
Selecting Elliptic Curves for
Cryptography:

an Efficiency and Security Analysis

Craig Costello
ECC2014 – Chennai, India

Joint work with
Joppe Bos (NXP), Patrick Longa (MSR), Michael Naehrig (MSR)

http://eprint.iacr.org/2014/130.pdf

http://eprint.iacr.org/2014/130.pdf

June 2013 – the Snowden leaks

“… the NSA had written
the [crypto] standard
and could break it.”

Post-Snowden responses
• Bruce Schneier: “I no longer trust the constants. I believe the NSA has

manipulated them…”

• Nigel Smart: “Shame on the NSA…”

• IACR: “The membership of the IACR repudiates mass surveillance and the
undermining of cryptographic solutions and standards.”

• TLS Working Group:
formal request to CFRG for new elliptic curves for usage in TLS!!!

• NIST: announces plans to host workshop to discuss new elliptic curves

http://crypto.2014.rump.cr.yp.to/487f98c1a1a031283925d7affdbdef1c.pdf

http://crypto.2014.rump.cr.yp.to/487f98c1a1a031283925d7affdbdef1c.pdf

Pre-Snowden suspicions re: NIST (and their curves)

• 2013 - Bernstein and Lange: “Jerry Solinas at the NSA used this [random
method] to generate the NIST curves … or so he says…”

• 2008 – Koblitz and Menezes: “However, in practice the NSA has had the
resources and expertise to dominate NIST, and NIST has rarely played a
significant independent role.”

• 2007 – Shumow and Ferguson: “We don’t know how 𝑄 = [𝑑]𝑃 was chosen,
so we don’t know if the algorithm designer [NIST] knows [the backdoor] 𝑑.”

• 1999 – Scott: “So, sigh, why didn't they [NIST] do it that way? Do they want to
be distrusted?”

NIST’s CurveP256: one-in-a-million?

Prime characteristic: 𝑝 = 2256 − 2224 + 2192 + 296 − 1

Elliptic curve: 𝐸/𝑭𝑝 : 𝑦2 = 𝑥3 − 3𝑥 + 𝑏

Curve constant: 𝑏 = −
27

𝑆𝐻𝐴1 𝑠

Seed: 𝑠 = c49d360886e704936a6678e1139d26b7819f7e90

“Consider now the possibility that one in a million of all curves have an exploitable structure
that "they" know about, but we don't.. Then "they" simply generate a million random seeds
until they find one that generates one of "their" curves…”

Scott ‘99:

Rigidity

• Give reasoning for all parameters and minimize “choices” that could
allow room for manipulation

• Hash function needs a seed (digits of 𝑒, 𝜋, etc), but do choice of seed
and choice of hash function themselves introduce more wiggle room?

• Goal: Justify all choices with (hopefully) undisputable efficiency
arguments

e.g. choose fast prime field and take smallest curve constant that gives
``optimal’’ group order/s [Bernstein‘06]

So then, what about these?

Replacement curve Prime 𝒑 Constant 𝒃

(NEW) Curve P-256 2256 − 2224 + 2192 + 296 − 1 2627

(NEW) Curve P-384 2384 − 2128 − 296 + 232 − 1 14060

(NEW) Curve P-521 2521 − 1 167884

• Same fields and equations (𝐸 ∶ 𝑦2 = 𝑥3 − 3𝑥 + 𝑏) as NIST curves

• BUT smallest constant 𝑏 (RIGID) such that #𝐸 and #𝐸′ both prime

• So, simply change curve constants, and we’re done, right???

(Our) Motivations

1. Curves that regain confidence

- rigid generation / nothing up my sleeves
- public approval and acceptance

2. 15 years on, we can do so much better than the NIST curves
(and this is true regardless of NIST-curve paranoia!)

- side-channel resistance
- faster finite fields and modular reduction
- a whole new world of curve models

3. Whether it’s cricket or crypto, a proper game needs several players…

The players

• Aranha-Barreto-Pereira-Ricardini: M-221, M-383, M-511, E-382,…

• Bernstein-Lange: Curve25519, Curve41417, E-521,…

• Bos-Costello-Longa-Naehrig: the NUMS curves

• Hamburg: Goldilocks448, Ridinghood448,…

• ECC Brainpool: brainpoolP256t1, brainpoolP384t1,…

• …

• your-name-here?: your-curves-here?

The players

• Aranha-Barreto-Pereira-Ricardini: M-221, M-383, M,511, E-382,…

• Bernstein-Lange: Curve25519, Curve41417, E-521,…

• Bos-Costello-Longa-Naehrig: the NUMS curves

• Hamburg: Goldilocks448, Ridinghood448,…

• ECC Brainpool: brainpoolP256t1, brainpoolP384t1,…

• …

• your-name-here?: your-curves-here?

Umpire Paterson
(CFRG co-chair)

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

The last 2 years of “state-of-the-art” speeds

• [LS‘12] (AsiaCrypt) & [LFS‘14] (JCEN) ≈90,000 cyc
4-GLV/GLS using CM curve over quad. ext. field

• [BCHL‘13] (EuroCrypt) ≈120,000 cyc & [BCLS‘14] (AsiaCrypt) ≈90,000 cyc
Laddering on genus 2 Kummer surface

• [CHS ‘14] (EuroCrypt) ≈140,000 cyc
2-dimensional Montgomery ladder using Q-curve over quad. ext. field

• [OLAR‘13] (CHES) ≈115,000 cyc
GLS on a composite-degree binary extension field

All of the above offer ≈128-bit security against best known attack
BUT

None of the above have been considered in the search for new curves!!!

Security hunches killing all the fun

• Best known attacks against the curves on prior page are ≈ the same

• BUT widespread agreement that random elliptic curves over prime
fields are safest hedge for real world deployment

• By “random”, I mean huge CM discriminant, huge class number, huge
MOV degree… no special structure!

• Basic recipe: over fixed prime field, (rigidly) find curve with “optimal”
group orders (SEA), then assert above are huge (they will be)

WARNING: 𝜙 𝜋𝑝 < 100,000
cyc

Security hunches killing all the fun

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

Two prime forms analyzed

(1) Pseudo-Mersenne primes: 𝒑 = 𝟐𝜶 − 𝜸
(2) Montgomery-friendly primes: 𝒑 = 𝟐𝜶 𝟐𝜷 − 𝜸 − 𝟏

• For each security level 𝑠 ∈ {128,192,256}, we benchmarked two of both:
(a) one “full bitlength” prime
(b) one “relaxed bitlength” prime

• In our case, relaxed meant:
- drop one bit for pseudo-Mersenne (lazy reduction)
- drop two bits for Mont-friendly (conditional sub saved in every mul)

• Subject to above, security level determines primes
- 𝛼 and 𝛽 determined by 𝑠
- smallest 𝛾 > 0 such that 𝑝 is prime and 𝒑 ≡ 𝟑𝐦𝐨𝐝 𝟒

Some premature performance ratios

Target Security
Level

Pseudo-Mers
Full

Pseudo-Mers
Relaxed

Mont-Friendly
Full

Mont-Friendly
Relaxed

128 1.00x 0.97x 1.00x 0.84x

192 0.94y 0.90y 1.00y 0.90y

256 0.89z 0.85z 1.00z 0.92z

Cost ratios of variable-base scalar multiplications on twisted Edwards curves at three target security levels

• Relaxed version naturally wins in both cases

• Montgomery-friendly vs. Pseudo-Mersenne not as clear cut

• So what did we end up going for….???

Full length pseudo-Mersenne primes

• We went for pseudo-Mersenne over Montgomery-friendly
- simpler (may depend on who you ask?)
- take a decent performance hit at 128-bit level
- closer resemblance to NIST-like arithmetic

• We went for full-length over relaxed-bitlength
- take a performance hit of 2-4%
- BUT maximizes ECDLP security, maintains 64-bit alignment,

& avoids temptation to keep going lower

Security level Prime

128 2256 − 189

192 2384 − 317

256 2512 − 569

Arithmetic for the pseudo-Mersenne primes
• Constant time modular multiplication

input: 0 ≤ 𝑥, 𝑦 < 2𝛼 − 𝛾
𝑥 ⋅ 𝑦 ∈ 𝐙

= ℎ ⋅ 2𝛼 + 𝑙
≡ ℎ ⋅ 2𝛼 + 𝑙 − ℎ 2𝛼 − 𝛾 mod (2𝛼−𝛾)

= 𝑙 + 𝛾 ⋅ ℎ

output: 𝑥 ⋅ 𝑦 mod (2𝛼 − 𝛾)

(after fixed=worst-case number of reduction rounds)

• Constant time modular inversion: 𝑎−1 ≡ 𝑎𝑝−2 mod 𝑝

• Constant time modular square-root: √𝑎 ≡ 𝑎(𝑝+1)/4 mod 𝑝

𝑥 𝑦

𝑥 ⋅ 𝑦

𝑙 ℎ

𝑙

ℎ+ 𝛾 ⋅

𝑥 ⋅ 𝑦

What primes do others like?

• Bernstein and Lange: Curve25519, Curve41417, E-521

𝑝 = 2255 − 19, 𝑝 = 2414 − 17, 𝑝 = 2521 − 1

• Hamburg: Ed448-Goldilocks, Ed480-Ridinghood

𝑝 = 2448 − 2224 − 1, 𝑝 = 2480 − 2240 − 1

• Aranha-Barreto-Pereira-Ricardini: M-221, M-383, M-511 , E-382, etc

𝑝 = 2221 − 3, 𝑝 = 2383 − 187, 𝑝 = 2511 − 187, 𝑝 = 2382 − 105

• Brainpool: brainpoolP256t1, brainpoolP384t1, etc

𝑝 = 76884956397045344220809746629001649093037950200943055203735601445031516197751

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

A world of curve models

𝑦2 = 𝑥3 + 𝑎𝑥2 + 16𝑎𝑥
Doubling-oriented DIK curves

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

(twisted) Edwards curves

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥
Montgomery curves

𝑎𝑥3 + 𝑦3 + 1 = 𝑑𝑥𝑦
(twisted) Hessian curves

𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃
short Weierstrass curves

𝑠2 + 𝑐2 = 1 ∩ 𝑎𝑠2 + 𝑑2 = 1
Jacobi intersections

𝑦2 = 𝑥4 + 2𝑎𝑥2 + 1
Jacobi quartics

See Bernstein and Lange’s Explicit-Formulas Database (EFD) and/or Hisil’s PhD thesis

Montgomery
curves

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥

• Subset of curves

• Not prime order

• Fast Montgomery
ladder

• ≈ Exception
free

(twisted) Edwards
curves

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

• Subset of curves

• Not prime order

• Fastest addition law

• Some
have
complete
group law

Weierstrass
curves

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Most general form

• Prime order possible

• Exceptions in group law

• NIST and
Brainpool curves

The chosen ones

Complete addition on Edwards curves

Let 𝑑 ≠ □ in 𝐾 and consider Edwards curve
𝐸/𝐾 ∶ 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

For all (!!!) 𝑃1 = 𝑥1, 𝑦1 , 𝑃2 = 𝑥2, 𝑦2 ∈ 𝐸(𝐾)

𝑃1 + 𝑃2 =: 𝑃3 = (
𝑥1𝑦2 + 𝑦1𝑥2

1 + 𝑑𝑥1𝑥2𝑦1𝑦2
,
𝑦1𝑦2 − 𝑥1𝑥2

1 − 𝑑𝑥1𝑥2𝑦1𝑦2
)

Denominators never zero, neutral element rational = 0,1 , etc..
(Bernstein-Lange, AsiaCrypt 2007)

Edwards vs twisted Edwards
General twisted Edwards 𝑬𝒂,𝒅 ∶ 𝒂𝒙

𝟐 + 𝒚𝟐 = 𝟏 + 𝒅𝒙𝟐𝒚𝟐

When 𝑎 = 1 (Edwards!) 𝐸1,𝑑 ∶ 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

When 𝑎 = −1 𝐸−1,𝑑∶ −𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

Fastest addition 8M, also (technically) incomplete when 𝑝 ≡ 3 mod 4

(Bernstein-Lange, AsiaCrypt 2007 and Hisil et al., AsiaCrypt 2008)

(Hisil et al., AsiaCrypt 2008)

Fastest complete addition (for 𝑑 ≠ □) 9M+1d

• Edwards completeness highly desirable, but so are the fast (twisted Edwards) formulas!
• Incomplete formulas still work for any 𝑷,𝑸 where 𝑷 ≠ 𝑸, and both have odd order…

Killing cofactors and the fastest formulas

• (Twisted) Edwards curves necessarily have a cofactor of at least 4,
so assume #𝐸 = 4𝑟 where 𝑟 is a large prime

• Users will check that 𝑃 ∈ 𝐸, but cannot easily check whether 𝑃 has order
𝑟, 2𝑟, or 4𝑟

• If secret scalars 𝑘 are in [1, 𝑟), then attackers could send 𝑃 of order 4𝑟, and
on receiving [𝑘]𝑃, compute 𝒓𝒌 𝑷 = 𝒌𝐦𝐨𝐝 𝟒 𝑷 ∈ 𝐸(𝐹𝑝)[4] to reveal

𝑘 mod 4 (i.e. the last two bits of 𝑘)

• RECALL: the fastest additions will work for all 𝑃 ≠ 𝑄, both of odd order…

Killing cofactors and the fastest formulas
Our approach

- incomplete twisted Edwards curve
𝐸−1,𝑑 ∶ −𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

- modified set of scalars
𝑘 ∈ 1, 2, … 𝑟 − 1 ↔ 𝑘 ∈ 4, 8, 4𝑟 − 4

- initial double-double
𝑃 ∈ 𝐸 ↦ 𝑄 ≔ 4 𝑃 ∈ 𝐸 𝑟

- fastest formulas to compute
 𝑘 𝑃 = [𝑘]𝑄

“specified curve” incomplete, but uses fastest formulas and stays on one curve

Killing cofactors and the fastest formulas

Hamburg’s approach (http://eprint.iacr.org/2014/027)

- complete Edwards curve
𝐸1,𝑑 ∶ 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

- use 4-isogeny to incomplete twisted:
𝜙 ∶ 𝐸1,𝑑 → 𝐸−1,𝑑−1

- fastest formulas to compute:
𝑘 𝑃 on 𝐸−1,𝑑−1 (since im 𝜙 = 𝐸−1,𝑑−1[𝑟])

- use dual to come back to 𝐸1,𝑑
 𝜙 ∶ 𝐸−1,𝑑−1 → 𝐸1,𝑑

“specified curve” complete and uses fastest formulas, but isogeny needed

http://eprint.iacr.org/2014/027

Killing cofactors and the fastest formulas

Bernstein-Chuengsatiansup-Lange approach (Curve41417)

- complete Edwards curve
𝐸1,𝑑 ∶ 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

- kill torsion with doublings
 𝑘 ∈ 8, 16,…

- stay on 𝐸1,𝑑, at the expense of 1M per addition
but compare ≈3727M to ≈3645M (+ 𝜙 + 𝜙)

“specified curve” is complete, stay on it (simple), but slightly slower additions

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

Textbook arithmetic on 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

(𝑥 2 𝑇 , 𝑦 2 𝑇) = 𝐷𝐵𝐿(𝑥𝑇 , 𝑦𝑇) (𝑥𝑇+𝑃, 𝑦𝑇+𝑃) = 𝐴𝐷𝐷(𝑥𝑇 , 𝑦𝑇 , 𝑥𝑃, 𝑦𝑃)

Montgomery’s arithmetic on 𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥

𝑥 2 𝑇 = 𝐷𝐵𝐿(𝑥𝑇) 𝑥𝑇+𝑃 = 𝐷𝐼𝐹𝐹𝐴𝐷𝐷(𝑥𝑇 , 𝑥𝑃, 𝑥𝑇−𝑃)

Differential additions …

vs.

• “Opposite” 𝑦’s give different 𝑥-coordinate than “same-sign” 𝑦’s

• Decide with 𝑥-coordinate of difference: 𝑥𝑇+𝑃 = 𝐷𝐼𝐹𝐹𝐴𝐷𝐷(𝑥𝑇 , 𝑥𝑃, 𝑥𝑇−𝑃)

• Invariant: in 𝑥 𝑃 , 𝑘 ↦ 𝑥 𝑘 𝑃 , keep this difference fixed as 𝑥(𝑃)

• Iteration: at each intermediate step, we always have 𝑥 𝑚 𝑃 , 𝑥(𝑚 + 1 𝑃) …
so we always add them and double one (depends on binary rep. of k) to preserve
the invariant

… and the Montgomery ladder

Twist-security

• Ladder gives scalar multiplications on 𝐸: 𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥 as
𝑥 𝑘 𝑃 = 𝐿𝐴𝐷𝐷𝐸𝑅(𝑥 𝑃 , 𝑘, 𝐴)

• Does not depend on 𝐵, so works on 𝐸′: 𝐵′𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥 for any 𝐵′

• Up to isomorphism, there are only two possibilities for fixed 𝐴:
𝐸 and its quadratic twist 𝐸′

• So if 𝐸 and 𝐸′ are both secure, no need to check 𝑃 ∈ 𝐸 for any 𝑥 𝑃 ∈ 𝐾,
as 𝐿𝐴𝐷𝐷𝐸𝑅(𝑥, 𝑘, 𝐴) gives discrete log on 𝐸 or 𝐸′ for all 𝑥 ∈ 𝐾

• Twist-security only really useful when doing 𝒙-only computations, but
why not have it anyway?

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

The NUMS curves
Security
𝒔 =

Prime
𝒑 =

Weierstrass
𝒃 =

Twisted Edwards
𝒅 =

Montgomery
𝑨 =

128 2256 − 189 152961 15342 −61370

192 2384 − 317 −34568 333194 −1332778

256 2512 − 569 121243 637608 −2550434

• Primes: Largest 𝑝 = 22𝑠 − 𝛾 ≡ 3 mod 4
(fun fact: in these cases, largest primes full stop)

• Weierstrass: Smallest |𝑏| such that #𝐸 and #𝐸′ both prime

• Twisted Edwards: Smallest 𝑑 > 0 such that #𝐸 and #𝐸′ both 4 times a prime, and
𝑑 > 0 corresponds to 𝑡 > 0.

• Reminder: there are 6 “chosen” curves above, but in paper 26 are benchmarked

Small constants all round for 𝑝 ≡ 3 mod 4

𝑀𝐴 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥 𝐸𝑎,𝑑 : 𝑎𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

𝑀𝐴

𝑀−𝐴

twist

≅

≅

𝐸−1,𝑑1

𝐸−1,1/𝑑1

isogeny

isogeny

𝐸−1,𝑑0

𝐸−1,−(𝑑0+1)

𝐸1, 𝑑0 +1

𝐸1,−𝑑0

𝑑1 = −
𝐴−2

𝐴+2
(big) 𝑑0 = −

𝐴+2

4
(small)

Searches minimize |𝐴| with 𝐴 ≡ 2 mod 4

Upshot: search that minimizes Montgomery constant size also minimizes size of both
twisted Edwards and Edwards constants (see Lemmas 1-3)

twist Both non-squares

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

Constant time implementations

• Constant time: all computations involving secret data must exhibit regular
execution to provide protection against timing and cache attacks

• No data-dependent branches or table lookups depend on scalar 𝑘

• Most naïve version: double-and-add double-and-always-add

𝑘 = [−, 0, 0, 1, 0, 1, …]
double-and-always-add: initialize 𝑄 ← 𝑃 [-,

compute 2 𝑄, 2 𝑄 + 𝑃 𝑄 ← 2 𝑄 0,
compute 2 𝑄, 2 𝑄 + 𝑃 𝑄 ← 2 𝑄 0,

compute 2 𝑄, 2 𝑄 + 𝑃 𝑄 ← 2 𝑄 + 𝑃 1,

compute 2 𝑄, 2 𝑄 + 𝑃 𝑄 ← 2 𝑄 0,
compute 2 𝑄, 2 𝑄 + 𝑃 𝑄 ← 2 𝑄 + 𝑃 1, ..

Fixed-window recoding for variable-base
• “Always-add” obviously brings in solid performance penalty: adding twice as

much as usual… BUT not when using bigger/optimal windows!!!

…5 DBL’s → ADD (26 𝑃) → 5 DBL’s → ADD (21 𝑃) → 5 DBL’s → ADD (2 𝑃)…

• Basic/naïve: pre-compute and store P,[2]P,…,[30]P, [31]P

• Chances of 5 zeros in a row = 1/32, but we must still always add something…

[…, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0,…]

[…, 26, 21, 2,…]

𝑤 = 1

𝑤 = 5
[…, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0,…]

Protected “odd-only” fixed-window recoding algorithm

• Window width 𝑤: recodes every odd scalar 𝑘 ∈ [1, 𝑟) into (𝑡 + 1) odd

values, i.e. 𝑘 = (𝑘𝑡 , … , 𝑘0), where 𝑡 =
log2 𝑟

𝑤

• Each recoded value is an integer in 𝑘𝑖 ∈ {±1,±3,±5,… ,±2𝑤 − 1}
(only half the precomputed values needed, and there are no zeros)

• e.g. 256-bit scalars, 𝑤 = 5 optimal for us, 53 windows:
- precompute table {𝑃, 3 𝑃, 5 𝑃,… , 31 𝑃} (1 DBL, 15 ADDS)
- select first value as [𝑘𝑡]𝑃
- 5 DBL’s→ADD([𝑘𝑡−1]𝑃) → … → 5 DBL’s → ADD ([𝑘0𝑃])

Total: 52 × 5 + 1 = 261 DBL’s, 52 + 16 = 68 ADD’s.

• Same total and sequence, whether 𝑘 = 1, 𝑘 = 𝑟, or anything in between

Much more to constant-time implementations

• Identical sequence of operations is just the beginning…

e.g: recoding was for odd scalars only: negate every scalar, mask in
the odd one, negate every “final” point, mask correct result…

e.g: recoding the scalars themselves must be constant time

e.g: must access/load every lookup element, every time, and mask
out correct one

see http://eprint.iacr.org/2014/130.pdf and
http://research.microsoft.com/en-us/projects/nums/

for solutions to these problems and more…

• The recoding is mathematically correct, and facilitates constant-time
implementations, BUT only assuming the ECC formulas do their job!

http://eprint.iacr.org/2014/130.pdf
http://research.microsoft.com/en-us/projects/nums/

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

Guaranteeing exception-free routines

• The running multiple 𝑄 = 𝑚 𝑃 of 𝑃 could be one of the values
𝑃, 3 𝑃,… , 2𝑤 − 1 𝑃 in the lookup table, or their inverse

• Not a problem if addition formulas are complete, but recall that:

(i) complete Edwards additions are not the fastest
(ii) typical Weierstrass additions far from complete

• Not only variable-base scenario 𝑘 𝑃 for 𝑃 (as before), but fixed-base
scenario where 𝑃 is known (precomps mean larger lookup table – more
potential trouble)

• Can only claim “constant-time” if all combinations of 𝑘 and 𝑃 compute
𝑘 𝑃 without exception

Guaranteeing exception-free routines
• Propositions 4,6: (under prior recoding) Weierstrass and twisted

Edwards variable-base scalar multiplications will compute without
exception if:
fastest dedicated addition formulas are used throughout, except the

final addition, which needs to be unified (for our proof to go through)

• Propositions 5,7: (under fixed-base recoding) Weierstrass and twisted
Edwards fixed-base scalar multiplications will compute without
exception if:
complete additions are used throughout (for our proof to go through)

Fine with me…
Unified?
Complete?

Weierstrass completeness

• Impossibility Theorem (Bosma-Lenstra): for general elliptic curves, we need
to compute at least two sets of explicit formulae to guarantee every sum is
computed:

i.e. no 𝑓𝑋, 𝑓𝑌, 𝑓𝑍 such that

𝑋3 = 𝑓𝑋(𝑋1, 𝑌1, 𝑍1, 𝑋2, 𝑌2, 𝑍2)
𝑌3 = 𝑓𝑌(𝑋1, 𝑌1, 𝑍1, 𝑋2, 𝑌2, 𝑍2)
𝑍3 = 𝑓𝑍(𝑋1, 𝑌1, 𝑍1, 𝑋2, 𝑌2, 𝑍2)

computes the correct sum 𝑋3: 𝑌3: 𝑍3 = 𝑋1: 𝑌1: 𝑍1 + 𝑋2: 𝑌2: 𝑍2 for all
points on a general curve

• Need (𝑓𝑋, 𝑓𝑌, 𝑓𝑍) and (𝑓𝑋′, 𝑓𝑌′, 𝑓𝑍′), where at least one set will always do the
job…

Weierstrass completeness

• e.g. specialized to 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, and in homogeneous space, the sum
𝑋1: 𝑌1: 𝑍1 + 𝑋2: 𝑌2: 𝑍2 will be at least one of 𝑋3: 𝑌3: 𝑍3 or 𝑋3′: 𝑌3′: 𝑍3′ :

• For our 𝑎 = −3 Weierstrass curves, our first attempt to optimize the above
gave 𝟐𝟐𝑴 + 𝟒𝑴𝒃 (compared to ≈ 𝟏𝟒𝑴 for dedicated projective additions)

• AND the true cost ratio would be far worse than the multiplications indicate

… there’s got to be a better way…

Weierstrass “pseudo-completeness”

• We give a “pseudo-complete’’ addition algorithm for general Weierstrass curves

• Exploits similarity in doubling and addition formulas (two main cases)

• Resemblance to Chevallier-Mames, Ciet, and Joye: “Side-channel Atomicity”, but
they give separate routines – we merge into one with masking

• Edwards elegance unrivalled, but this gets the job done for Weierstrass!

• Jac+aff (dedicated) = 8M+3S, Jac+aff (complete-masking) = 8M+3S+𝝐 (𝜖 ≈ 20%)

(
𝑥1𝑦2+𝑦1𝑥2

1+𝑑𝑥1𝑥2𝑦1𝑦2
,

𝑦1𝑦2−𝑥1𝑥2

1−𝑑𝑥1𝑥2𝑦1𝑦2
)

toCompare

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

TLS handshake with PFS: ECDH(E)-ECDSA

• Variable-base: 𝑘, 𝑃 ↦ 𝑘 𝑃 (𝑃 not known in advance)

- both sides of static DH
- half of ephemeral DH(E)
- constant time (recoding as before, final addition unified)

• Fixed-base 𝑘, 𝑃 ↦ 𝑘 𝑃 (𝑃 known in advance)
- other half of ephemeral DH(E)
- ECDSA signing
- constant time (fixed-base recoding, all additions complete)

• Double-scalar 𝑎, 𝑏, 𝑃, 𝑄 ↦ 𝑎 𝑃 + 𝑏 𝑄 (𝑃 known in advance, 𝑄 not)

- ECDSA verification
- constant time unnecessary!

Three scenarios

• Fastest report NIST P-256 (Gueron & Krasnov ‘13): ≈ 400𝑘 cycles var-based

• Fixed-base may get a fair bit faster in all scenarios, unified/complete adds
not necessary?? [Hamburg, a few days ago, private communication]

• No assembly above field layer (solid gains possible for our curves)

• Compare Curve25519 ≈ 194,000 to twisted Edwards ≈ 216,000 (sandy)

Clock cycles (× 𝟏𝟎𝟑) for various scalar multiplications
Intel Core i7-2600 Sandy Bridge compiled with Linux / Visual Studio

Security
Level

Prime Curve Variable
-base

Fixed
-base

Double
-scalar

128 𝑝 = 2256 − 189
Weierstrass

twisted Edwards
270
216

107
82

289
231

192 𝑝 = 2384 − 317
Weierstrass

twisted Edwards
714
588

252
201

758
614

256 𝑝 = 2512 − 569
Weierstrass

twisted Edwards
1,504
1,242

488
391

1,596
1,308

Contents
PART I : CHOOSING CURVES
Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM
Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass “completeness”
Performance numbers and practical considerations
Conclusions and recommendations

Our work (in a nutshell)

Consider different families of primes for fast arithmetic

twisted
Edwards curves

Constant-time, exception-free algorithms to do crypto

Weierstrass
curves

128-bit security 192-bit security 256-bit security

Demonstrate potential of new curves inside the
Transport Layer Security (TLS) protocol

The sell: what did we do differently?

• Modular/consistent implementation across three security levels
- twisted Edwards curves generated and implemented the same way
- same for Weierstrass

• Also considered/implemented new/better prime-order curves
- concrete performance comparison
- true gauge on pros and cons of shifting to Edwards

• Two different styles of primes/field arithmetic
- Montgomery and Pseudo-Mersenne
- Stayed fixed on “full-length” Pseudo-Mersenne primes

• Choose Edwards everywhere over Montgomery ladder
- Consistency and no real performance hit
- More versatile

What could we do differently?

• Define curves as Edwards, not twisted
- Douglas Stebila (8 Aug, 2014) on CFRG mailing list:

“implementations [should] readily expose both a scalar point
multiplication operation and a point addition operation”

- Perhaps better to define as Edwards equipped with complete add
(and optionally use Hamburg’s isogeny trick?)

- Fortunately for 3 mod 4, we get minimal 𝑑 in either form (just rewrite)

• Remove 𝒅 > 𝟎 with 𝒕 > 𝟎 restriction
- Mike Hamburg (12 Aug, 2014) on CFRG mailing list:

“If these requirements become final, then surely the complete
curves mod the Microsoft primes with a=1 and no restriction on
the sign of d (choose the one with q<p) should be in the running”.

- Unrestricted curves in our first preprint, imposed 𝑑 > 0 in v2, go back?

… see also …

• Report:
http://eprint.iacr.org/2014/130.pdf

• MSR ECC Library:
http://research.microsoft.com/en-us/projects/nums/

• Specification of curve selection:
http://research.microsoft.com/apps/pubs/default.aspx?id=219966

• IETF Internet Draft (authored by Benjamin Black)
http://tools.ietf.org/html/draft-black-numscurves-02

http://eprint.iacr.org/2014/130.pdf
http://research.microsoft.com/en-us/projects/nums/
http://research.microsoft.com/apps/pubs/default.aspx?id=219966
http://tools.ietf.org/html/draft-black-numscurves-02

