Genus 2 curves in cryptography: successes and challenges

Craig Costello

AMS Special Session on Arithmetic Geometry Las Vegas, Nevada April 18, 2015 Mostly based on joint works with J. Bos, H. Hisil and K. Lauter

$$\mathcal{K} = J_{\mathcal{C}}/\{\pm 1\}$$

Traditional cryptographic groups

- To achieve public-key cryptography (e.g. secure the internet), we need groups that facilitate computationally hard problems, e.g:
 - the finite field DLP: given $g,g^{lpha}\in \mathbb{F}_{q}^{ imes}$, find lpha
 - the RSA problem: given $g^{\alpha} \in \mathbb{Z}_n$ and α , find g (where n = pq)
- these traditional groups have problems:
 - subexponential attacks against these problems have got better and better (index calculus, NFS: L_{1/2}, L_{1/3}, quasi-polynomial)
 - today, we want problems that take $\approx 2^{128}$ steps to solve $\implies q, n \approx 2^{3072}$
 - they're dead boring...

Better, "generic" cryptographic groups

- Jacobians of genus 1 and genus 2 curves both resist index calculus (as far as we know!)
- This talk: both will be defined over large prime fields \mathbb{F}_p
- (H)ECDLP: given P and $Q = [\alpha]P$ in $J_{\mathcal{C}}(\mathbb{F}_p)[N]$, find α
- Computing $\alpha, P \mapsto [\alpha]P$ needs $\approx \log_2(N)$ "double-and-adds"
- To attackers, they're as stubborn as a generic group. Pollard's (random walk) algorithm best: $O(\sqrt{N})$ steps (N large prime)
- But to cryptographers, they're far from generic: endomorphisms, Kummer varieties, torsion structure, etc

So what's better: genus 1 or genus 2?

Genus 1 versus Genus 2: points and Jacobian groups

Mapping $P \in \mathcal{E}$ to $(P) - (\mathcal{O})$ in $\operatorname{Pic}^{0}(\mathcal{C})$ is a group homomorphism.

Challenge: you don't necessarily need to know what $\operatorname{Pic}^{0}(\mathcal{C})$ is to do ECC. This is not the case in genus 2. **Challenge:** for a fixed group elt. *P*, there are o(1) special points in \mathcal{E} , there are O(p) special points in $J_{\mathcal{C}}$ (\approx point of the talk!)

Genus 1 versus Genus 2: sizes of fields

$$\begin{split} \#J_{\mathcal{E}}(\mathbb{F}_p) &\approx p & \#J_{\mathcal{C}}(\mathbb{F}_p) \approx p^2 \\ \hline & \text{Challenge: Computing group law (additions/doublings) much} \\ & \text{more complicated in genus 2} \\ \hline & \text{Success: } p \approx 2^{256} \text{ for elliptic versus } p \approx 2^{128} \text{ for genus 2} \\ & \text{(bonus: by far the fastest prime in software is } p = 2^{127} - 1) \end{split}$$

Jacobian coordinates in projective space

On elliptic curve \mathcal{E} : $y^2 = x^3 + ax + b$

Don't add (x_1, y_1) and (x_2, y_2) in $\mathbb{A}^2(K)$.

Add $(X_1: Y_1: Z_1)$ and $(X_2: Y_2: Z_2)$ in $\mathbb{P}(2,3,1)(K)$.

double-and-add uses 18 muls (compared to 7 muls + 2 invs)

[HC'14] On genus 2 curve $C : y^2 = x^5 + a_4x^4 + \dots + a_0$

Don't work with points $(x, y) \in \mathbb{A}^2(K)$. Work with $(X \colon Y \colon Z) \in \mathbb{P}(2, 5, 1)(K)$, i.e. $(x, y) = (X/Z^2, Y/Z^5)$ Translate into Mumford coords $(x^2 + u_1x + u_0, v_1x + v_0) \in J_C$

$$(u_1, u_0, v_1, v_0) \leftrightarrow \left(\frac{U_1}{Z^2}, \frac{U_0}{Z^4}, \frac{V_1}{Z^3}, \frac{V_0}{Z^5}\right)$$

double-and-add uses 63 muls (compared to 46 muls + 2 invs, or 82 muls for homogeneous projection)

Speed comparison for general Weierstrass curves

Success: Nowadays genus 2 CM method and point counting make it possible to find cryptographically strong genus 2 curves, e.g. [GS'12] counted points to give curve below.

g	curve	work	coords	prime <i>p</i>	cycles/scalar mult.
1	generic \mathcal{E}	[BCLN'15]	Jacobian	$2^{256} - 189$	278,000 (SB)
2	generic J_{C}	[BCHL'13]	homog.	$2^{127} - 1$	243,000 (IB)
	generic $J_{\mathcal{C}}$	[HC'14]	Jacobian	$2^{127} - 1$	195,000 (IB)

Timings on Intel Core i7 3.4GHz (Sandy Bridge (SB) and Ivy Bridge (IB))

Success: Fair to say generic genus 2 at least as fast (if not faster) than generic genus 1 (at 128-bit level)

In fact, w.r.t speed, the story only gets better for genus 2

Speed comparisons cont.

g	curve	work	coords	prime p	cycles
1	generic \mathcal{E}	[BCLN'15]	Jacobian	$2^{256} - 189$	278,000 (SB)
	Kummer	[B'06→14]	Mont-ladder	$2^{255} - 19$	194,000 (SB)
2	generic $J_{\mathcal{C}}$	[BCHL'13]	homog.	$2^{127} - 1$	243,000 (IB)
	generic $J_{\mathcal{C}}$	[HC'14]	Jacobian	$2^{127} - 1$	195,000 (IB)
	$Kummer\;\mathcal{K}_\mathcal{C}$	[BCLS'14]	theta	$2^{127} - 1$	89,000 (SB)

- Montgomery: work with $x \in \mathcal{E}/\{\pm 1\}$, not $(x, y) \in \mathcal{E}$
- Genus 2 Kummer: work on $\mathcal{K}_\mathcal{C}\cong J_\mathcal{C}/\{\pm 1\}$, not $J_\mathcal{C}$
- $J_{\mathcal{C}}$ described 72 quadratic forms in \mathbb{P}^{15} (written down by Flynn)
- Kummer (Gaudry in crypto): $\mathcal{K}_{\mathcal{C}}$ described by one quartic in \mathbb{P}^4 , i.e. projective points P = (X : Y : Z : T) on

 $E\cdot XYZT = ((X^2+Y^2+Z^2+T^2)-F(XT+YZ)-G(XZ+YT)-H(XY+ZT))^2$

Success: Over prime fields, and at the 128-bit level, it should be fair to say that genus 2 is MUCH faster than genus 1 . . .

So why aren't they in the current debate?

x-coordinate only arithmetic

- opposite y's give different x-coordinate than same-sign y's
- decide between them with difference x_{T-P}
- "Differential" additions: $x_{T+P} = \text{PSEUDOADD}(x_T, x_P, x_{T-P})$
- **Can exponentiate:** intermediate points [n]P and [n+1]P (difference *P* invariant)
- **Can't add generically:** Kummers are restricted (≈ to DH) in crypto, can't do traditional signatures or complex protocols

- Success: Genus 2 Kummer is by far the best prime field option out there!
- Why not use $\mathcal{K}_{\mathcal{C}}$ for key agreement and $J_{\mathcal{C}}$ for everything else?
- **Reason/challenge:** There isn't one addition formula that handles all points in J_c this makes writing "constant-time" code extremely difficult/cumbersome/slow for J_c (Cantor's algorithm variable time and very "branchy")
- See disclaimers: Assumption 1 and Section 7.3 in [HC'14]
- So many special cases: e.g. O(p) "degenerate" divisors with one rational element in support (just the beginning)

Question 1: does this happen with the Kummers too?

Answer: nope, no exceptions to differential additions. $J_{\mathcal{C}} \to \mathcal{K}$ kills two-torsion and all divisors work in the addition formula (Riemann relations)

Question 2: does this happen in genus 1?

Answer: yes and no. For generic Weierstrass curves, group law has exceptional points (and different cases). But genus 1 has one advantage here: non-generic, non-Weierstrass models ...

e.g. (Twisted) Edwards curves and complete formulas

\mathcal{O}'

On \mathcal{E}/K : $-x^2 + y^2 = 1 + dx^2y^2$, if *d* is non-square in *K*, then $(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right)$

works for all (x_1, y_1) and (x_2, y_2) in E(K), including $x_1 = x_2$, the neutral point (0, 1), etc.

No special cases means easier constant-time code

 $\leftrightarrow \textbf{ real-world adoption}$

The (sad) situation for general elliptic curves

Algorithm 19 Complete (projective) ad	ditio	n using masking and Jacobian coordinate	s on
prime-order Weierstrass curves E_h .			
Input: $P, Q \in E_b(\mathbf{F}_p)$ such that $P = (X_1, Y_1, Z_2)$	() and	$Q = (X_2, Y_2, Z_2)$ are in Jacobian coordinates.	
		es. Computations marked with [*] are implement	ted in
constant time using masking.			
1. $T[0] = O$ { $T[i] = (\tilde{X}_i, \tilde{Y}_i, \tilde{Z}_i)$ for $0 \le i <$	53	25. $t_8 = t_2^2$	
2. $T[1] = Q$	1	26. if mask = 0 then $t_7 = X_1$	[+]
3. $T[4] = P$		27. $t_1 = t_5 \times t_7$	
4. $t_2 = Z_1^2$		28. $\tilde{Z}_2 = Z_1 \times t_2$	
5. $t_3 = Z_1 \times t_2$		29. $\tilde{Z}_3 = Z_2 \times \tilde{Z}_2$	
6. $t_1 = X_2 \times t_2$		30. if mask $\neq 0$ then $t_3 = t_2$	[+]
7. $t_4 = Y_2 \times t_3$		31. if mask $\neq 0$ then $t_6 = t_5$	[+]
8. $t_3 = Z_2^2$		32. $t_2 = t_3 \times t_6$	
9. $t_5 = Z_2 \times t_3$		33. $t_3 = t_2/2$	
10. $t_7 = X_1 \times t_3$		34. $t_3 = t_2 + t_3$	
11. $t_8 = Y_1 \times t_5$		35. if mask $\neq 0$ then $t_3 = t_4$	[+]
12. $t_1 = t_1 - t_7$		36. $t_4 = t_3^2$	
13. $t_4 = t_4 - t_8$		37. $t_4 = t_4 - t_1$	
 index = 3 		38. $\tilde{X}_2 = t_4 - t_1$	
15. if $t_1 = 0$ then	[+]	39. $\hat{X}_3 = \hat{X}_2 - t_2$	
16. $index = 0$ { $R = O$ }		40. if mask = 0 then $t_4 = \tilde{X}_2$ else $t_4 = \tilde{X}_3$	[+]
17. if $t_4 = 0$ then index = 2 { $R = 2P$ }		41. $t_1 = t_1 - t_4$	
18. if $P = O$ then index = 1 { $R = Q$ }		42. $t_4 = t_3 \times t_1$	
19. if $Q = O$ then index = 4 { $R = P$ }	[+]	43. if mask = 0 then $t_1 = t_5$ else $t_1 = t_8$	[+]
20. $mask = 0$		44. if mask = 0 then $t_2 = t_5$	[*]
21. if $index = 3$ then $mask = 1$		45. $t_3 = t_1 \times t_2$	
$\{case P + Q, else any other case\}$	[+]	46. $\tilde{Y}_2 = t_4 - t_3$	
22. $t_3 = X_1 + t_2$		47. $\tilde{Y}_3 = \tilde{Y}_2$	
23. $t_6 = X_1 - t_2$		48. $R = T[index]$ (= $(\tilde{X}_{index}, \tilde{Y}_{index}, \tilde{Z}_{index}))$	[+]
24. if mask = 0 then $t_2 = Y_1$ else $t_2 = t_1$	[+]	49. return R	

Bosma-Lenstra: in general, need at least two sets of formulas,

e.g.

$$\begin{split} X_3 &= (X_1Y_2 - X_2Y_1)(Y_1Z_2 + Y_2Z_1) - (X_1Z_2 - X_2Z_1)(a(X_1Z_2 + X_2Z_1) + 3bZ_1Z_2 - Y_1Y_2); \\ Y_3 &= -(3X_1X_2 + aZ_1Z_2)(X_1Y_2 - X_2Y_1) + (Y_1Z_2 - Y_2Z_1)(a(X_1Z_2 + X_2Z_1) + 3bZ_1Z_2 - Y_1Y_2); \\ Z_3 &= (3X_1X_2 + aZ_1Z_2)(X_1Z_2 - X_2Z_1) - (Y_1Z_2 + Y_2Z_1)(Y_1Z_2 - Y_2Z_1); \\ X_3' &= -(X_1Y_2 + X_2Y_1)(a(X_1Z_2 + X_2Z_1) + 3bZ_1Z_2 - Y_1Y_2) - (Y_1Z_2 + Y_2Z_1)(3b(X_1Z_2 + X_2Z_1) + a(X_1X_2 - aZ_1Z_2)); \\ Y_4' &= Y_1^2Y_2^2 + 3aX_1^2X_2^2 - 2a^2X_1X_2Z_1Z_2 - (a^3 + 9b^2)Z_1Z_2^2 + (X_1Z_2 + X_2Z_1)(3b(3X_1X_2 - aZ_1Z_2) - a^2(X_2Z_1 + X_1Z_2)); \\ Z_3' &= (3X_1X_2 + aZ_1Z_2)(X_1Y_2 + X_2Y_1) + (Y_1Z_2 + Y_2Z_1)(Y_1Y_2 + 3bZ_1Z_2 + a(X_1Z_2 + X_2Z_1)). \end{split}$$
(1)

... see [BCLN'14] for more discussion...

g	curve	work	formulas	prime p	cycles
1	Montgom.	[B'06→14]	ladder	$2^{255} - 19$	194,000 (SB)
	Edwards	[BDLSY'11]	complete	$2^{255} - 19$	230,000 (??)
2	Kummer	[BCLS'14]	theta	$2^{127} - 1$	89,000 (SB)
	??	??	complete	??	??

- Challenge: fill in the ??'s
- Highly desirable to find a non-Weierstrass model to mimic genus 1 non-Weierstrass completeness
- Or, highly desirable to achieve completeness via other means

[B'06] Berstein. Curve25519: new Diffie-Hellman speed records. http://cr.yp.to/ecdh/curve25519-20060209.pdf [BDLSY'11] Bernstein-Duif-Lange-Schwabe-Yang. High-speed high-security signatures. http://ed25519.cr.yp.to/ed25519-20110926.pdf [BCHL'13] Bos-C-Hisil-Lauter. Fast cryptography in genus 2. http://eprint.iacr.org/2012/670.pdf [HC'14] Hisil-C. Jacobian coordinates on genus 2 curves. http://eprint.iacr.org/2014/385.pdf [BCLS'14] Bernstein-Chuengsatiansup-Lange-Schwabe. Kummer strikes back: new DH speed records. https://eprint.iacr.org/2014/134.pdf [BCLN'15] Bos-C-Longa-Naehrig. Selecting elliptic curves for cryptography: an efficiency and security analysis. http://eprint.iacr.org/2014/130.pdf