Selecting Elliptic Curves for Cryptography:
 an Efficiency and Security Analysis

http://eprint.iacr.org/2014/130.pdf

Craig Costello
ECC2014 - Chennai, India

Joint work with
Joppe Bos (NXP), Patrick Longa (MSR), Michael Naehrig (MSR)

June 2013 - the Snowden leaks

©he Avew Hork Eimes

"... the NSA had written the [crypto] standard and could break it."

Post-Snowden responses

- Bruce Schneier: "I no longer trust the constants. I believe the NSA has manipulated them..."
- Nigel Smart: "Shame on the NSA..."
- IACR: "The membership of the IACR repudiates mass surveillance and the undermining of cryptographic solutions and standards."
- TLS Working Group:
formal request to CFRG for new elliptic curves for usage in TLS!!!
- NIST: announces plans to host workshop to discuss new elliptic curves
http://crypto.2014.rump.cr.yp.to/487f98c1a1a031283925d7affdbdef1c.pdf

Pre-Snowden suspicions re: NIST (and their curves)

- 2013 - Bernstein and Lange: "Jerry Solinas at the NSA used this [random method] to generate the NIST curves ... or so he says..."
- 2008 - Koblitz and Menezes: "However, in practice the NSA has had the resources and expertise to dominate NIST, and NIST has rarely played a significant independent role."
- 2007 - Shumow and Ferguson: "We don't know how $Q=[d] P$ was chosen, so we don't know if the algorithm designer [NIST] knows [the backdoor] d."
- 1999 - Scott: "So, sigh, why didn't they [NIST] do it that way? Do they want to be distrusted?"

NIST's CurveP256: one-in-a-million?

Prime characteristic: Elliptic curve:

Curve constant:
Seed:

$$
\begin{gathered}
p=2^{256}-2^{224}+2^{192}+2^{96}-1 \\
E / \boldsymbol{F}_{p}: y^{2}=x^{3}-3 x+b \\
b=\sqrt{-\frac{27}{\text { SHA1(s) }}}
\end{gathered}
$$

$s=c 49 \mathrm{~d} 360886 \mathrm{e} 704936 \mathrm{a} 6678 \mathrm{e} 1139 \mathrm{~d} 26 \mathrm{~b} 7819 \mathrm{f} 7 \mathrm{e} 90$

Scott '99:

"Consider now the possibility that one in a million of all curves have an exploitable structure that "they" know about, but we don't.. Then "they" simply generate a million random seeds until they find one that generates one of "their" curves..."

Rigidity

- Give reasoning for all parameters and minimize "choices" that could allow room for manipulation
- Hash function needs a seed (digits of e, π, etc), but do choice of seed and choice of hash function themselves introduce more wiggle room?
- Goal: Justify all choices with (hopefully) undisputable efficiency arguments
e.g. choose fast prime field and take smallest curve constant that gives "optimal" group order/s [Bernstein'06]

So then, what about these?

Replacement curve	Prime p	Constant b
(NEW) Curve P-256	$2^{256}-2^{224}+2^{192}+2^{96}-1$	2627
(NEW) Curve P-384	$2^{384}-2^{128}-2^{96}+2^{32}-1$	14060
(NEW) Curve P-521	$2^{521}-1$	167884

- Same fields and equations ($E: y^{2}=x^{3}-3 x+b$) as NIST curves
- BUT smallest constant b (RIGID) such that $\# E$ and $\# E^{\prime}$ both prime
- So, simply change curve constants, and we're done, right???

(Our) Motivations

1. Curves that regain confidence

- rigid generation / nothing up my sleeves
- public approval and acceptance

2. 15 years on, we can do so much better than the NIST curves (and this is true regardless of NIST-curve paranoia!)

- side-channel resistance
- faster finite fields and modular reduction
- a whole new world of curve models

3. Whether it's cricket or crypto, a proper game needs several players...

The players

- Aranha-Barreto-Pereira-Ricardini: M-221, M-383, M-511, E-382,...
- Bernstein-Lange: Curve25519, Curve41417, E-521,...
- Bos-Costello-Longa-Naehrig: the NUMS curves
- Hamburg: Goldilocks448, Ridinghood448,...
- ECC Brainpool: brainpoolP256t1, brainpoolP384t1,...
- ...
- your-name-here?: your-curves-here?

The players

- Aranha-Barreto-Pereira-Ricardini: M-221, M-383, M,511, E-382
- Bernstein-Lange: Curve25519, Curve41417, E-521,...
- Bos-Costello-Longa-Naehrig: the NUMS curves
- Hamburg: Goldilocks448, Ridinghood448,...
- ECC Brainpool: brainpoolP256t1, brainpoolP384t1,...
- ...
- your-name-here?: your-curves-here?

Umpire Paterson (CFRG co-chair)

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass "completeness"
Performance numbers and nractical considerations
Conclusions and recommendations

The last 2 years of "state-of-the-art" speeds

- [LS'12] (AsiaCrypt) \& [LFS'14] (JCEN) $\approx 90,000$ сус 4-GLV/GLS using CM curve over quad. ext. field
- [BCHL'13] (EuroCrypt) $\approx 120,000$ cyc \& [BCLS'14] (AsiaCrypt) $\approx 90,000$ cyc Laddering on genus 2 Kummer surface
- [CHS '14] (EuroCrypt) $\approx 140,000$ cyc

2-dimensional Montgomery ladder using Q-curve over quad. ext. field

- [OLAR'13] (CHES) $\approx 115,000$ cyc

GLS on a composite-degree binary extension field
All of the above offer ≈ 128-bit security against best known attack BUT
None of the above have been considered in the search for new curves!!!

Security hunches killing all the fun

- Best known attacks against the curves on prior page are \approx the same
- BUT widespread agreement that random elliptic curves over prime fields are safest hedge for real world deployment
- By "random", I mean huge CM discriminant, huge class number, huge MOV degree... no special structure!
- Basic recipe: over fixed prime field, (rigidly) find curve with "optimal" group orders (SEA), then assert above are huge (they will be)

Security hunches killing all the fun

WARNING:

< 10e, 000 cyc

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass "completeness"
Performance numbers and practical considerations
Conclusions and recommendations

Two prime forms analyzed

(1) Pseudo-Mersenne primes:

$$
\begin{gathered}
p=2^{\alpha}-\gamma \\
p=2^{\alpha}\left(2^{\beta}-\gamma\right)-1
\end{gathered}
$$

(2) Montgomery-friendly primes:

- For each security level $s \in\{128,192,256\}$, we benchmarked two of both:
(a) one "full bitlength" prime
(b) one "relaxed bitlength" prime
- In our case, relaxed meant:
- drop one bit for pseudo-Mersenne (lazy reduction)
- drop two bits for Mont-friendly (conditional sub saved in every mul)
- Subject to above, security level determines primes
- α and β determined by s
- smallest $\gamma>0$ such that p is prime and $\boldsymbol{p} \equiv \mathbf{3} \bmod 4$

Some premature performance ratios

Target Security Level	Pseudo-Mers Full	Pseudo-Mers Relaxed	Mont-Friendly Full	Mont-Friendly Relaxed
$\mathbf{1 2 8}$	1.00 x	0.97 x	1.00 x	0.84 x
$\mathbf{1 9 2}$	0.94 y	0.90 y	1.00 y	0.90 y
$\mathbf{2 5 6}$	$0.89 z$	$0.85 z$	$1.00 z$	0.92 z

Cost ratios of variable-base scalar multiplications on twisted Edwards curves at three target security levels

- Relaxed version naturally wins in both cases
- Montgomery-friendly vs. Pseudo-Mersenne not as clear cut
- So what did we end up going for....???

Full length pseudo-Mersenne primes

- We went for pseudo-Mersenne over Montgomery-friendly
- simpler (may depend on who you ask?)
- take a decent performance hit at 128-bit level
- closer resemblance to NIST-like arithmetic
- We went for full-length over relaxed-bitlength
- take a performance hit of 2-4\%
- BUT maximizes ECDLP security, maintains 64-bit alignment, \& avoids temptation to keep going lower

Security level	Prime
128	$2^{256}-189$
192	$2^{384}-317$
256	$2^{512}-569$

Arithmetic for the pseudo-Mersenne primes

- Constant time modular multiplication

$$
\begin{aligned}
& \text { input: } \quad 0 \leq x, y<2^{\alpha}-\gamma \\
& x \cdot y \in \mathbf{Z} \\
&=h \cdot 2^{\alpha}+l \\
& \equiv h \cdot 2^{\alpha}+l-h\left(2^{\alpha}-\gamma\right) \bmod \left(2^{\alpha}-\gamma\right) \\
&=l+\gamma \cdot h
\end{aligned}
$$

$$
\text { output: } \quad x \cdot y \bmod \left(2^{\alpha}-\gamma\right)
$$

\square (after fixed=worst-case number of reduction rounds)

- Constant time modular inversion:

$$
\begin{aligned}
a^{-1} & \equiv a^{p-2} \bmod p \\
\sqrt{ } a & \equiv a^{(p+1) / 4} \bmod p
\end{aligned}
$$

What primes do others like?

- Bernstein and Lange: Curve25519, Curve41417, E-521

$$
p=2^{255}-19, \quad p=2^{414}-17, \quad p=2^{521}-1
$$

- Hamburg: Ed448-Goldilocks, Ed480-Ridinghood

$$
p=2^{448}-2^{224}-1, \quad p=2^{480}-2^{240}-1
$$

- Aranha-Barreto-Pereira-Ricardini: M-221, M-383, M-511, E-382, etc

$$
p=2^{221}-3, \quad p=2^{383}-187, \quad p=2^{511}-187, \quad p=2^{382}-105
$$

- Brainpool: brainpoolP256t1, brainpoolP384t1, etc

$$
p=76884956397045344220809746629001649093037950200943055203735601445031516197751
$$

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass "completeness"
Performance numbers and nractical considerations
Conclusions and recommendations

A world of curve models

$y^{2}=x^{3}+a x+b$
 short Weierstrass curves

$$
a x^{3}+y^{3}+1=d x y
$$

(twisted) Hessian curves

$$
a x^{2}+y^{2}=1+d x^{2} y^{2}
$$ (twisted) Edwards curves

$$
y^{2}=x^{4}+2 a x^{2}+1
$$

Jacobi quartics

$$
\begin{gathered}
B y^{2}=x^{3}+A x^{2}+x \\
\text { Montgomery curves }
\end{gathered}
$$

$$
\begin{gathered}
y^{2}=x^{3}+a x^{2}+16 a x \\
\text { Doubling-oriented DIK curves }
\end{gathered}
$$

The chosen ones

Weierstrass
 curves
 $$
y^{2}=x^{3}+a x+b
$$

- Most general form
- Prime order possible
- Exceptions in group law

- NIST and

Brainpool curves

Montgomery

 curves$B y^{2}=x^{3}+A x^{2}+x$

- Subset of curves
- Not prime order
- Fast Montgomery ladder
- \approx Exception free
(twisted) Edwards curves
$a x^{2}+y^{2}=1+d x^{2} y^{2}$
- Subset of curves
- Not prime order
- Fastest addition law
- Some have complete group law

Complete addition on Edwards curves

Let $d \neq \square$ in K and consider Edwards curve

$$
E / K: x^{2}+y^{2}=1+d x^{2} y^{2}
$$

For all (!!!) $\quad P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E(K)$

$$
P_{1}+P_{2}=: P_{3}=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

Denominators never zero, neutral element rational $=(0,1)$, etc..

Edwards vs twisted Edwards

$$
\text { General twisted Edwards } \quad E_{a, d}: a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

When $a=1$ (Edwards!) $\quad E_{1, d}: x^{2}+y^{2}=1+d x^{2} y^{2}$
Fastest complete addition (for $d \neq \square$) 9M+1d (Bernstein-Lange, AsiaCrypt 2007 and Hisil et al., AsiaCrypt 2008)

$$
\text { When } a=-1 \quad E_{-1, d}:-x^{2}+y^{2}=1+d x^{2} y^{2}
$$

Fastest addition $\mathbf{8 M}$, also (technically) incomplete when $p \equiv 3 \bmod 4$ (Hisil et al., AsiaCrypt 2008)

- Edwards completeness highly desirable, but so are the fast (twisted Edwards) formulas!
- Incomplete formulas still work for any P, Q where $P \neq Q$, and both have odd order...

Killing cofactors and the fastest formulas

- (Twisted) Edwards curves necessarily have a cofactor of at least 4, so assume $\# E=4 r$ where r is a large prime
- Users will check that $P \in E$, but cannot easily check whether P has order

$$
r, 2 r, \text { or } 4 r
$$

- If secret scalars k are in $[1, r)$, then attackers could send P of order $4 r$, and on receiving $[k] P$, compute $[r k] P=[k \bmod 4] P \in E\left(F_{p}\right)[4]$ to reveal

$$
k \bmod 4 \quad \text { (i.e. the last two bits of } k \text {) }
$$

- RECALL: the fastest additions will work for all $P \neq Q$, both of odd order...

Killing cofactors and the fastest formulas

Our approach

- incomplete twisted Edwards curve

$$
E_{-1, d}:-x^{2}+y^{2}=1+d x^{2} y^{2}
$$

- modified set of scalars

$$
k \in[1,2, \ldots r-1] \leftrightarrow \hat{k} \in[4,8,4 r-4]
$$

- initial double-double

$$
P \in E \mapsto Q:=[4] P \in E[r]
$$

- fastest formulas to compute

$$
[\hat{k}] P=[k] Q
$$

"specified curve" incomplete, but uses fastest formulas and stays on one curve

Killing cofactors and the fastest formulas

Hamburg's approach (http://eprint.iacr.org/2014/027)

- complete Edwards curve

$$
E_{1, d}: x^{2}+y^{2}=1+d x^{2} y^{2}
$$

- use 4-isogeny to incomplete twisted:

$$
\phi: E_{1, d} \rightarrow E_{-1, d-1}
$$

- fastest formulas to compute:

$$
[k] P \text { on } E_{-1, d-1} \quad\left(\text { since im }(\phi)=E_{-1, d-1}[r]\right)
$$

- use dual to come back to $E_{1, d}$

$$
\widehat{\phi}: E_{-1, d-1} \rightarrow E_{1, d}
$$

Killing cofactors and the fastest formulas

Bernstein-Chuengsatiansup-Lange approach (Curve41417)

- complete Edwards curve

$$
E_{1, d}: x^{2}+y^{2}=1+d x^{2} y^{2}
$$

- kill torsion with doublings

$$
\hat{k} \in[8,16, \ldots]
$$

- stay on $E_{1, d}$, at the expense of 1 M per addition but compare $\approx 3727 \mathrm{M}$ to $\approx 3645 \mathrm{M}(+\phi+\hat{\phi})$
"specified curve" is complete, stay on it (simple), but slightly slower additions

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass "completeness"
Performance numbers and nractical considerations
Conclusions and recommendations

Textbook arithmetic on $y^{2}=x^{3}+a x+b$

$$
\left(x_{[2] T}, y_{[2] T}\right)=\operatorname{DBL}\left(x_{T}, y_{T}\right)
$$

$$
\left(x_{T+P}, y_{T+P}\right)=A D D\left(x_{T}, y_{T}, x_{P}, y_{P}\right)
$$

Montgomery's arithmetic on $B y^{2}=x^{3}+A x^{2}+x$

Differential additions ...

- "Opposite" y 's give different x-coordinate than "same-sign" y 's
- Decide with x-coordinate of difference: $x_{T+P}=\operatorname{DIFFADD}\left(x_{T}, x_{P}, x_{T-P}\right)$
... and the Montgomery ladder
- Invariant: in $x(P), k \mapsto x([k] P)$, keep this difference fixed as $x(P)$
- Iteration: at each intermediate step, we always have $x([m] P), x([m+1] P)$... so we always add them and double one (depends on binary rep. of k) to preserve the invariant

Twist-security

- Ladder gives scalar multiplications on $E: B y^{2}=x^{3}+A x^{2}+x$ as

$$
x([k] P)=\operatorname{LADDER}(x(P), k, A)
$$

- Does not depend on B, so works on $E^{\prime}: B^{\prime} y^{2}=x^{3}+A x^{2}+x$ for any B^{\prime}
- Up to isomorphism, there are only two possibilities for fixed A :
E and its quadratic twist E^{\prime}
- So if E and E^{\prime} are both secure, no need to check $P \in E$ for any $x(P) \in K$, as $\operatorname{LADDER}(x, k, A)$ gives discrete log on E or E^{\prime} for all $x \in K$
- Twist-security only really useful when doing \boldsymbol{x}-only computations, but why not have it anyway?

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass "completeness"
Performance numbers and nractical considerations
Conclusions and recommendations

The NUMS curves

Security $\boldsymbol{s}=$	Prime $p=$	Weierstrass $b=$	Twisted Edwards $d=$	Montgomery $A=$
128	$2^{256}-189$	152961	15342	-61370
192	$2^{384}-317$	-34568	333194	-1332778
256	$2^{512}-569$	121243	637608	$\rightarrow-2550434$

- Primes: Largest $p=2^{2 s}-\gamma \equiv 3 \bmod 4$
(fun fact: in these cases, largest primes full stop)
- Weierstrass: Smallest $|b|$ such that $\# E$ and $\# E^{\prime}$ both prime
- Twisted Edwards: Smallest $d>0$ such that \#E and \#E' both 4 times a prime, and $d>0$ corresponds to $t>0$.
- Reminder: there are 6 "chosen" curves above, but in paper 26 are benchmarked

Small constants all round for $p \equiv 3 \bmod 4$

$$
M_{A}: y^{2}=x^{3}+A x^{2}+x \quad E_{a, d}: a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

Searches minimize $|A|$ with $A \equiv 2 \bmod 4$

$$
d_{1}=-\frac{A-2}{A+2} \quad(\text { big }) \quad d_{0}=-\frac{A+2}{4} \quad(\text { small })
$$

Upshot: search that minimizes Montgomery constant size also minimizes size of both twisted Edwards and Edwards constants (see Lemmas 1-3)

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass "completeness"
Performance numbers and practical considerations
Conclusions and recommendations

Constant time implementations

- Constant time: all computations involving secret data must exhibit regular execution to provide protection against timing and cache attacks
- No data-dependent branches or table lookup depend on scalar k
- Most naïve version: double-and-add \rightarrow double-and-always-add

$$
k=[-, 0,0,1,0,1, \ldots]
$$

double-and-always-add: initialize $Q \leftarrow P$

$$
\text { compute }[2] Q,[2] Q+P \quad Q \leftarrow[2] Q
$$

compute $[2] Q,[2] Q+P$	$Q \leftarrow[2] Q$	0,
compute $[2] Q,[2] Q+P$	$Q \leftarrow[2] Q$	0,
compute $[2] Q,[2] Q+P$	$Q \leftarrow[2] Q+P$	1,
compute $[2] Q,[2] Q+P$	$Q \leftarrow[2] Q$	0,
compute $[2] Q,[2] Q+P$	$Q \leftarrow[2] Q+P$	1,

Fixed-window recoding for variable-base

- "Always-add" obviously brings in solid performance penalty: adding twice as much as usual... BUT not when using bigger/optimal windows!!!

$$
\left.\begin{array}{c}
\begin{array}{c}
w=1 \quad[\ldots, 1,1,0,1,0,1,0,1,0,1,0,0,0,1,0, \ldots]
\end{array} \\
w=5 \quad \begin{array}{c}
{[\ldots, 1,1,0,1,0,1,0,1,0,1,0,0,0,1,0, \ldots]}
\end{array} \\
\\
{[\ldots, 26,21,2, \ldots]}
\end{array}\right] \begin{gathered}
{[\ldots \text { DBL's } \rightarrow \text { ADD }([26] P) \rightarrow 5 \text { DBL's } \rightarrow \text { ADD }([21] P) \rightarrow 5 \text { DBL's } \rightarrow \text { ADD }([2] P) \ldots .}
\end{gathered}
$$

- Basic/naïve: pre-compute and store P,[2]P,...,[30]P, [31]P
- Chances of 5 zeros in a row $=1 / 32$, but we must still always add something...

Protected "odd-only" fixed-window recoding algorithm

- Window width w : recodes every odd scalar $k \in[1, r)$ into $(t+1)$ odd values, i.e. $k=\left(k_{t}, \ldots, k_{0}\right)$, where $t=\left\lceil\left(\frac{\log _{2} r}{w}\right)\right]$
- Each recoded value is an integer in $k_{i} \in\left\{ \pm 1, \pm 3, \pm 5, \ldots, \pm 2^{w}-1\right\}$ (only half the precomputed values needed, and there are no zeros)

```
- e.g. 256-bit scalars, w = 5 optimal for us, 53 windows:
    - precompute table {P,[3]P, [5]P, ..., [31]P} (1 DBL, 15 ADDS)
    - select first value as [kt]P
    -5 DBL's }->\mathrm{ ADD ([kt-1 ]P) 
Total:}\quad52\times5+1=261 DBL's,52 + 16 = 68 ADD's. 
```

- Same total and sequence, whether $k=1, k=r$, or anything in between

Much more to constant-time implementations

- Identical sequence of operations is just the beginning...
e.g: recoding was for odd scalars only: negate every scalar, mask in the odd one, negate every "final" point, mask correct result...
e.g: recoding the scalars themselves must be constant time
e.g: must access/load every lookup element, every time, and mask out correct one

> see $\frac{\text { http://eprint.iacr.org/2014/130.pdf and }}{}$ $\frac{\text { http://research.microsoft.com/en-us/projects/nums/ }}{\text { for solutions to these problems and more... }}$

- The recoding is mathematically correct, and facilitates constant-time implementations, BUT only assuming the ECC formulas do their job!

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass "completeness"
Performance numbers and practical considerations
Conclusions and recommendations

Guaranteeing exception-free routines

- The running multiple $Q=[m] P$ of P could be one of the values $P,[3] P, \ldots,\left[2^{w}-1\right] P$ in the lookup table, or their inverse
- Not a problem if addition formulas are complete, but recall that:
(i) complete Edwards additions are not the fastest
(ii) typical Weierstrass additions far from complete
- Not only variable-base scenario [$k] P$ for P (as before), but fixed-base scenario where P is known (precomps mean larger lookup table - more potential trouble)
- Can only claim "constant-time" if all combinations of k and P compute $[k] P$ without exception

Guaranteeing exception-free routines

- Propositions 4,6: (under prior recoding) Weierstrass and twisted Edwards variable-base scalar multiplications will compute without exception if: fastest dedicated addition formulas are used throughout, except the final addition, which needs to be unified (for our proof to go through)
- Propositions 5,7: (under fixed-base recoding) Weierstrass and twisted Edwards fixed-base scalar multiplications will compute without exception if: complete additions are used throughout (for our proof to go through)

Weierstrass completeness

- Impossibility Theorem (Bosma-Lenstra): for general elliptic curves, we need to compute at least two sets of explicit formulae to guarantee every sum is computed:
i.e. no f_{X}, f_{Y}, f_{Z} such that

$$
\begin{aligned}
& X_{3}=f_{X}\left(X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right) \\
& Y_{3}=f_{Y}\left(X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right) \\
& Z_{3}=f_{Z}\left(X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right)
\end{aligned}
$$

computes the correct sum $\left(X_{3}: Y_{3}: Z_{3}\right)=\left(X_{1}: Y_{1}: Z_{1}\right)+\left(X_{2}: Y_{2}: Z_{2}\right)$ for all points on a general curve

- Need (f_{X}, f_{Y}, f_{Z}) and ($f_{X}{ }^{\prime}, f_{Y}{ }^{\prime}, f_{Z}$), where at least one set will always do the job...

Weierstrass completeness

- e.g. specialized to $y^{2}=x^{3}+a x+b$, and in homogeneous space, the sum $\left(X_{1}: Y_{1}: Z_{1}\right)+\left(X_{2}: Y_{2}: Z_{2}\right)$ will be at least one of $\left(X_{3}: Y_{3}: Z_{3}\right)$ or $\left(X_{3}{ }^{\prime}: Y_{3}{ }^{\prime}: Z_{3}{ }^{\prime}\right)$:

$$
\begin{align*}
X_{3} & =\left(X_{1} Y_{2}-X_{2} Y_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)-\left(X_{1} Z_{2}-X_{2} Z_{1}\right)\left(a\left(X_{1} Z_{2}+X_{2} Z_{1}\right)+3 b Z_{1} Z_{2}-Y_{1} Y_{2}\right) ; \\
Y_{3} & =-\left(3 X_{1} X_{2}+a Z_{1} Z_{2}\right)\left(X_{1} Y_{2}-X_{2} Y_{1}\right)+\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right)\left(a\left(X_{1} Z_{2}+X_{2} Z_{1}\right)+3 b Z_{1} Z_{2}-Y_{1} Y_{2}\right) ; \\
Z_{3} & =\left(3 X_{1} X_{2}+a Z_{1} Z_{2}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right)-\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right) ; \\
X_{3}^{\prime} & =-\left(X_{1} Y_{2}+X_{2} Y_{1}\right)\left(a\left(X_{1} Z_{2}+X_{2} Z_{1}\right)+3 b Z_{1} Z_{2}-Y_{1} Y_{2}\right)-\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)\left(3 b\left(X_{1} Z_{2}+X_{2} Z_{1}\right)+a\left(X_{1} X_{2}-a Z_{1} Z_{2}\right)\right) ; \\
Y_{3}^{\prime} & =Y_{1}^{2} Y_{2}^{2}+3 a X_{1}^{2} X_{2}^{2}-2 a^{2} X_{1} X_{2} Z_{1} Z_{2}-\left(a^{3}+9 b^{2}\right) Z_{1} Z_{2}^{2}+\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(3 b\left(3 X_{1} X_{2}-a Z_{1} Z_{2}\right)-a^{2}\left(X_{2} Z_{1}+X_{1} Z_{2}\right)\right) ; \\
Z_{3}^{\prime} & =\left(3 X_{1} X_{2}+a Z_{1} Z_{2}\right)\left(X_{1} Y_{2}+X_{2} Y_{1}\right)+\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)\left(Y_{1} Y_{2}+3 b Z_{1} Z_{2}+a\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\right) . \tag{1}
\end{align*}
$$

- For our $a=-3$ Weierstrass curves, our first attempt to optimize the above gave $\mathbf{2 2 M}+\mathbf{4} M_{\boldsymbol{b}}$ (compared to $\approx \mathbf{1 4 M}$ for dedicated projective additions)
- AND the true cost ratio would be far worse than the multiplications indicate
... there's got to be a better way...

Weierstrass "pseudo-completeness"

- We give a "pseudo-complete" addition algorithm for general Weierstrass curves
- Exploits similarity in doubling and addition formulas (two main cases)
- Resemblance to Chevallier-Mames, Ciet, and Joye: "Side-channel Atomicity", but they give separate routines - we merge into one with masking

$$
\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

- Edwards elegance unrivalled, but this gets the job done for Weierstrass!
- Jac+aff $($ dedicated $)=\mathbf{8 M}+3 S$, Jac+aff $($ complete-masking $)=\mathbf{8 M}+3 S+\epsilon(\epsilon \approx 20 \%)$

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass "completeness"
Performance numbers and practical considerations
Conclusions and recommendations

TLS handshake with PFS: ECDH(E)-ECDSA

Three scenarios

- Variable-base: $\quad k, P \mapsto[k] P$ (P not known in advance)
- both sides of static DH
- half of ephemeral DH(E)
- constant time (recoding as before, final addition unified)
- Fixed-base $\quad k, P \mapsto[k] P$
(P known in advance)
- other half of ephemeral $\mathrm{DH}(\mathrm{E})$
- ECDSA signing
- constant time (fixed-base recoding, all additions complete)
- Double-scalar $\quad a, b, P, Q \mapsto[a] P+[b] Q$
(P known in advance, Q not)
- ECDSA verification
- constant time unnecessary!

Security Level	Prime	Curve	Variable -base	Fixed -base	Double -scalar
128	$p=2^{256}-189$	Weierstrass twisted Edwards	$\begin{aligned} & 270 \\ & 216 \end{aligned}$	$\begin{gathered} 107 \\ 82 \end{gathered}$	$\begin{aligned} & 289 \\ & 231 \end{aligned}$
192	$p=2^{384}-317$	Weierstrass twisted Edwards	$\begin{aligned} & 714 \\ & 588 \end{aligned}$	$\begin{aligned} & 252 \\ & 201 \end{aligned}$	$\begin{aligned} & 758 \\ & 614 \end{aligned}$
256	$p=2^{512}-569$	Weierstrass twisted Edwards	$\begin{aligned} & 1,504 \\ & 1,242 \end{aligned}$	$\begin{aligned} & 488 \\ & 391 \end{aligned}$	$\begin{aligned} & 1,596 \\ & 1,308 \end{aligned}$

- Fastest report NIST P-256 (Gueron \& Krasnov '13): $\approx 400 k$ cycles var-based
- Fixed-base may get a fair bit faster in all scenarios, unified/complete adds not necessary?? [Hamburg, a few days ago, private communication]
- No assembly above field layer (solid gains possible for our curves)
- Compare Curve25519 $\approx 194,000$ to twisted Edwards $\approx 216,000$ (sandy)

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches
Prime fields and modular reduction
Curve models and killing cofactors
Montgomery ladder and twist-security
Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars
Exception-free algorithms and Weierstrass "completeness"
Performance numbers and nractical considerations
Conclusions and recommendations

Our work (in a nutshell)

The sell: what did we do differently?

- Modular/consistent implementation across three security levels
- twisted Edwards curves generated and implemented the same way
- same for Weierstrass
- Also considered/implemented new/better prime-order curves
- concrete performance comparison
- true gauge on pros and cons of shifting to Edwards
- Two different styles of primes/field arithmetic
- Montgomery and Pseudo-Mersenne
- Stayed fixed on "full-length" Pseudo-Mersenne primes
- Choose Edwards everywhere over Montgomery ladder
- Consistency and no real performance hit
- More versatile

What could we do differently?

- Define curves as Edwards, not twisted
- Douglas Stebila (8 Aug, 2014) on CFRG mailing list:
"implementations [should] readily expose both a scalar point multiplication operation and a point addition operation"
- Perhaps better to define as Edwards equipped with complete add (and optionally use Hamburg's isogeny trick?)
- Fortunately for $3 \bmod 4$, we get minimal d in either form (just rewrite)
- Remove $\boldsymbol{d}>\mathbf{0}$ with $\boldsymbol{t}>\mathbf{0}$ restriction
- Mike Hamburg (12 Aug, 2014) on CFRG mailing list:
"If these requirements become final, then surely the complete curves mod the Microsoft primes with $a=1$ and no restriction on the sign of d (choose the one with $q<p$) should be in the running".
- Unrestricted curves in our first preprint, imposed $d>0$ in v2, go back?

... see also ...

- Report:
http://eprint.iacr.org/2014/130.pdf
- MSR ECC Library:
http://research.microsoft.com/en-us/projects/nums/
- Specification of curve selection:
http://research.microsoft.com/apps/pubs/default.aspx?id=219966
- IETF Internet Draft (authored by Benjamin Black) http://tools.ietf.org/html/draft-black-numscurves-02

