
Microsoft Research

Craig Costello
Microsoft Research

joint work with
Joppe Bos (NXP), Michael Naehrig (MSR), Douglas Stebila (QUT)

Post-quantum key exchange for
the TLS protocol from R-LWE

This work: R-LWE in TLS
(openssl.org)

• All (public-key) ciphersuites currently offered in TLS
will break if a large-scale quantum computer is built

• This work: build ciphersuites that (hopefully) won’t

e.g.

This work: R-LWE key agreement in TLS

• In this work, we start by looking at post-quantum key agreement only

• Assumption: large-scale quantum computers don’t exist now, but what if we
want to protect today’s communications against tomorrow’s adversary?

• Signatures still done with traditional primitives RSA/ECDSA (we only need
authentication to be secure now)

e.g.

The learning with errors (LWE) problem

× + =

𝒁𝑞
𝑚×𝑛 𝒁𝑞

𝑛×1 𝒁𝑞
𝑚×1 𝒁𝑞

𝑚×1

random ind. from randomsecret small

LWE problem: given blue, find red

The learning with errors (LWE) problem

× + =

𝒁13
7×4 𝒁13

4×1 𝒁13
7×1 𝒁13

7×1
random secret small

LWE problem: given blue, find red

4

4
4

1 11

11

1

10
5 5 5

5

9
9

33
3

0

0 10
2

12 7 3
56
33

4
7
2

11
5

12
8

ind. from random

The learning with errors (LWE) problem

× + =

𝒁13
7×4 𝒁13

4×1 𝒁13
7×1 𝒁13

7×1
random secret small

LWE problem: given blue, find red

4

4
4

1 11

11

1

10
5 5 5

5

9
9

33
3

0

0 10
2

12 7 3
56
33

4
7
2

11
5

12
8

6
9

11
11

0

0
-1

-1
1
1
1

ind. from random

Toy example versus real-world example

𝒁13
7×4

4

4
4

1 11

11

1

10
5 5 5

5

9
9

33
3

0

0 10
2

12 7 3
56
33

𝒁4093
640×256

640 × 256 × 12 = 1966080 bits
= 245 kB !!

2738 3842 3345 2979

2896 595

377

3607
1575

2760

. . .

. . .

256

640

The learning with errors (LWE) problem

× + =

𝒁13
7×4 𝒁13

4×1 𝒁13
7×1 𝒁13

7×1
random secret small

LWE problem: given blue, find red

4

4
4

1 11

11

1

10
5 5 5

5

9
9

33
3

0

0 10
2

12 7 3
56
33

4
7
2

11
5

12
8

6
9

11
11

0

0
-1

-1
1
1
1

ind. from random

The ring learning with errors (R-LWE) problem

× + =

𝒁13
7×4 𝒁13

4×1 𝒁13
7×1 𝒁13

7×1
random secret small

4

4

1 11

1

10
4 111

11
11 4 1

4
12 7 3

4
6
4
0
5
8
2

6
9

11
11

0

0
-1

-1
1
1
1

10
10

10

12
12
7

7
4

4
3

3

ind. from random

The ring learning with errors (R-LWE) problem

× + =

𝒁13
7×4 𝒁13

4×1 𝒁13
7×1 𝒁13

7×1
random secret small

4 1 11

12

10
4 111

2
2 4 1

4

4
3
4

12
5

12
11

6
9

11
11

0

0
-1

-1
1
1
1

3
3

3

412 7 3
12

12
7

7
9

9
3

10

ind. from random

The ring learning with errors (R-LWE) problem

× + =

𝒁13
4×4 𝒁13

4×1 𝒁13
4×1 𝒁13

4×1
random secret small

LWE problem: given blue, find red

4 1 11

12

10
4 111

2
2 4 1

4

4
3
4

12

6
9

11
11

0
-1
1
1

3
3

3

ind. from random

The ring learning with errors (R-LWE) problem

𝒁13
4×4

4 1 11

12

10

4 111

2

2 4 1

4

3

3

3

𝒁13 𝑥 /(𝑥4 + 1)

4 + 1𝑥 + 11𝑥2 + 10𝑥3

= 𝑥 ⋅ (4 + 1𝑥 + 11𝑥2 + 10𝑥3)

= 𝑥2 ⋅ (4 + 1𝑥 + 11𝑥2 + 10𝑥3)

= 𝑥3 ⋅ (4 + 1𝑥 + 11𝑥2 + 10𝑥3)

The ring learning with errors (R-LWE) problem

R-LWE problem: given blue, find red

𝟒 + 𝟏𝒙 + 𝟏𝟏𝒙𝟐 + 𝟏𝟎𝒙𝟑

𝟔 + 𝟗𝒙 + 𝟏𝟏𝒙𝟐 + 𝟏𝟏𝒙𝟑

𝟎 − 𝟏𝒙 + 𝟏𝒙𝟐 + 𝟏𝒙𝟑

𝟏𝟎 + 𝟓𝒙 + 𝟏𝟎𝒙𝟐 + 𝟕𝒙𝟑

×
+

𝒁13 𝑥

〈𝑥4 + 1〉

The ring learning with errors (R-LWE) problem

R-LWE problem (small secrets): given blue, find (small!) red

𝟒 + 𝟏𝒙 + 𝟏𝟏𝒙𝟐 + 𝟏𝟎𝒙𝟑

𝟎 − 𝟏𝒙 + 𝟏𝒙𝟐 + 𝟏𝒙𝟑

𝟑 + 𝟖𝒙 + 𝟓𝒙𝟐 + 𝟔𝒙𝟑

×
+

𝒁13 𝑥

〈𝑥4 + 1〉

𝟏 + 𝟎𝒙 − 𝟏𝒙𝟐 − 𝟏𝒙𝟑

The ring learning with errors (R-LWE) problem
(the 128-bit secure version)

R-LWE problem: given blue, find (small!) red

𝟐𝟕𝟗𝟐𝟗𝟑𝟎𝟒𝟎𝟕 +⋯+ 𝟐𝟗𝟑𝟖𝟒𝟔𝟓𝟎𝟏𝟓𝒙𝟏𝟎𝟐𝟑

×
+

𝒁232−1 𝑥

〈𝑥1024 + 1〉

𝟓 − 𝟑 𝒙…+ 𝟗𝒙𝟏𝟎𝟐𝟐 − 𝟏𝒙𝟏𝟎𝟐𝟑

𝟐 + 𝟒 𝒙…− 𝟎𝒙𝟏𝟎𝟐𝟐 + 𝟔𝒙𝟏𝟎𝟐𝟑

𝟑𝟏𝟓𝟗𝟖𝟎𝟒𝟓𝟖𝟒 +⋯+ 𝟏𝟏𝟓𝟑𝟕𝟔𝟗𝟎𝟕𝟖𝒙𝟏𝟎𝟐𝟑

R-LWE-DH: key agreement in 𝑅𝑞 = 𝒁𝑞 𝑥 /〈𝑥𝑛 + 1〉

𝑎 ⋅ 𝑠 + 𝑒

𝑎 ⋅ 𝑠′ + 𝑒′

secret: “small” 𝑒, 𝑠 ∈ 𝑅𝑞

public: “big” a ∈ 𝑅𝑞
secret: “small” 𝑒′, 𝑠′ ∈ 𝑅𝑞

𝑠 ⋅ 𝑎 ⋅ 𝑠′ + 𝑒′ ≈ 𝑠 ⋅ 𝑎 ⋅ 𝑠′ 𝑠′ ⋅ 𝑎 ⋅ 𝑠 + 𝑒 ≈ 𝑠 ⋅ 𝑎 ⋅ 𝑠′

Approximate agreement mod 𝑞

the usual
ROUND
function

≈ ≈ ≈ ≈4079331841 + 1894732145 ⋅ 𝑥 + ⋯+ 472608255 ⋅ 𝑥1022 + 516748383 ⋅ 𝑥1023

4079332556 + 1894733033 ⋅ 𝑥 + ⋯+ 472607765 ⋅ 𝑥1022 + 516748363 ⋅ 𝑥1023=

ROUND

= = =

0 1 0 0
This will work most of the time (fails ≈ 1/210), but we need exact agreement

i.e. what happens if one of the coefficients is in the “danger zone(s)”

0𝑞

2

𝑞/4

3𝑞/4

Making approximate agreement exact in 𝒁𝑞

0𝑞

2

𝑞/4

3𝑞/4

if

or

else

(Peikert’s reconciliation mechanisms: http://eprint.iacr.org/2014/070.pdf)
two values 𝑢, 𝑣 ∈ 𝒁𝑞 will agree so long as 𝑢 − 𝑣 < 𝑞/8 (i.e. always!)

http://eprint.iacr.org/2014/070.pdf

R-LWE-DH: exact key agreement

𝑎 ⋅ 𝑠 + 𝑒

𝑎 ⋅ 𝑠′ + 𝑒′ and , 𝑛 ∈ 0,1 𝑛

secret: “small” 𝑒, 𝑠 ∈ 𝑅𝑞

public: “big” a ∈ 𝑅𝑞
secret: “small” 𝑒′, 𝑠′ ∈ 𝑅𝑞

RECONCILE 𝑠 ⋅ 𝑎 ⋅ 𝑠′ + 𝑒′ , , 𝑛 ROUND 𝑠′ ⋅ 𝑎 ⋅ 𝑠 + 𝑒=
both parties now share 𝑘 ∈ 0,1 𝑛

Security aspects

• Prove that scheme is secure under “Exact DDH-like problem”

• Show that “Exact DDH-like problem” is hard if decision R-LWE problem is

A secure key agreement protocol

Secure integration into the TLS

• Integrate R-LWE key agreement into the TLS protocol

• Use Jager et al. “Authenticated and confidential channel establishment”
(ACCE) model (Crypto2012)

• Prove that “TLS-signed R-LWE is a secure ACCE”

Implementation aspect 1: polynomial arithmetic

• Polynomial multiplication in 𝑅𝑞 = 𝒁𝑞 𝑥 /〈𝑥1024 + 1〉 done with
Nussbaumer’s FFT (2𝑙 = 𝑟 ⋅ 𝑘)

𝑅 𝑋

𝑋2𝑙 + 1
≅

𝑅 𝑍
𝑍𝑟 + 1

𝑋

𝑋𝑘 − 𝑍

• Rather than working modulo degree-1024 polynomial with coefficients in 𝒁𝑞,
work modulo:-

- degree-256 polynomial whose coefficients are themselves
polynomials modulo a degree-4 polynomial, or

- degree-32 polynomials whose coefficients are polynomials modulo
degree-8 polynomials whose coefficients are polynomials …

Implementation aspect 2: sampling discrete Gaussians

• Security (proofs) require “small” elements to be within statistical distance
2−128 of true discrete Gaussian 𝐷𝑍,𝜎(𝑥)

• Inversion sampling: precompute table of cumulative probabilities
(for us: 52 elements of 192-bits in size: ≈ 10,000 bits)

• Each coefficient requires six 192-bit integer comparisons (51 if “constant-
time”), and there are 1024 coefficients!!!

𝐷𝒁,𝜎 𝑥 =
1

𝑆
𝑒
−

𝑥2

2𝜎2 for 𝑥 ∈ 𝒁

(for us: 𝜎 ≈ 3.2 , 𝑆 = 8)

The price of post-quantum paranoia, part I

(Intel Core i5 (4570R) @ 2.7GHz)

The price of post-quantum paranoia, part II

The price of post-quantum paranoia, part III

Summary and future work

• If you want to protect today’s secrets against tomorrow’s quantum adversary,
use

in TLS for a small overhead

• Future work, part II: protecting tomorrow’s secrets too!

• Future work, part I: a tonne of unexplored optimizations (this is our first go)
- e.g: we didn’t do assembly/precomputation/parallelizing
- e.g: alternative FFT’s
- e.g: much faster/compact sampling algorithms likely

The paper (to appear at Oakland S&P)
http://eprint.iacr.org/2014/599.pdf

Magma code:
http://research.microsoft.com/en-US/downloads/6bd592d7-

cf8a-4445-b736-1fc39885dc6e/default.aspx

C code integrated into OpenSSL:
https://github.com/dstebila/rlwekex

http://eprint.iacr.org/2014/599.pdf
http://research.microsoft.com/en-US/downloads/6bd592d7-cf8a-4445-b736-1fc39885dc6e/default.aspx
https://github.com/dstebila/rlwekex

