# Genus 2 curves in cryptography: successes and challenges 

Craig Costello

AMS Special Session on Arithmetic Geometry Las Vegas, Nevada

April 18, 2015
Mostly based on joint works with J. Bos, H. Hisil and K. Lauter
$\mathcal{K}=J_{\mathcal{C}} /\{ \pm 1\}$

## Traditional cryptographic groups

- To achieve public-key cryptography (e.g. secure the internet), we need groups that facilitate computationally hard problems, e.g:
- the finite field DLP: given $g, g^{\alpha} \in \mathbb{F}_{q}^{\times}$, find $\alpha$
- the RSA problem: given $g^{\alpha} \in \mathbb{Z}_{n}$ and $\alpha$, find $g$ (where $n=p q$ )
- these traditional groups have problems:
- subexponential attacks against these problems have got better and better (index calculus, NFS: $L_{1 / 2}, L_{1 / 3}$, quasi-polynomial)
- today, we want problems that take $\approx 2^{128}$ steps to solve $\Longrightarrow q, n \approx 2^{3072}$
- they're dead boring...


## Better, "generic" cryptographic groups

- Jacobians of genus 1 and genus 2 curves both resist index calculus (as far as we know!)
- This talk: both will be defined over large prime fields $\mathbb{F}_{p}$
- (H)ECDLP: given $P$ and $Q=[\alpha] P$ in $J_{\mathcal{C}}\left(\mathbb{F}_{p}\right)[N]$, find $\alpha$
- Computing $\alpha, P \mapsto[\alpha] P$ needs $\approx \log _{2}(N)$ "double-and-adds"
- To attackers, they're as stubborn as a generic group. Pollard's (random walk) algorithm best: $O(\sqrt{N})$ steps ( $N$ large prime)
- But to cryptographers, they're far from generic: endomorphisms, Kummer varieties, torsion structure, etc

So what's better: genus 1 or genus 2?

## Genus 1 versus Genus 2: points and Jacobian groups


$\ell$
$R^{\bullet}$ $\ell$
$J_{\mathcal{E}}\left(\mathbb{F}_{p}\right) \cong \mathcal{E}\left(\mathbb{F}_{p}\right) \quad J_{\mathcal{C}}\left(\mathbb{F}_{p}\right) \not \not 二 \mathcal{C}\left(\mathbb{F}_{p}\right)$


Mapping $P \in \mathcal{E}$ to $(P)-(\mathcal{O})$ in $\operatorname{Pic}^{0}(\mathcal{C})$ is a group homomorphism.
Challenge: you don't necessarily need to know what $\operatorname{Pic}^{0}(\mathcal{C})$ is to do ECC. This is not the case in genus 2.
Challenge: for a fixed group elt. $P$, there are $o(1)$ special points in $\mathcal{E}$, there are $O(p)$ special points in $J_{\mathcal{C}}(\approx$ point of the talk!)

## Genus 1 versus Genus 2: sizes of fields


$\# J_{\mathcal{E}}\left(\mathbb{F}_{p}\right) \approx p$
Challenge: Computing group law (additions/doublings) much more complicated in genus 2
Success: $p \approx 2^{256}$ for elliptic versus $p \approx 2^{128}$ for genus 2
(bonus: by far the fastest prime in software is $p=2^{127}-1$ )

## Jacobian coordinates in projective space

## On elliptic curve $\mathcal{E}: y^{2}=x^{3}+a x+b$

Don't add $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in $\mathbb{A}^{2}(K)$.
Add $\left(X_{1}: Y_{1}: Z_{1}\right)$ and $\left(X_{2}: Y_{2}: Z_{2}\right)$ in $\mathbb{P}(2,3,1)(K)$. double-and-add uses 18 muls (compared to 7 muls +2 invs)

## [HC'14] On genus 2 curve $\mathcal{C}: y^{2}=x^{5}+a_{4} x^{4}+\cdots+a_{0}$

Don't work with points $(x, y) \in \mathbb{A}^{2}(K)$.
Work with $(X: Y: Z) \in \mathbb{P}(2,5,1)(K)$, i.e. $(x, y)=\left(X / Z^{2}, Y / Z^{5}\right)$
Translate into Mumford coords $\left(x^{2}+u_{1} x+u_{0}, v_{1} x+v_{0}\right) \in J_{\mathcal{C}}$

$$
\left(u_{1}, u_{0}, v_{1}, v_{0}\right) \leftrightarrow\left(\frac{U_{1}}{Z^{2}}, \frac{U_{0}}{Z^{4}}, \frac{v_{1}}{Z^{3}}, \frac{v_{0}}{Z^{5}}\right)
$$

double-and-add uses 63 muls (compared to 46 muls +2 invs, or 82 muls for homogeneous projection)

## Speed comparison for general Weierstrass curves

Success: Nowadays genus 2 CM method and point counting make it possible to find cryptographically strong genus 2 curves, e.g. [GS'12] counted points to give curve below.

| g | curve | work | coords | prime $p$ | cycles/scalar mult. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | generic $\mathcal{E}$ | $[\mathrm{BCLN}$ '15] | Jacobian | $2^{256}-189$ | $\mathbf{2 7 8 , 0 0 0}(\mathrm{SB})$ |
| 2 | generic $J_{\mathcal{C}}$ | $[\mathrm{BCHL}$ '13] | homog. | $2^{127}-1$ | $\mathbf{2 4 3 , 0 0 0}$ (IB) |
|  | generic $J_{\mathcal{C}}$ | $[\mathrm{HC}$ '14] | Jacobian | $2^{127}-1$ | $\mathbf{1 9 5 , 0 0 0}$ (IB) |

Timings on Intel Core i7 3.4GHz (Sandy Bridge (SB) and Ivy Bridge (IB))

Success: Fair to say generic genus 2 at least as fast (if not faster) than generic genus 1 (at 128 -bit level)

In fact, w.r.t speed, the story only gets better for genus 2

## Speed comparisons cont.

| g | curve | work | coords | prime $p$ | cycles |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | generic $\mathcal{E}$ | $[$ BCLN'15] | Jacobian | $2^{256}-189$ | $\mathbf{2 7 8 , 0 0 0}(\mathrm{SB})$ |
|  | Kummer | $\left[\mathrm{B}^{\prime} 06 \rightarrow 14\right]$ | Mont-ladder | $2^{255}-19$ | $\mathbf{1 9 4 , 0 0 0}$ (SB) |
| 2 | generic $J_{\mathcal{C}}$ | $[$ BCHL'13] | homog. | $2^{127}-1$ | $\mathbf{2 4 3 , 0 0 0}$ (IB) |
|  | generic $J_{\mathcal{C}}$ | $\left[\mathrm{HC}^{\prime} 14\right]$ | Jacobian | $2^{127}-1$ | $\mathbf{1 9 5 , 0 0 0}$ (IB) |
|  | Kummer $\mathcal{K}_{\mathcal{C}}$ | $[$ [BCLS'14] | theta | $2^{127}-1$ | $\mathbf{8 9 , 0 0 0}$ (SB) |

- Montgomery: work with $x \in \mathcal{E} /\{ \pm 1\}$, not $(x, y) \in \mathcal{E}$
- Genus 2 Kummer: work on $\mathcal{K}_{\mathcal{C}} \cong J_{\mathcal{C}} /\{ \pm 1\}$, not $J_{\mathcal{C}}$
- $J_{\mathcal{C}}$ described 72 quadratic forms in $\mathbb{P}^{15}$ (written down by Flynn)
- Kummer (Gaudry in crypto): $\mathcal{K}_{\mathcal{C}}$ described by one quartic in $\mathbb{P}^{4}$, i.e. projective points $P=(X: Y: Z: T)$ on $E \cdot X Y Z T=\left(\left(X^{2}+Y^{2}+Z^{2}+T^{2}\right)-F(X T+Y Z)-G(X Z+Y T)-H(X Y+Z T)\right)^{2}$
Success: Over prime fields, and at the 128-bit level, it should be fair to say that genus 2 is MUCH faster than genus $1 \ldots$

So why aren't they in the current debate?

## $x$-coordinate only arithmetic

Montgomery's arithmetic: $\quad B y^{2}=x^{3}+A x^{2}+x$

$$
\begin{aligned}
& x_{[2] T}=\operatorname{DBL}\left(x_{T}, A\right) \\
& x_{T+P}=\operatorname{PSEUDOADD}\left(x_{T}, x_{P}, x_{T-P}\right)
\end{aligned}
$$

VS.


- opposite $y$ 's give different $x$-coordinate than same-sign $y$ 's
- decide between them with difference $x_{T-P}$
- "Differential" additions: $x_{T+P}=\operatorname{PSEUDOADD}\left(x_{T}, x_{P}, x_{T-P}\right)$
- Can exponentiate: intermediate points $[n] P$ and $[n+1] P$ (difference $P$ invariant)
- Can't add generically: Kummers are restricted ( $\approx$ to DH ) in crypto, can't do traditional signatures or complex protocols


## Real world problems facing $J_{\mathcal{C}}$

- Success: Genus 2 Kummer is by far the best prime field option out there!
- Why not use $\mathcal{K}_{\mathcal{C}}$ for key agreement and $J_{\mathcal{C}}$ for everything else?
- Reason/challenge: There isn't one addition formula that handles all points in $J_{\mathcal{C}}$ - this makes writing "constant-time" code extremely difficult/cumbersome/slow for $J_{\mathcal{C}}$ (Cantor's algorithm variable time and very "branchy")
- See disclaimers: Assumption 1 and Section 7.3 in [HC'14]
- So many special cases: e.g. $O(p)$ "degenerate" divisors with one rational element in support (just the beginning)


## Two questions

## Question 1: does this happen with the Kummers too?

Answer: nope, no exceptions to differential additions. $J_{\mathcal{C}} \rightarrow \mathcal{K}$ kills two-torsion and all divisors work in the addition formula (Riemann relations)

## Question 2: does this happen in genus 1?

Answer: yes and no. For generic Weierstrass curves, group law has exceptional points (and different cases). But genus 1 has one advantage here: non-generic, non-Weierstrass models ...

## e.g. (Twisted) Edwards curves and complete formulas

$$
{ }_{P_{1}{ }^{P_{3}} \stackrel{\mathcal{P}_{2}}{-P_{3}} .}
$$

$\mathcal{O}^{\prime}$

On $\mathcal{E} / K:-x^{2}+y^{2}=1+d x^{2} y^{2}$, if $d$ is non-square in $K$, then

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

works for all $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in $E(K)$, including $x_{1}=x_{2}$, the neutral point $(0,1)$, etc.
No special cases means easier constant-time code
$\leftrightarrow$ real-world adoption

## The (sad) situation for general elliptic curves

```
Algorithm 19 Complete (projective) addition using masking and Jacobian coordinates on
prime-order Weierstrass curves E}\mp@subsup{E}{b}{}\mathrm{ .
Input: P,Q\inE E (\mp@subsup{F}{p}{})\mathrm{ such that P}=(\mp@subsup{X}{1}{},\mp@subsup{Y}{1}{},\mp@subsup{Z}{1}{})\mathrm{ and }Q=(\mp@subsup{X}{2}{},\mp@subsup{Y}{2}{},\mp@subsup{Z}{2}{})\mathrm{ are in Jacobian coordinates.}
Output: R}=P+Q\in\mp@subsup{E}{b}{}(\mp@subsup{\mathbf{F}}{p}{})\mathrm{ in Jacobian coordinates, Computations marked with [*] are implemented in
    constant time using masking.
1. T[0]=\mathcal{O}\quad{T[i]=(\mp@subsup{\tilde{X}}{i}{\prime},\mp@subsup{\tilde{Y}}{i}{},\mp@subsup{\tilde{Z}}{i}{})\mathrm{ for 0}\leqi<5
2. T[1]=Q
3. }T[4]=
4. }\mp@subsup{t}{2}{}=\mp@subsup{Z}{1}{2
5. }\mp@subsup{t}{3}{}=\mp@subsup{Z}{1}{}\times\mp@subsup{t}{2}{
6. }\mp@subsup{t}{1}{}=\mp@subsup{X}{2}{}\times\mp@subsup{t}{2}{
7. }\mp@subsup{t}{4}{}=\mp@subsup{Y}{2}{}\times\mp@subsup{t}{3}{
8. }\mp@subsup{t}{3}{}=\mp@subsup{Z}{2}{2
9. }\mp@subsup{t}{5}{}=\mp@subsup{Z}{2}{}\times\mp@subsup{t}{3}{
10. }\mp@subsup{t}{7}{}=\mp@subsup{X}{1}{}\times\mp@subsup{t}{3}{
11. }\mp@subsup{t}{8}{}=\mp@subsup{Y}{1}{}\times\mp@subsup{t}{5}{
2. }\mp@subsup{t}{1}{}=\mp@subsup{t}{1}{}-\mp@subsup{t}{7}{
13. }\mp@subsup{t}{4}{}=\mp@subsup{t}{4}{}-\mp@subsup{t}{8}{
14. index =3
15. if }\mp@subsup{t}{1}{}=0\mathrm{ then
index =0 }\quad{R=O
17. if }\mp@subsup{t}{4}{}=0\mathrm{ then index =2 }\quad{R=2P
18. if P}=\mathcal{O}\mathrm{ then index =1 }\quad{R=Q
19. if }Q=\mathcal{O}\mathrm{ then index =4 {R=P}
20. mask =0
21. if index =3 then mask =1
    {case P+Q, else any other case}
22. ts = X 
23. ts = X X - to
24. if mask}=0\mathrm{ then }\mp@subsup{t}{2}{}=\mp@subsup{Y}{1}{}\mathrm{ else }\mp@subsup{t}{2}{}=\mp@subsup{t}{1}{
24. if mask \(=0\) then \(t_{2}=Y_{1}\) else \(t_{2}=t_{1}\)
```

Bosma-Lenstra: in general, need at least two sets of formulas, e.g.

```
X3=(X1 (X Y - X 
Y}=-(3\mp@subsup{X}{1}{}\mp@subsup{X}{2}{}+a\mp@subsup{Z}{1}{}\mp@subsup{Z}{2}{})(\mp@subsup{X}{1}{}\mp@subsup{Y}{2}{}-\mp@subsup{X}{2}{}\mp@subsup{Y}{1}{})+(\mp@subsup{Y}{1}{}\mp@subsup{Z}{2}{}-\mp@subsup{Y}{2}{}\mp@subsup{Z}{1}{})(a(\mp@subsup{X}{1}{}\mp@subsup{Z}{2}{}+\mp@subsup{X}{2}{}\mp@subsup{Z}{1}{})+3b\mp@subsup{Z}{1}{}\mp@subsup{Z}{2}{}-\mp@subsup{Y}{1}{}\mp@subsup{Y}{2}{})
Z3}=(3\mp@subsup{X}{1}{}\mp@subsup{X}{2}{}+a\mp@subsup{Z}{1}{}\mp@subsup{Z}{2}{})(\mp@subsup{X}{1}{}\mp@subsup{Z}{2}{}-\mp@subsup{X}{2}{}\mp@subsup{Z}{1}{})-(\mp@subsup{Y}{1}{}\mp@subsup{Z}{2}{}+\mp@subsup{Y}{2}{}\mp@subsup{Z}{1}{})(\mp@subsup{Y}{1}{}\mp@subsup{Z}{2}{}-\mp@subsup{Y}{2}{}\mp@subsup{Z}{1}{})
```



```
Y
Z3

\section*{Real-world status}
\begin{tabular}{|c|c|c|c|c|c|}
\hline g & curve & work & formulas & prime \(p\) & cycles \\
\hline 1 & Montgom. & {\(\left[\mathrm{B}^{\prime} 06 \rightarrow 14\right]\)} & ladder & \(2^{255}-19\) & \(\mathbf{1 9 4 , 0 0 0}(\mathrm{SB})\) \\
& Edwards & {\([\) BDLSY'11] } & complete & \(2^{255}-19\) & \(\mathbf{2 3 0 , 0 0 0}(? ?)\) \\
\hline 2 & Kummer & {\([\) BCLS'14] } & theta & \(2^{127}-1\) & \(\mathbf{8 9 , 0 0 0 ( S B )}\) \\
& ?? & ?? & complete & ?? & ?? \\
\hline
\end{tabular}
- Challenge: fill in the ??'s
- Highly desirable to find a non-Weierstrass model to mimic genus 1 non-Weierstrass completeness
- Or, highly desirable to achieve completeness via other means

\section*{References}
[B’06] Berstein. Curve25519: new Diffie-Hellman speed records. http://cr.yp.to/ecdh/curve25519-20060209.pdf
[BDLSY'11] Bernstein-Duif-Lange-Schwabe-Yang. High-speed high-security signatures.
http://ed25519.cr.yp.to/ed25519-20110926.pdf
[BCHL'13] Bos-C-Hisil-Lauter. Fast cryptography in genus 2. http://eprint.iacr.org/2012/670.pdf
[HC'14] Hisil-C. Jacobian coordinates on genus 2 curves.
http://eprint.iacr.org/2014/385.pdf
[BCLS'14] Bernstein-Chuengsatiansup-Lange-Schwabe. Kummer strikes back: new DH speed records.
https://eprint.iacr.org/2014/134.pdf
[BCLN'15] Bos-C-Longa-Naehrig. Selecting elliptic curves for cryptography: an efficiency and security analysis.
http://eprint.iacr.org/2014/130.pdf```

