Post-quantum key exchange for the Internet based on lattices

Craig Costello

Talk at MSR India Bangalore, India December 21, 2016

Microsoft[®] Research

Based on...

J. Bos, C. Costello, M. Naehrig, D. Stebila Post-Quantum Key Exchange for the TLS Protocol from the Ring Learning with Errors Problem. IEEE S&P 2015, pp. 553-570

J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan, D. Stebila Frodo: Take off the Ring! Practical, Quantum-Secure Key Exchange from LWE. ACM-CCS 2016. pp. 1006-1018

Part 1: Motivation

Part 2: Lattice basics

Part 3: PQ key exchange based on (R)LWE

Diffie-Hellman key exchange

q =

58096059953699580628595025333045743706869751763628952366614861522872037309971102257373360445331184072513261577549805174439905295945400471216628856721870324010321116397 90595408050123102096390117507487600170953607342349457574162729948560133086169585299583046776370191815940885283450612858638982717634572948835466388795543116154464463301 99254382340016292057090751175533888161918987295591531536698701292267685465517437915790823154844634780260102891718032495396075041899485513811126977307478969074857043710 716150121315922024556759241239013152919710956468406379442914941614357107914462567329693649

q = 123456789

= g^b (mod a

b =

197496648183227193286262018614250555971909799762533760654008147994875775445667054218578105133138217497206890599554928429450667899476 854668595594034093493637562451078938296960313488696178848142491351687253054602202966247046105770771577248321682117174246128321195678 (mod *a*) 799049446508224661850168149957401474638456716624401906701394472447015052569417746372185093302535739383791980070572381421729029651639 304234361268764971707763484300668923972868709121665568669830978657804740157916611563508569886847487772676671207386096152947607114559 6052422101474898256696660124195726100495725510022002932814218768060112310763455404567248761396399633344901857872119208518550803791724

411604662069593306683228525653441872410777999220572079993574397237156368762038378332742471939666544968793817819321495269833613169937 705254016469773509936925361994895894163065551105161929613139219782198757542984826465893457768888915561514505048091856159412977576049 4073238447199488070126873048860279221761629281961046255219584327714817248626243962413613075956770018017385724999495117779149416882188

a =

a^a

=

 $q^{ab} =$ 419999231378970715307039317876258453876701124543849520979430233302777503265010724513551209279573183234934359636696506

ECDH key exchange

 $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$

p = 115792089210356248762697446949407573530086143415290314195533631308867097853951

$$E/\mathbf{F}_p: y^2 = x^3 - 3x + k$$

#E = 115792089210356248762697446949407573529996955224135760342422259061068512044369

P = (48439561293906451759052585252797914202762949526041747995844080717082404635286, 36134250956749795798585127919587881956611106672985015071877198253568414405109)

[a] P = (84116208261315898167593067868200525612344221886333785331584793435449501658416, 102885655542185598026739250172885300109680266058548048621945393128043427650740)

[b] P = (101228882920057626679704131545407930245895491542090988999577542687271695288383, 77887418190304022994116595034556257760807185615679689372138134363978498341594)

 $\begin{array}{ll} 89130644591246033577639\\ 77064146285502314502849\\ 28352556031837219223173\\ 24614395 \end{array} \quad [ab] P = (10122888292005)\\ 77887418190304\\ 77887418190304\\ \end{array}$

[ab]P = (101228882920057626679704131545407930245895491542090988999577542687271695288383, 77887418190304022994116595034556257760807185615679689372138134363978498341594)

b =10095557463932786418806 93831619070803277191091 90584053916797810821934 05190826

Quantum computers ↔ Cryptopocalypse

• Quantum computers break elliptic curves, finite fields, factoring, everything currently used for PKC

• Aug 2015: NSA announces plans to transition to quantum-resistant algorithms

National Institute of Standards and Technology 17 Dec 2016: NIST finalizes calls for quantum-secure submissions. Deadline: Nov 30, 2017. <u>http://csrc.nist.gov/groups/ST/post-quantum-crypto/</u>

Cryptopocalypse now?

x = how long information needs to be secure

y = how long it takes to deploy PQ crypto

z = how far away is a quantum computer

if x + y > z, we're screwed!

Real-world (e.g., Internet/TLS) cryptography in one slide (oversimplified)

- Public-key cryptography used to

 (1) establish a shared secret key (e.g., Diffie-Hellman key exchange)
 (2) authenticate one another (e.g., digital signatures)
- Symmetric key cryptography uses shared secret to encrypt/authenticate the subsequent traffic (e.g., block ciphers, AES/DES, stream ciphers, MACs)
- Hash functions used throughout (e.g., SHA's, Keccak)

Post-quantum key exchange

Quantum-hard problem(s) for key exchange???

^{Sogenies,} This talk: lattice problems Multivariate eq.s?

Part 1: Motivation

Part 2: Lattice basics

Part 3: PQ key exchange based on (R)LWE

Lattices

- Basis $\boldsymbol{b_1}, \dots, \boldsymbol{b_n} \in \mathbb{R}^n$
- Lattice $\boldsymbol{L} = \{a_1\boldsymbol{b_1} + \dots + a_n\boldsymbol{b_n} : a_i \in \mathbb{Z}\}$

Lattices

- Basis $\boldsymbol{b_1}, \dots, \boldsymbol{b_n} \in \mathbb{R}^n$
- Lattice $\boldsymbol{L} = \{a_1\boldsymbol{b_1} + \dots + a_n\boldsymbol{b_n} : a_i \in \mathbb{Z}\}$
- Bases not unique $\boldsymbol{L} = \sum a_i \boldsymbol{v_i}$

• e.g.,
$$b_1 = (-2, 1), b_2 = (10,6)$$

 $v_1 = (4, -3), v_2 = (2,4)$

Lattices

- Basis $\boldsymbol{b_1}, \dots, \boldsymbol{b_n} \in \mathbb{R}^n$
- Lattice $\boldsymbol{L} = \{a_1\boldsymbol{b_1} + \dots + a_n\boldsymbol{b_n} : a_i \in \mathbb{Z}\}$
- Bases not unique $\boldsymbol{L} = \sum a_i \boldsymbol{v_i}$
- e.g., $b_1 = (-2, 1), b_2 = (10,6)$ $v_1 = (4, -3), v_2 = (2,4)$ $\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ $b_i \qquad v_i \qquad \det = \pm 1$
- Invariant $det(L) = |det(b_i)| = |det(v_i)|$

Hard Lattice Problem #1: Shortest Vector Problem (SVP $_{\nu}$)

SVP: Given lattice $L = \{v_1, v_2\}$, find short vector $|s| \le \gamma \cdot \lambda(L)$ ($\gamma = 1$ means shortest vector)

Hard Lattice Problem #1: Shortest Vector Problem (SVP $_{\gamma}$)

SVP_{γ} is NP-hard for $\gamma = O(1)$

 SVP_{γ} is P for $\gamma = 2^{\Omega(n)}$

Hard Lattice Problem #2: Closest Vector Problem (CVP_d)

 CVP_d : Given lattice $L = \{v_1, v_2\}$ and target vector $v \notin L$ within distance d, find the closest lattice point

SVP in dimension 10

 $L = \{b_1, \dots, b_{10}\}$

$b_1 =$	(7170	4881	-1954	3314	3373	-7930	-2481	9519	-9689	-3270)	
-	(-3191	-1872	4453	6941	-5097	5545	-9969	3475	1718	-3284)	
_	(-1352	-8990	500	3286	-8972	-214	2752	8083	1672	1415)	
•	(-3227	2727	7734	2358	-4539	3937	954	-9577	8350	-3447)	_10
	(1666	7326	2373	-6856	4071	1420	-3460	-8335	9275	4273)	$\in \mathbb{Z}^{10}$
•	(3058	-3064	-8459	1416	-2107	-8603	-1053	-4284	272	6617)	
•	(8067	8868	-6895	-7580	-1360	-2532	5588	-7695	7236	-7663)	
	(1557	-4692	-4264	9292	-8033	1663	-1516	6894	-2016	-8920)	
	(1510	-9994	-3330	555	-8660	8108	-9438	3032	9518	-1103)	
$b_{10} =$	(-3052	4834	969	-8352	-5097	-369	-8607	-4815	-2567	-2782)	

Shortest vector $\lambda(L) =$ (2528 2219 -59 1440 -756 4606 -2734 148 -75 4948)

 $\lambda(L) = b_1 - 14b_2 + 2b_4 + 13b_5 - 2b_6 - 9b_7 + 15b_8 + 3b_{10}$

Why are they hard?

- Gaussian elimination? Least-squares?
- What about Gram-Schmidt to reduce basis? $b_i^* \leftarrow b_i - \sum_{1 \le j \le i-1} \mu_{ij} \cdot b_j^*$ $\mu_{ij} = \langle b_i^*, b_j^* \rangle$ $|b_j|^2$
- SVP_{γ} NP-hard for $\gamma = O(1)$: "at least as hard as the hardest problems in NP" (if $P \neq NP$, then no polynomial time alg.)

e.g., GGH'97 signatures (≈ NTRUsign) Idea: CVP is hard, but easy with good basis

Security reductions

- GGH'97 (\approx right idea, but) did not come with a "security proof"
- If you can solve CVP, you can obviously forge messages, but this scheme was completely broken without solving CVP
- We want Thm: e.g., "if you can forge signatures, you can solve CVP"
- Ajtai'96: worst-to-average-case reduction unlocks lattice-based crypto "if you can break an average case, you can break the worst case"

Part 1: Motivation

Part 2: Lattice basics

Part 3: PQ key exchange based on (R)LWE

• Introduces the "Learning with Errors" (LWE) problem

• Uses it to construct LWE encryption

- Shows that breaking LWE implies (quantum) solving hard lattice problems (GapSVP $_{\beta}$ and SIVP)

see his 2012 talk

http://research.microsoft.com/apps/video/default.aspx?id=166559

Decision LWE problem: given blue, does red exist?

Lyubashevsky-Peikert-Regev '10: add ring structure

Ideal lattice: lattice modulo ideal

 $4 + 1x + 11x^2 + 10x^3$ \times -1 + 0x - 1x² + 1x³ $+ 0 - 1x + 1x^2 + 1x^3$ $10 + 5x + 10x^2 + 7x^3$

$\frac{\mathbb{Z}_{13}[x]}{\langle x^4 + 1 \rangle}$

The **ring** learning with errors (**R-LWE**) problem (the 128-bit secure version) $\frac{\mathbb{Z}_{2^{32}-1}[x]}{(x^{1024}+1)}$

 $\times \qquad 5 - 3 x \dots + 9 x^{1022} - 1 x^{1023}$

$$2 + 4 x \dots - 0 x^{1022} + 6 x^{1023}$$

 $3159804584 + \dots + 1153769078x^{1023}$

R-LWE problem: given blue, find (small!) red

R-LWE-DH: key agreement in $R_q = \mathbb{Z}_q[x]/\langle x^n + 1 \rangle$

secret: "small"
$$e, s \in R_q$$

public: "big"
$$a \in R_q$$

secret: "small" $e', s' \in R_q$

 $a \cdot s + e$ $a \cdot s' + e'$

$$(s \cdot (a \cdot s' + e')) \approx s \cdot a \cdot s'$$

 $(s' \cdot (a \cdot s + e)) \approx s \cdot a \cdot s'$

This will work most of the time (fails $\approx 1/2^{10}$), but we need exact agreement i.e., what happens if one of the coefficients is in the "danger zone(s)"

Making approximate agreement exact in \mathbb{Z}_q

R-LWE-DH: exact key agreement

secret: "small" $e, s \in R_q$

public: "big" $a \in R_q$

secret: "small" $e', s' \in R_q$

 $a \cdot s + e$ $a \cdot s' + e' \text{ and } \{ , , , \}^n \in \{0,1\}^n$

 $\mathsf{RECONCILE}(s \cdot (a \cdot s' + e'), \{ \checkmark, \checkmark \}^n) \equiv \mathsf{ROUND}(s' \cdot (a \cdot s + e))$

both parties now share $k \in \{0,1\}^n$

[BCNS'15]: our implementation

- Implemented ring-LWE key exchange based on Peikert'14
- Proof of security: if decision R-LWE is hard, then exact-DDH in our scheme is hard
- "Constant-time" software integrated into TLS (OpenSSL)
- Communication size: 8KiB roundtrip

ΜΙΤ

Review

Computing

• Runtime: 1.4-2.1 ms per party (TLS handshake 1.08-1.27x slower than ECDH/ECDSA)

Early bird may get the worm... ... but the second mouse gets the cheese!

- [ADPS'16]: much better implementation, error distribution, security analysis, pseudorandom parameters, etc etc
- Much faster than ours, even faster than classical (ECDH)
- PQ just means bigger keys (no slowdown)

2016 Internet Defense Prize Winner

Thomas Pöppelmann & Peter Schwabe, two co-authors of the 2016 Internet Defense Prize winning paper accept their award from Facebook at the 25th USENIX Security Symposium. Co-authors not pictured: Erdem Alkim and Léo Ducas. After careful consideration by our Award Committee, we decided to award the 2016 Internet Defense Prize and \$100,000 to the authors of "Post-Quantum Key Exchange - A New Hope." The winning authors include: Erdem Alkim (Department of Mathemathics, Ege University, Turkey), Léo Ducas (Centrum Wiskunde & Informatica, Amsterdam, The Netherlands), Thomas Pöppelmann (Infineon Technologies AG, Munich, Germany), and Peter Schwabe (Digital Security Group, Radboud University, The Netherlands).

The authors proposed new

Google Security Blog

Experimenting with Post-Quantum Cryptography July 7, 2016

Frodo: take off the ring!

 $\mathbb{Z}_q[x]/\langle x^n+1\rangle$

some highlights from Galbraith's 2016 PQcrypto keynote final slide:

"We need to understand Ring-LWE"

"Final comment: PQcrypto should be about greater security, not greater efficiency"

Standalone performance of PQ primitives

	Spee	ed	Communio	Quantum Security	
RSA 3072-bit	Fast	4 ms	Small	0.3 KiB	
ECDH nistp256	Very fast	0.7 ms	Very small	0.03 KiB	
BCNS	Fast	1.5 ms	Medium	4 KiB	80-bit
NewHope	Very fast	0.2 ms	Medium	2 KiB	206-bit
NTRU EES743EP1	Fast	0.3–1.2 ms	Medium	1 KiB	128-bit
SIDH	Very slow	35–400 ms	Small	0.5 KiB	128-bit
Frodo Recommended	Fast	1.4 ms	Large	11 KiB	130-bit
McBits*	Very fast	0.5 ms	Very large	360 KiB	161-bit

TLS connection throughput (#connections/second)

bigger (top) is better

x86_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – server Google n1-standard-4, client -32 note somewhat incomparable security levels

References

[GGH97] O. Goldreich, S. Goldwasser, S. Halevi. Public-key cryptosystems from lattice reduction problems. CRYPTO 1997: 112-131.

[Regev05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005: 84-93.

[LPR10] V. Lyubashevsky, C. Peikert, O. Regev. On ideal lattices and learning with errors over rings. EUROCRYPT 2010: 1-23.

[Peikert14] C. Peikert. Lattice Cryptography for the Internet. PQCrypto 2014: 197-219.

[BCNS15] J. Bos, C. Costello, M. Naehrig, D. Stebila. Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. IEEE S&P 2015: 553-570.

[ADPS16] E. Alkim, L. Ducas, T. Poppelmann, P. Schwabe. Post-quantum key exchange – a new hope. USENIX 2016: 327-343.

[BCD+16] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan. Frodo: Take off the ring! Practical, quantum-secure key exchange from LWE. ACM CCS 2016: 1006-1018.

