
Efficient algorithms for supersingular
isogeny Diffie-Hellman

Craig Costello, Patrick Longa, Michael Naehrig

CRYPTO 2016

• Large-scale quantum computers break RSA, finite
fields, elliptic curves

• Aug 2015: NSA announces plans to transition to
quantum-resistant algorithms

• Aug 2016: NIST announces late 2017 deadline for the
algorithms to be considered

Forthcoming post-quantum standards…

Current confidence may be smaller, but so are current key sizes!

Popular post-quantum public key primitives

• Lattice-based (e.g., NTRU’98, LWE’05)

• Code-based (e.g., McEliece’78)

• Hash-based (e.g., Merkle trees’79)

• Multivariate-based (e.g., HFEv-’96)

• Isogeny-based (Jao and De Feo SIDH’11)

Isogenies: basic facts

• Isogeny: rational map (non-constant) that is a group homomorphism

𝜙 ∶ 𝐸1 → 𝐸2

• Given finite subgroup 𝐺 ⊂ 𝐸1, there is a unique curve 𝐸2 and isogeny 𝜙 ∶ 𝐸1 →
𝐸2 (up to isomorphism) having kernel 𝐺. We write 𝐸2 = 𝜙(𝐸1) = 𝐸1/𝐺.

• Degree of (separable) isogeny is number of elements in kernel, same as its
degree as a rational map

SIDH: history

• 2006 (OIDH): Rostovsev and Stolbunov propose ordinary isogeny DH

• 2010 (OIDH break): Childs-Jao-Soukharev give quantum subexponential alg.

• 2011 (SIDH): Jao and De Feo fix by choosing supersingular curves

Crucial difference: supersingular (i.e., non-ordinary) endomorphism ring

is not commutative (resists above attack)

DH ECDH SIDH

elements integers 𝑔 modulo

prime

points 𝑃 in curve

group

curves 𝐸 in isogeny

class

secrets exponents 𝑥 scalars 𝑘 isogenies 𝜙

computations 𝑔, 𝑥 ↦ 𝑔𝑥 𝑘, 𝑃 ↦ 𝑘 𝑃 𝜙, 𝐸 ↦ 𝜙(𝐸)

hard problem given 𝑔, 𝑔𝑥

find 𝑥
given 𝑃, 𝑘 𝑃

find 𝑘
given 𝐸,𝜙(𝐸)

find 𝜙

Analogues between Diffie-Hellman instantiations

𝐸0 𝐸𝐴 = 𝐸0/〈𝐴〉

𝐸0/〈𝐵〉 = 𝐸𝐵 𝐸𝐴𝐵 = 𝐸0/〈𝐴, 𝐵〉

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′

params public privateSIDH in a nutshell:

e.g., Alice computes (horizontal) 2-isogenies, Bob computes (vertical) 3-isogenies

𝐸0 𝐸𝐴 = 𝐸0/〈𝑃𝐴 + 𝑠𝐴 𝑄𝐴〉

𝐸0/〈𝑃𝐵 + 𝑠𝐵 𝑄𝐵〉 = 𝐸𝐵 𝐸𝐴𝐵 = 𝐸0/〈𝐴, 𝐵〉

𝜙𝐴

𝜙𝐵

𝜙𝐴′

𝜙𝐵
′

(𝜙𝐵(𝑃𝐴), 𝜙𝐵(𝑄𝐴)) = (𝑅𝐵 , 𝑆𝐵)

(𝑅𝐴, 𝑆𝐴) = (𝜙𝐴(𝑃𝐵), 𝜙𝐴(𝑄𝐵))

𝐸𝐴/〈𝑅𝐴 + 𝑠𝐵 𝑆𝐴〉 ≅ 𝐸0/〈𝑃𝐴 + 𝑠𝐴 𝑄𝐴 , 𝑃𝐵 + 𝑠𝐵 𝑄𝐵〉 ≅𝐸𝐵/〈𝑅𝐵 + 𝑠𝐴 𝑆𝐵〉

Jao & De Feo’s key: Alice sends her isogeny evaluated at Bob’s generators, vice versa

params public privateSIDH in a nutshell:

SIDH shared secret is the 𝑗-invariant of 𝐸𝐴𝐵

SIDH: security

• Setting: supersingular elliptic curves 𝐸/𝔽𝑝2 where 𝑝 is a large prime

• Hard problem: Given 𝑃, 𝑄 ∈ 𝐸 and 𝜙 𝑃 ,𝜙 𝑄 ∈ 𝜙(𝐸), compute 𝜙
(where 𝜙 has fixed, smooth, public degree)

• Best (known) attacks: classical 𝑂(𝑝1/4) and quantum 𝑂(𝑝1/6)

• Confidence: above complexities are optimal for (above generic) claw attack

• Computing isogenies of prime degree ℓ at least 𝑂 ℓ

• We need exponential #secrets↔ #isogenies↔#kernel subgroups

• Upshot: isogenies must have exponential degree. Can’t compute
unless smooth!

• We will only use isogenies of degree ℓ𝑒 for ℓ ∈ {2,3}

Exploiting smooth degree isogenies

• Suppose secret point 𝑅0 has order 2372, we need 𝜙 ∶ 𝐸 → 𝐸/〈𝑅0〉

• Factor 𝜙 = 𝜙371…𝜙1𝜙0, with 𝜙𝑖 are 2-isogenies, and walk to 𝐸/〈𝑅0〉

𝜙0: 𝐸0 → 𝐸0/〈 2
371 𝑅0〉 , 𝑅1 = 𝜙0 𝑅0 ;

𝜙1: 𝐸1 → 𝐸1/〈 2
370 𝑅1〉 , 𝑅2 = 𝜙1(𝑅1);

⋮ ⋮
𝜙370: 𝐸370 → 𝐸370/〈 2

1 𝑅370〉 , 𝑅371 = 𝜙370(𝑅370);
𝜙371: 𝐸371 → 𝐸371/〈𝑅371〉 .

• The above is naïve: there is a much faster way (see [DJP’14]).

• SIDH requires two types of arithmetic: [𝑚]𝑃 ∈ 𝐸 and 𝜙 ∶ 𝐸 → 𝐸′

Exploiting smooth degree isogenies

Motivation

Can we actually securely deploy SIDH?

Our performance improvements

1. Projective isogenies → ℙ1 everywhere

2. Fast 𝔽𝑝2 arithmetic

3. Tight public parameters

(just 1 today…)

𝐸a,b ∶ 𝑏𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑥

Point and isogeny arithmetic in ℙ1

𝐸(A:B:C) ∶ 𝐵𝑌2𝑍 = 𝐶𝑋3 + 𝐴𝑋2𝑍 + 𝐶𝑋𝑍2

𝑥, 𝑦 ↔ (𝑋 ∶ 𝑌 ∶ 𝑍) 𝑎, 𝑏 ↔ (𝐴 ∶ 𝐵 ∶ 𝐶)

ℙ1 point arithmetic (Montgomery): 𝑋 ∶ 𝑍 ↦ (𝑋′: 𝑍′)

ℙ1 isogeny arithmetic (this work): 𝐴 ∶ 𝐶 ↦ 𝐴′: 𝐶′

ECDH: move around different points on a fixed curve.

SIDH: move around different points and different curves

The Montgomery
𝐵 coefficient only
fixes the quadratic
twist. Can ignore it

in SIDH since
𝑗 𝐸 = 𝑗(𝐸′)

𝑝 = 23723239 − 1

Parameters

𝑝 ≈ 2768 gives ≈ 192 bits classical and 128 bits quantum security against best known attacks

𝐸0 /𝔽𝑝2 ∶ 𝑦
2 = 𝑥3 + 𝑥

#𝐸0 = 𝑝 + 1 2 = 23723239 2 Easy ECDLP

𝑃𝐴, 𝑃𝐵 ∈ 𝐸0 𝔽𝑝 , 𝑄𝐴 = 𝜏 𝑃𝐴 , 𝑄𝐵 = 𝜏 𝑃𝐵

PK = 𝑥 𝑃 , 𝑥 𝑄 , 𝑥 𝑄 − 𝑃 ∈ 𝔽𝑝2
3

564 bytes

376 bytes

params public private

48 bytes 𝑠𝐴, 𝑠𝐵 ∈ ℤ

188 bytes 𝑗(𝐸𝐴𝐵) ∈ 𝔽𝑝2

Performance benchmarks

Table: millions of clock cycles for DH operations on 3.4GHz Intel Core i7-4770 (Haswell)

SIDH operation This work* Prior work

(AFJ’14)

Alice key generation 46 149

Bob key generation 52 152

Alice shared secret 44 118

Bob shared secret 50 122

Total 192 540

*includes full protection against timing and cache attacks

• No clear frontrunner for PQ key exchange

• Hybrid particularly good idea for (relatively young) SIDH

• Hybrid particularly easy for SIDH

BigMont: a strong SIDH+ECDH hybrid

There are exponentially many 𝐴 such that 𝐸𝐴 /𝔽𝑝2: 𝑦
2 = 𝑥3 + 𝐴𝑥2 + 𝑥 is in the

supersingular isogeny class. These are all unsuitable for ECDH.

There are also exponentially many 𝐴 such that 𝐸𝐴 /𝔽𝑝2: 𝑦
2 = 𝑥3 + 𝐴𝑥2 + 𝑥 is

suitable for ECDH, e.g. 𝐴 = 624450.

SIDH vs. SIDH+ECDH hybrid

comparison SIDH SIDH+ECDH

bit security

(hard problem)

classical 192 (SSDDH) 384 (ECDHP)

quantum 128 (SSDDH) 128 (SSDDH)

public key size (bytes) 564 658

Speed

(cc x 106)

Alice key gen. 46 52

Bob key gen. 52 58

Alice shared sec. 44 50

Bob shared sec. 50 57

Colossal amount of classical security almost-for-free (≈ no more code)

SIDH vs. lattice “DH” primitives

Table: ms for full DH round (Alice + Bob) on 2.6GHz Intel Xeon i5 (Sandy Bridge)
See “Frodo” for benchmarking details.

Name Primitive Full DH

(ms)

PK size

(bytes)

Frodo LWE 2.600 11,300

NewHope R-LWE 0.310 1,792

NTRU NTRU 2.429 1,024

SIDH Supersingular

Isogeny

900 564

All numbers above are for plain C implementations (e.g., SIDH w. assembly optimizations is 56ms)

• Issues regarding public key validation: Asiacrypt2016
paper by Galbraith-Petit-Shani-Ti

• NSA countermeasure: “Failure is not an option:
standardization issues for PQ key agreement”

• Thus, library currently supports ephemeral DH only

Validating public keys

Thanks!

https://www.microsoft.com/en-us/research/project/sidh-library/

SIDH library

http://eprint.iacr.org/2016/413

Full version

https://www.microsoft.com/en-us/research/project/sidh-library/
http://eprint.iacr.org/2016/413

