Efficient algorithms for supersingular isogeny Diffie-Hellman

Craig Costello, Patrick Longa, Michael Naehrig CRYPTO 2016

> Microsoft[®] Research

Forthcoming post-quantum standards...

• Large-scale quantum computers break RSA, finite fields, elliptic curves

 Aug 2015: NSA announces plans to transition to quantum-resistant algorithms

National Institute of Standards and Technology • Aug 2016: NIST announces late 2017 deadline for the algorithms to be considered

Popular post-quantum public key primitives

- Lattice-based
- Code-based
- Hash-based
- Multivariate-based
- Isogeny-based

(e.g., NTRU'98, LWE'05)
(e.g., McEliece'78)
(e.g., Merkle trees'79)
(e.g., HFE^{v-'}96)
(Jao and De Feo SIDH'11)

Current confidence may be smaller, but so are current key sizes!

Isogenies: basic facts

• Isogeny: rational map (non-constant) that is a group homomorphism

$$\phi: E_1 \to E_2$$

- Given finite subgroup $G \subset E_1$, there is a unique curve E_2 and isogeny $\phi : E_1 \rightarrow E_2$ (up to isomorphism) having kernel G. We write $E_2 = \phi(E_1) = E_1/G$.
- Degree of (separable) isogeny is number of elements in kernel, same as its degree as a rational map

SIDH: history

- 2006 (OIDH): Rostovsev and Stolbunov propose ordinary isogeny DH
- 2010 (OIDH break): Childs-Jao-Soukharev give quantum subexponential alg.
- 2011 (SIDH): Jao and De Feo fix by choosing supersingular curves

Crucial difference: supersingular (i.e., non-ordinary) endomorphism ring is not commutative (resists above attack)

Analogues between Diffie-Hellman instantiations

	DH	ECDH	SIDH
elements	integers <i>g</i> modulo prime	points <i>P</i> in curve group	curves <i>E</i> in isogeny class
secrets	exponents x	scalars k	isogenies $oldsymbol{\phi}$
computations	$g, x \mapsto g^x$	$k, P \mapsto [k]P$	$\phi, E \mapsto \phi(E)$
hard problem	given <i>g,g^x</i> find <i>x</i>	given P, [k]P find k	given $E, \phi(E)$ find ϕ

e.g., Alice computes (horizontal) 2-isogenies, Bob computes (vertical) 3-isogenies

Jao & De Feo's key: Alice sends her isogeny evaluated at Bob's generators, vice versa $E_A/\langle R_A + [s_B]S_A \rangle \cong E_0/\langle P_A + [s_A]Q_A, P_B + [s_B]Q_B \rangle \cong E_B/\langle R_B + [s_A]S_B \rangle$ SIDH shared secret is the *j*-invariant of E_{AB}

SIDH: security

- Setting: supersingular elliptic curves E/\mathbb{F}_{p^2} where p is a large prime
- Hard problem: Given $P, Q \in E$ and $\phi(P), \phi(Q) \in \phi(E)$, compute ϕ (where ϕ has fixed, smooth, public degree)
- Best (known) attacks: classical $O(p^{1/4})$ and quantum $O(p^{1/6})$
- Confidence: above complexities are optimal for (above generic) claw attack

Exploiting smooth degree isogenies

- Computing isogenies of prime degree ℓ at least $O(\ell)$
- We need exponential #secrets↔ #isogenies↔#kernel subgroups
- Upshot: isogenies must have exponential degree. Can't compute unless smooth!
- We will only use isogenies of degree ℓ^e for $\ell \in \{2,3\}$

Exploiting smooth degree isogenies

- Suppose secret point R_0 has order 2^{372} , we need $\phi: E \to E/\langle R_0 \rangle$
- Factor $\phi = \phi_{371} \dots \phi_1 \phi_0$, with ϕ_i are 2-isogenies, and walk to $E/\langle R_0 \rangle$

$$\begin{array}{ll} \phi_{0} \colon E_{0} \to E_{0} / \langle [2^{371}] R_{0} \rangle , & R_{1} = \phi_{0}(R_{0}) ; \\ \phi_{1} \colon E_{1} \to E_{1} / \langle [2^{370}] R_{1} \rangle , & R_{2} = \phi_{1}(R_{1}) ; \\ \vdots & \vdots & \vdots \\ \phi_{370} \colon E_{370} \to E_{370} / \langle [2^{1}] R_{370} \rangle , & R_{371} = \phi_{370}(R_{370}) ; \\ \phi_{371} \colon E_{371} \to E_{371} / \langle R_{371} \rangle . \end{array}$$

- The above is naïve: there is a much faster way (see [DJP'14]).
- SIDH requires two types of arithmetic: $[m]P \in E$ and $\phi : E \rightarrow E'$

Motivation

Can we actually securely deploy SIDH?

Our performance improvements

- 1. Projective isogenies $\rightarrow \mathbb{P}^1$ everywhere
- 2. Fast \mathbb{F}_{p^2} arithmetic
- 3. Tight public parameters

(just 1 today...)

Point and isogeny arithmetic in \mathbb{P}^1

ECDH: move around different points on a fixed curve. SIDH: move around different points and different curves

$$E_{a,b}: by^{2} = x^{3} + ax^{2} + x$$

$$(x,y) \leftrightarrow (X:Y:Z) \qquad (a,b) \leftrightarrow (A:B:C)$$

$$\overline{E_{(A:B:C)}}: BY^{2}Z = CX^{3} + AX^{2}Z + CXZ^{2}$$

The Montgomery *B* coefficient only fixes the quadratic twist. Can ignore it in SIDH since j(E) = j(E')

 \mathbb{P}^1 point arithmetic (Montgomery): $(X : Z) \mapsto (X':Z')$ \mathbb{P}^1 isogeny arithmetic (this work): $(A : C) \mapsto (A':C')$

Parameters

$p = 2^{372} 3^{239} - 1$ $p \approx 2^{768}$ gives ≈ 192 bits classical and 128 bits quantum security against best known attacks $E_0 / \mathbb{F}_{p^2} : y^2 = x^3 + x$ $#E_0 = (p+1)^2 = (2^{372}3^{239})^2$ Easy ECDLP $P_A, P_B \in E_0(\mathbb{F}_p), Q_A = \tau(P_A), Q_B = \tau(P_B)$ 376 bytes 48 bytes $S_A, S_B \in \mathbb{Z}$ $PK = [x(P), \dot{x}(Q), x(Q - P)] \in (\mathbb{F}_{p^2})^3$ 564 bytes 188 bytes $j(E_{AB}) \in \mathbb{F}_{p^2}$

params public private

Performance benchmarks

SIDH operation	This work*	Prior work (AFJ'14)
Alice key generation	46	149
Bob key generation	52	152
Alice shared secret	44	118
Bob shared secret	50	122
Total	192	540

Table: millions of clock cycles for DH operations on 3.4GHz Intel Core i7-4770 (Haswell)

*includes full protection against timing and cache attacks

BigMont: a strong SIDH+ECDH hybrid

- No clear frontrunner for PQ key exchange
- Hybrid particularly good idea for (relatively young) SIDH
- Hybrid particularly easy for SIDH

There are exponentially many A such that E_A / \mathbb{F}_{p^2} : $y^2 = x^3 + Ax^2 + x$ is in the supersingular isogeny class. These are all unsuitable for ECDH.

There are also exponentially many A such that E_A / \mathbb{F}_{p^2} : $y^2 = x^3 + Ax^2 + x$ is suitable for ECDH, e.g. A = 624450.

SIDH vs. SIDH+ECDH hybrid

comparison		SIDH	SIDH+ECDH
bit security (hard problem)	classical	192 (SSDDH)	384 (ECDHP)
	quantum	128 (SSDDH)	128 (SSDDH)
public key size (bytes)		564	658
	Alice key gen.	46	52
Speed	Bob key gen.	52	58
(cc x 10°)	Alice shared sec.	44	50
	Bob shared sec.	50	57

Colossal amount of classical security almost-for-free (\approx no more code)

SIDH vs. lattice "DH" primitives

Name	Primitive	Full DH (ms)	PK size (bytes)
Frodo	LWE	2.600	11,300
NewHope	R-LWE	0.310	1,792
NTRU	NTRU	2.429	1,024
SIDH	Supersingular Isogeny	900	564

Table: ms for full DH round (Alice + Bob) on 2.6GHz Intel Xeon i5 (Sandy Bridge) See "Frodo" for benchmarking details.

All numbers above are for plain C implementations (e.g., SIDH w. assembly optimizations is 56ms)

Validating public keys

 Issues regarding public key validation: Asiacrypt2016 paper by Galbraith-Petit-Shani-Ti

• NSA countermeasure: "Failure is not an option: standardization issues for PQ key agreement"

• Thus, library currently supports ephemeral DH only

Thanks!

Full version

http://eprint.iacr.org/2016/413

SIDH library

https://www.microsoft.com/en-us/research/project/sidh-library/