𝐵〉 = 𝐸𝐵 𝐸𝐴𝐵 = 𝐸0/〈𝐴, 𝐵〉

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′

params public private

𝐸’s are isogenous curves 

𝑃’s, 𝑄’s, 𝑅’s, 𝑆’s are points

SIDH: in a nutshell



𝐸0 𝐸𝐴 = 𝐸0/〈𝑃𝐴 + 𝑠𝐴 𝑄𝐴〉

𝐸0/〈𝑃𝐵 + 𝑠𝐵 𝑄𝐵〉 = 𝐸𝐵 𝐸𝐴𝐵 = 𝐸0/〈𝐴, 𝐵〉

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′

params public private

𝐸’s are isogenous curves 

𝑃’s, 𝑄’s, 𝑅’s, 𝑆’s are points

SIDH: in a nutshell

(𝜙𝐵(𝑃𝐴), 𝜙𝐵(𝑄𝐴)) = (𝑅𝐵 , 𝑆𝐵)

(𝑅𝐴, 𝑆𝐴) = (𝜙𝐴(𝑃𝐵), 𝜙𝐴(𝑄𝐵))

𝐸𝐴/〈𝑅𝐴 + 𝑠𝐵 𝑆𝐴〉 ≅ 𝐸0/〈𝑃𝐴 + 𝑠𝐴 𝑄𝐴 , 𝑃𝐵 + 𝑠𝐵 𝑄𝐵〉 ≅ 𝐸𝐵/〈𝑅𝐵 + 𝑠𝐴 𝑆𝐵〉

Key: Alice sends her isogeny evaluated at Bob’s generators, and vice versa



• Why 𝐸′ = 𝐸/〈𝑃 + 𝑠 𝑄〉 , etc?

• Why not just 𝐸′ = 𝐸/〈 𝑠 𝑄〉 ?... 
because here 𝐸′ is ≈ independent of 𝑠

• Need two-dimensional basis to span 
two-dimensional torsion

• Every different 𝑠 now gives a different 
order 𝑛 subgroup, i.e., kernel, i.e. isogeny

• Composite same thing, just uglier picture

𝐸 𝑛 ≅ ℤ𝑛 × ℤ𝑛
(𝑛 prime depicted below)

𝑛 + 1 cyclic subgroups order n 

𝑃

[𝑠]𝑄
𝑄
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because here 𝐸′ is ≈ independent of 𝑠
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order 𝑛 subgroup, i.e., kernel, i.e. isogeny

• Composite same thing, just uglier picture

𝐸 𝑛 ≅ ℤ𝑛 × ℤ𝑛
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𝑃

[𝑠]𝑄

𝑄
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• Why 𝐸′ = 𝐸/〈𝑃 + 𝑠 𝑄〉 , etc?

• Why not just 𝐸′ = 𝐸/〈 𝑠 𝑄〉 ?... 
because here 𝐸′ is ≈ independent of 𝑠

• Need two-dimensional basis to span 
two-dimensional torsion

• Every different 𝑠 now gives a different 
order 𝑛 subgroup, i.e., kernel, i.e. isogeny

• Composite same thing, just uglier picture

𝐸 𝑛 ≅ ℤ𝑛 × ℤ𝑛
(𝑛 prime depicted below)

𝑛 + 1 cyclic subgroups order n 

𝑃

𝑄



• Computing isogenies of prime degree ℓ at least 𝑂 ℓ , e.g., Velu’s
formulas need the whole kernel specified

• We (obviously) need exp. set of kernels, meaning exp. sized 
isogenies, which we can’t compute unless they’re smooth

• Here (for efficiency/ease) we will only use isogenies of degree ℓ𝑒

for ℓ ∈ {2,3}

Exploiting smooth degree isogenies 



Exploiting smooth degree isogenies 

(credit DJP’14 for picture, and for a much better way to traverse the tree)

• Suppose our secret point 𝑅0 has order ℓ5 with, 
e.g., ℓ ∈ {2,3}, we need 𝜙 ∶ 𝐸 → 𝐸/〈𝑅0〉

• Could compute all ℓ5 elements in kernel 
(but only because exp is 5) 

• Better to factor 𝜙 = 𝜙4𝜙3𝜙2𝜙1𝜙0, 
where all 𝜙𝑖 have degree ℓ, and

𝜙0 = 𝐸0 → 𝐸0/〈 ℓ
4 𝑅0〉 , 𝑅1 = 𝜙0 𝑅0 ;

𝜙1 = 𝐸1 → 𝐸1/〈 ℓ
3 𝑅1〉 , 𝑅2 = 𝜙1(𝑅1);

𝜙2 = 𝐸2 → 𝐸2/〈 ℓ
2 𝑅2〉 , 𝑅3 = 𝜙2(𝑅2);

𝜙3 = 𝐸3 → 𝐸3/〈 ℓ
1 𝑅3〉 , 𝑅4 = 𝜙3(𝑅3);

𝜙4 = 𝐸4 → 𝐸4/〈𝑅4〉 .



SIDH: security

• Setting: supersingular elliptic curves 𝐸/𝔽𝑝2 where 𝑝 is a large prime

• Hard problem: Given 𝑃, 𝑄 ∈ 𝐸 and 𝜙 𝑃 ,𝜙 𝑄 ∈ 𝜙(𝐸), compute 𝜙
(where 𝜙 has fixed, smooth, public degree) 

• Best (known) attacks: classical 𝑂(𝑝1/4) and quantum 𝑂(𝑝1/6)

• Confidence: above complexities are optimal for (above generic) claw attack



𝑝 = 23723239 − 1

(Our) parameters

𝑝 ≈ 2768 gives ≈ 192 bits classical and 128 bits quantum security against best known attacks

𝐸0 /𝔽𝑝2 ∶ 𝑦
2 = 𝑥3 + 𝑥

#𝐸0 = 𝑝 + 1 2 = 23723239 2 Easy ECDLP

𝑃𝐴, 𝑃𝐵 ∈ 𝐸0 𝔽𝑝 , 𝑄𝐴 = 𝜏 𝑃𝐴 , 𝑄𝐵 = 𝜏 𝑃𝐵

PK = 𝑥 𝑃 , 𝑥 𝑄 , 𝑥 𝑄 − 𝑃 ∈ 𝔽𝑝2
3

564 bytes

376 bytes

params public private

48 bytes 𝑠𝐴, 𝑠𝐵 ∈ ℤ

188 bytes 𝑗(𝐸𝐴𝐵) ∈ 𝔽𝑝2



𝐸a,b ∶ 𝑏𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑥

Point and isogeny arithmetic in ℙ1

𝐸(A:B:C) ∶ 𝐵𝑌2𝑍 = 𝐶𝑋3 + 𝐴𝑋2𝑍 + 𝐶𝑋𝑍2

𝑥, 𝑦 ↔ (𝑋 ∶ 𝑌 ∶ 𝑍) 𝑎, 𝑏 ↔ (𝐴 ∶ 𝐵 ∶ 𝐶)

ℙ1 point arithmetic (Montgomery): 𝑋 ∶ 𝑍 ↦ (𝑋′: 𝑍′)

ℙ1 isogeny arithmetic (this work):    𝐴 ∶ 𝐶 ↦ 𝐴′: 𝐶′

ECDH: move around different points on a fixed curve. 

SIDH:  move around different points and different curves

The Montgomery 
𝐵 coefficient only 
fixes the quadratic 
twist. Can ignore it 

in SIDH since 
𝑗 𝐸 = 𝑗(𝐸′)



Performance

comparison our work prior work

public key size

(bytes) 

uncompressed 564 768

compressed 330 385

uncompressed 

speed (cc x 106)

Alice total 90 267

Bob total 102 274

compressed 

speed (cc x 106)

Alice total 239 6887

Bob total 263 8514

(see papers for references and benchmarking details) 



SIDH vs. lattice “DH” primitives

Table: ms for full DH round (Alice + Bob) on 2.6GHz Intel Xeon i5 (Sandy Bridge) 
See “Frodo” for benchmarking details.

Name Primitive Full DH

(ms)

PK size 

(bytes)

Frodo LWE 2.600 11,300 

NewHope R-LWE 0.310 1,792

NTRU NTRU 2.429 1,024

SIDH Supersingular

Isogeny

900 564

All numbers above are for plain C implementations (e.g., SIDH w. assembly optimizations is 56ms)



Compressed SIDH vs. lattice “DH” primitives

Name Primitive Full DH

(ms)

PK size 

(bytes)

Frodo LWE 2.600 11,300 

NewHope R-LWE 0.310 1,792

NTRU NTRU 2.429 1,024

SIDH Supersingular

Isogeny

≈ 2390 330

Compressed SIDH roughly 2-3 slower than uncompressed SIDH.



Further topics and recent work…



• Issues regarding public key validation: Asiacrypt2016 paper by 
Galbraith-Petit-Shani-Ti 

• NSA countermeasure: “Failure is not an option: standardization 
issues for PQ key agreement”

• Thus, library currently supports ephemeral DH only

• But all PQ key establishment (codes, lattice) suffer from this

Validating public keys



• No clear frontrunner for PQ key exchange 

• Hybrid particularly good idea for (relatively young) SIDH

• Hybrid particularly easy for SIDH

BigMont: a strong SIDH+ECDH hybrid

There are exponentially many 𝐴 such that 𝐸𝐴 /𝔽𝑝2: 𝑦
2 = 𝑥3 + 𝐴𝑥2 + 𝑥 is in the 

supersingular isogeny class. These are all unsuitable for ECDH. 

There are also exponentially many 𝐴 such that 𝐸𝐴 /𝔽𝑝2: 𝑦
2 = 𝑥3 + 𝐴𝑥2 + 𝑥 is 

suitable for ECDH, e.g. 𝐴 = 624450. 



SIDH vs. SIDH+ECDH hybrid

comparison SIDH SIDH+ECDH

bit security

(hard problem)

classical 192 (SSDDH) 384 (ECDHP)

quantum 128 (SSDDH) 128 (SSDDH)

public key size (bytes) 564 658

Speed

(cc x 106)

Alice key gen. 46 52

Bob key gen. 52 58

Alice shared sec. 44 50

Bob shared sec. 50 57

Colossal amount of classical security almost-for-free (≈ no more code)  



C-Hisil: For odd order ℓ = 2𝑑 + 1 point 𝑃 on Montgomery curve 𝐸, map          
𝜙 ∶ 𝐸 → 𝐸′, 𝑥, 𝑦 ↦ (𝜙𝑥 𝑥 , 𝑦 ⋅ 𝜙𝑥

′ 𝑥 )

Simple, compact, (relatively) efficient isogenies of 
arbitrary degree

with

𝜙𝑥 𝑥 = 𝑥 ⋅ ෑ

1≤𝑖≤𝑑

𝑥 ⋅ 𝑥 𝑖 𝑃 − 1

𝑥 − 𝑥 𝑖 𝑃

2

is ℓ-isogeny with ker 𝜙 = ⟨𝑃⟩, and moreover, 𝐸′ is Montgomery curve. 



Need not have 𝑝 = 2𝑖3𝑗 − 1, can easily implement

𝑝 = ∏𝑞𝑖
𝑚𝑖 ⋅ ∏𝑟

𝑗

𝑛𝑗 − 1

with gcd ∏𝑞𝑖 , ∏𝑟𝑗 = 1

Arbitrary degree isogenies



Questions?


