Selecting Elliptic Curves for Cryptography: an Efficiency and Security Analysis

http://eprint.iacr.org/2014/130.pdf

Craig Costello ECC2014 – Chennai, India

Joint work with Joppe Bos (NXP), Patrick Longa (MSR), Michael Naehrig (MSR)

June 2013 – the Snowden leaks

The New York Times

"... the NSA had written the [crypto] standard and could break it."

Post-Snowden responses

- **Bruce Schneier:** "I no longer trust the constants. I believe the NSA has manipulated them..."
- Nigel Smart: "Shame on the NSA..."
- IACR: "The membership of the IACR repudiates mass surveillance and the undermining of cryptographic solutions and standards."
- TLS Working Group: formal request to CFRG for new elliptic curves for usage in TLS!!!
- NIST: announces plans to host workshop to discuss new elliptic curves <u>http://crypto.2014.rump.cr.yp.to/487f98c1a1a031283925d7affdbdef1c.pdf</u>

Pre-Snowden suspicions re: NIST (and their curves)

- 2013 Bernstein and Lange: "Jerry Solinas at the NSA used this [random method] to generate the NIST curves ... or so he says..."
- 2008 Koblitz and Menezes: "However, in practice the NSA has had the resources and expertise to dominate NIST, and NIST has rarely played a significant independent role."
- 2007 Shumow and Ferguson: "We don't know how Q = [d]P was chosen, so we don't know if the algorithm designer [NIST] knows [the backdoor] d."
- 1999 Scott: "So, sigh, why didn't they [NIST] do it that way? Do they want to be distrusted?"

NIST's CurveP256: one-in-a-million?

Prime characteristic:

$$p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$$
Elliptic curve:

$$E/F_p : y^2 = x^3 - 3x + b$$
Curve constant:

$$b = \sqrt{-\frac{27}{SHA1(s)}}$$

Seed: s = c49d360886e704936a6678e1139d26b7819f7e90

Scott '99:

"Consider now the possibility that one in a million of all curves have an exploitable structure that "they" know about, but we don't.. Then "they" simply generate a million random seeds until they find one that generates one of "their" curves..."

Rigidity

- Give reasoning for all parameters and minimize "choices" that could allow room for manipulation
- Hash function needs a seed (digits of e, π , etc), but do choice of seed and choice of hash function themselves introduce more wiggle room?
- Goal: Justify all choices with (hopefully) undisputable efficiency arguments

e.g. choose fast prime field and take smallest curve constant that gives ``optimal'' group order/s [Bernstein'06]

So then, what about these?

Replacement curve	Prime <i>p</i>	Constant b
(NEW) Curve P-256	$2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$	2627
(NEW) Curve P-384	$2^{384} - 2^{128} - 2^{96} + 2^{32} - 1$	14060
(NEW) Curve P-521	$2^{521} - 1$	167884

- Same fields and equations ($E : y^2 = x^3 3x + b$) as NIST curves
- BUT smallest constant b (RIGID) such that #E and #E' both prime
- So, simply change curve constants, and we're done, right???

(Our) Motivations

- **1.** Curves that regain confidence
 - rigid generation / nothing up my sleeves
 - public approval and acceptance
- **2. 15 years on, we can do so much better than the NIST curves** *(and this is true regardless of NIST-curve paranoia!)*
 - side-channel resistance
 - faster finite fields and modular reduction
 - a whole new world of curve models
- 3. Whether it's cricket or crypto, a proper game needs several players...

The players

- Aranha-Barreto-Pereira-Ricardini: M-221, M-383, M-511, E-382,...
- Bernstein-Lange: Curve25519, Curve41417, E-521,...
- Bos-Costello-Longa-Naehrig: the NUMS curves
- Hamburg: Goldilocks448, Ridinghood448,...
- ECC Brainpool: brainpoolP256t1, brainpoolP384t1,...

•

• your-name-here?: your-curves-here?

The players

- Aranha-Barreto-Pereira-Ricardini: M-221, M-383, M,511, E-382
- Bernstein-Lange: Curve25519, Curve41417, E-521,...
- Bos-Costello-Longa-Naehrig: the NUMS curves
- Hamburg: Goldilocks448, Ridinghood448,...
- ECC Brainpool: brainpoolP256t1, brainpoolP384t1,...
- •
- your-name-here?: your-curves-here?

Umpire Paterson (CFRG co-chair)

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches

Prime fields and modular reduction Curve models and killing cofactors Montgomery ladder and twist-security Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars Exception-free algorithms and Weierstrass "completeness" Performance numbers and practical considerations Conclusions and recommendations

The last 2 years of "state-of-the-art" speeds

- [LS'12] (AsiaCrypt) & [LFS'14] (JCEN) ≈90,000 cyc
 4-GLV/GLS using CM curve over quad. ext. field
- [BCHL'13] (*EuroCrypt*) ≈120,000 cyc & [BCLS'14] (AsiaCrypt) ≈90,000 cyc Laddering on genus 2 Kummer surface
- [CHS '14] (*EuroCrypt*) ≈140,000 cyc
 2-dimensional Montgomery ladder using Q-curve over quad. ext. field
- [OLAR'13] (*CHES*) ≈115,000 cyc

GLS on a composite-degree binary extension field

All of the above offer \approx 128-bit security against best known attack BUT

None of the above have been considered in the search for new curves!!!

Security hunches killing all the fun

- Best known attacks against the curves on prior page are \approx the same
- BUT widespread agreement that random elliptic curves over prime fields are safest hedge for real world deployment
- By "random", I mean huge CM discriminant, huge class number, huge MOV degree... no special structure!
- **Basic recipe:** over fixed prime field, (rigidly) find curve with "optimal" group orders (SEA), then assert above are huge (they will be)

Security hunches killing all the fun

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches

Prime fields and modular reduction

Curve models and killing cofactors Montgomery ladder and twist-security Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars Exception-free algorithms and Weierstrass "completeness" Performance numbers and practical considerations Conclusions and recommendations

Two prime forms analyzed

(1) Pseudo-Mersenne primes:(2) Montgomery-friendly primes:

- For each security level s ∈ {128,192,256}, we benchmarked two of both:
 (a) one "full bitlength" prime
 (b) one "relaxed bitlength" prime
- In our case, relaxed meant:
 - drop one bit for pseudo-Mersenne (lazy reduction)
 - drop two bits for Mont-friendly (conditional sub saved in every mul)
- Subject to above, security level **determines** primes
 - α and β determined by s
 - smallest $\gamma > 0$ such that p is prime and $p \equiv 3 \mod 4$

Some premature performance ratios

Target Security Level	Pseudo-Mers Full	Pseudo-Mers Relaxed	Mont-Friendly Full	Mont-Friendly Relaxed
128	1.00x	0.97x	1.00x	0.84x
192	0.94y	0.90y	1.00y	0.90y
256	0.89z	0.85z	1.00z	0.92z

Cost ratios of variable-base scalar multiplications on twisted Edwards curves at three target security levels

- Relaxed version naturally wins in both cases
- Montgomery-friendly vs. Pseudo-Mersenne not as clear cut
- So what did we end up going for....???

Full length pseudo-Mersenne primes

- We went for **pseudo-Mersenne over Montgomery-friendly**
 - simpler (may depend on who you ask?)
 - take a decent performance hit at 128-bit level
 - closer resemblance to NIST-like arithmetic
- We went for **full-length over relaxed-bitlength**
 - take a performance hit of 2-4%
 - BUT maximizes ECDLP security, maintains 64-bit alignment,
 & avoids temptation to keep going lower

Security level	Prime
128	$2^{256} - 189$
192	$2^{384} - 317$
256	$2^{512} - 569$

Arithmetic for the pseudo-Mersenne primes

- Constant time modular multiplication *input:* $0 \le x, y < 2^{\alpha} - \gamma$ $x \cdot y \in \mathbf{Z}$
 - $= h \cdot 2^{\alpha} + l$ $\equiv h \cdot 2^{\alpha} + l - h(2^{\alpha} - \gamma) \mod (2^{\alpha} - \gamma)$ $= l + \gamma \cdot h$

output: $x \cdot y \mod (2^{\alpha} - \gamma)$

(after fixed=worst-case number of reduction rounds)

- Constant time modular inversion:
- Constant time modular square-root:

$$a^{-1} \equiv a^{p-2} \mod p$$

 $\sqrt{a} \equiv a^{(p+1)/4} \mod p$

What primes do others like?

• Bernstein and Lange: Curve25519, Curve41417, E-521

$$p = 2^{255} - 19$$
, $p = 2^{414} - 17$, $p = 2^{521} - 1$

• Hamburg: Ed448-Goldilocks, Ed480-Ridinghood

$$p = 2^{448} - 2^{224} - 1$$
, $p = 2^{480} - 2^{240} - 1$

• Aranha-Barreto-Pereira-Ricardini: M-221, M-383, M-511, E-382, etc

 $p = 2^{221} - 3$, $p = 2^{383} - 187$, $p = 2^{511} - 187$, $p = 2^{382} - 105$

• Brainpool: brainpoolP256t1, brainpoolP384t1, etc

p = 76884956397045344220809746629001649093037950200943055203735601445031516197751

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches Prime fields and modular reduction

Curve models and killing cofactors

Montgomery ladder and twist-security Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars Exception-free algorithms and Weierstrass "completeness" Performance numbers and practical considerations Conclusions and recommendations

A world of curve models

 $y^2 = x^3 + ax + b$ short Weierstrass curves

 $y^2 = x^4 + 2ax^2 + 1$ Jacobi quartics

$$ax^3 + y^3 + 1 = dxy$$

(twisted) Hessian curves

$$By^2 = x^3 + Ax^2 + x$$

Montgomery curves

 $ax^2 + y^2 = 1 + dx^2y^2$ (twisted) Edwards curves

 $y^2 = x^3 + ax^2 + 16ax$ Doubling-oriented DIK curves

$$s^2 + c^2 = 1 \cap as^2 + d^2 = 1$$

Jacobi intersections

See Bernstein and Lange's Explicit-Formulas Database (EFD) and/or Hisil's PhD thesis

The chosen ones

Weierstrass curves $y^2 = x^3 + ax + b$

- Most general form
- Prime order possible
- Exceptions in group law
- NIST and Brainpool curves

Montgomery curves $By^2 = x^3 + Ax^2 + x$ • Subset of curves

- Not prime order
- Fast Montgomery
 ladder
- ≈ Exception free

- Subset of curves
- Not prime order
- Fastest addition law
- Some
 have
 complete
 group law

Complete addition on Edwards curves

Let $d \neq \Box$ in K and consider Edwards curve $E/K: x^2 + y^2 = 1 + dx^2y^2$ For all (!!!) $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(K)$ $P_1 + P_2 =: P_3 = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right)$

Denominators never zero, neutral element rational = (0,1), etc.. (Bernstein-Lange, AsiaCrypt 2007)

Edwards vs twisted Edwards

General twisted Edwards	$E_{a,d}: ax^2 + y^2 = 1 + dx^2y^2$	
When $a = 1$ (Edwards!)	$E_{1,d}: x^2 + y^2 = 1 + dx^2 y^2$	
$\nabla a + a + a + a + a + a + a + a + b + b +$		

Fastest complete addition (for $d \neq \Box$) **9M+1d** (Bernstein-Lange, AsiaCrypt 2007 and Hisil et al., AsiaCrypt 2008)

When a = -1Fastest addition **8M**, also (technically) incomplete when $p \equiv 3 \mod 4$ (Hisil et al., AsiaCrypt 2008)

- Edwards completeness highly desirable, but so are the fast (twisted Edwards) formulas!
- Incomplete formulas still work for any P,Q where $P \neq Q$, and both have odd order...

- (Twisted) Edwards curves necessarily have a cofactor of at least 4, so assume #E = 4r where r is a large prime
- Users will check that $P \in E$, but cannot easily check whether P has order r, 2r, or 4r
- If secret scalars k are in [1, r), then attackers could send P of order 4r, and on receiving [k]P, compute $[rk]P = [k \mod 4]P \in E(F_p)[4]$ to reveal

k mod 4 (i.e. the last two bits of k)

• RECALL: the fastest additions will work for all $P \neq Q$, both of odd order...

Our approach

- incomplete twisted Edwards curve

$$E_{-1,d}: -x^2 + y^2 = 1 + dx^2 y^2$$

- modified set of scalars

 $k \in [1, 2, \dots r - 1] \leftrightarrow \hat{k} \in [4, 8, 4r - 4]$

- initial double-double

 $P \in E \mapsto Q := [4]P \in E[r]$

- fastest formulas to compute

$$\left[\hat{k}\right]P = [k]Q$$

"specified curve" incomplete, but uses fastest formulas and stays on one curve

Hamburg's approach (<u>http://eprint.iacr.org/2014/027</u>)

- complete Edwards curve
- $E_{1,d}: x^2 + y^2 = 1 + dx^2y^2$ use 4-isogeny to incomplete twisted:
- use 4-isogeny to incomplete twisted: $\phi: E_{1,d} \to E_{-1,d-1}$
- fastest formulas to compute:
- $[k]P \text{ on } E_{-1,d-1} \quad (\text{since } \operatorname{im}(\phi) = E_{-1,d-1}[r])$ - use dual to come back to $E_{1,d}$ $\widehat{\phi} : E_{-1,d-1} \to E_{1,d}$

"specified curve" complete and uses fastest formulas, but isogeny needed

Bernstein-Chuengsatiansup-Lange approach (Curve41417)

- complete Edwards curve
 - $E_{1,d}: x^2 + y^2 = 1 + dx^2 y^2$
- kill torsion with doublings

 $\hat{k} \in [8, 16, \dots]$

- stay on $E_{1,d}$, at the expense of 1M per addition but compare \approx 3727M to \approx 3645M (+ ϕ + $\hat{\phi}$)

"specified curve" is complete, stay on it (simple), but slightly slower additions

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches Prime fields and modular reduction Curve models and killing cofactors **Montgomery ladder and twist-security** Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars Exception-free algorithms and Weierstrass "completeness" Performance numbers and practical considerations Conclusions and recommendations Textbook arithmetic on $y^2 = x^3 + ax + b$

Montgomery's arithmetic on $By^2 = x^3 + Ax^2 + x$

 $x_{[2]T} = DBL(x_T)$

$$x_{T+P} = DIFFADD(x_T, x_P, x_{T-P})$$

Differential additions ...

- "Opposite" y's give different x-coordinate than "same-sign" y's
- Decide with x-coordinate of difference: $x_{T+P} = DIFFADD(x_T, x_P, x_{T-P})$

VS. - - - -

- ... and the Montgomery ladder
 - Invariant: in x(P), $k \mapsto x([k]P)$, keep this difference fixed as x(P)
 - Iteration: at each intermediate step, we always have x([m]P), x([m + 1]P) ... so we always add them and double one (depends on binary rep. of k) to preserve the invariant

Twist-security

- Ladder gives scalar multiplications on $E: By^2 = x^3 + Ax^2 + x$ as x([k]P) = LADDER(x(P), k, A)
- Does not depend on B, so works on $E': B'y^2 = x^3 + Ax^2 + x$ for any B'
- Up to isomorphism, there are only two possibilities for fixed A: E and its quadratic twist E'
- So if *E* and *E'* are both secure, no need to check $P \in E$ for any $x(P) \in K$, as LADDER(x, k, A) gives discrete log on *E* or *E'* for all $x \in K$
- Twist-security only really useful when doing *x*-only computations, but why not have it anyway?

Contents

PART I : CHOOSING CURVES

Speed-records and security hunches Prime fields and modular reduction Curve models and killing cofactors Montgomery ladder and twist-security **Our chosen curves: the NUMS curves**

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars Exception-free algorithms and Weierstrass "completeness" Performance numbers and practical considerations Conclusions and recommendations

The NUMS curves

Security s =	Prime p =	Weierstrass b =	Twisted Edwards $d =$	Montgomery A =
128	$2^{256} - 189$	152961		→ -61370
192	$2^{384} - 317$	-34568	333194 🗲	→ -1332778
256	$2^{512} - 569$	121243	637608 🔶	→ -2550434

- **Primes:** Largest $p = 2^{2s} \gamma \equiv 3 \mod 4$ (*fun fact:* in these cases, largest primes full stop)
- Weierstrass: Smallest |b| such that #E and #E' both prime
- Twisted Edwards: Smallest d > 0 such that #E and #E' both 4 times a prime, and d > 0 corresponds to t > 0.
- Reminder: there are 6 "chosen" curves above, but in paper 26 are benchmarked

Small constants all round for $p \equiv 3 \mod 4$

$$M_A: y^2 = x^3 + Ax^2 + x$$
 $E_{a,d}: ax^2 + y^2 = 1 + dx^2y^2$

Searches minimize |A| with $A \equiv 2 \mod 4$

Upshot: search that minimizes Montgomery constant size also minimizes size of both twisted Edwards and Edwards constants (see Lemmas 1-3)

PART I : CHOOSING CURVES

Speed-records and security hunches Prime fields and modular reduction Curve models and killing cofactors Montgomery ladder and twist-security Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars

Exception-free algorithms and Weierstrass "completeness" Performance numbers and practical considerations Conclusions and recommendations

Constant time implementations

- **Constant time:** all computations involving secret data must exhibit regular execution to provide protection against timing and cache attacks
- No data-dependent branches or table lookups depend on scalar k
- Most naïve version: *double-and-add* \rightarrow *double-and-always-add*

k = [-, 0, 0, 1, 0, 1, ...]

double-and-always-add: initialize $Q \leftarrow P$ [-, *compute* [2]Q, [2]Q + P $Q \leftarrow [2]Q$ 0, $Q \leftarrow [2]Q$ *compute* [2]Q, [2]Q + P0, $Q \leftarrow [2]Q + P$ *compute* [2]Q, [2]Q + P1, *compute* [2]Q, [2]Q + P $Q \leftarrow [2]Q$ 0, *compute* [2]Q, [2]Q + P $Q \leftarrow [2]Q + P$ 1. ..

Fixed-window recoding for variable-base

• "Always-add" obviously brings in solid performance penalty: adding twice as much as usual... **BUT** not when using bigger/optimal windows!!!

$$w = 1 \qquad [..., 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, ...]$$

$$w = 5 \qquad [..., 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, ...]$$

$$[..., 26, 21, 2, ...]$$

...5 DBL's \rightarrow ADD ([26]P) \rightarrow 5 DBL's \rightarrow ADD ([21]P) \rightarrow 5 DBL's \rightarrow ADD ([2]P)...

- Basic/naïve: pre-compute and store P,[2]P,...,[30]P, [31]P
- Chances of 5 zeros in a row = 1/32, but we must still **always** add something...

Protected "odd-only" fixed-window recoding algorithm

- Window width w: recodes every odd scalar $k \in [1, r)$ into (t + 1) odd values, i.e. $k = (k_t, ..., k_0)$, where $t = \left[\left(\frac{\log_2 r}{w}\right)\right]$
- Each recoded value is an integer in $k_i \in \{\pm 1, \pm 3, \pm 5, ..., \pm 2^w 1\}$ (only half the precomputed values needed, and there are no zeros)
- e.g. 256-bit scalars, w = 5 optimal for us, 53 windows: - precompute table $\{P, [3]P, [5]P, ..., [31]P\}$ (1 DBL, 15 ADDS) - select first value as $[k_t]P$ - **5 DBL's** \rightarrow **ADD**($[k_{t-1}]P$) $\rightarrow ... \rightarrow$ **5 DBL's** \rightarrow **ADD** ($[k_0P]$) Total: $52 \times 5 + 1 = 261$ DBL's, 52 + 16 = 68 ADD's.
- Same total and sequence, whether k = 1, k = r, or anything in between

Much more to constant-time implementations

• Identical sequence of operations is just the beginning...

e.g: recoding was for odd scalars only: negate every scalar, mask in the odd one, negate every "final" point, mask correct result...

e.g: recoding the scalars themselves must be constant time

e.g: must access/load every lookup element, every time, and mask out correct one

see <u>http://eprint.iacr.org/2014/130.pdf</u> and <u>http://research.microsoft.com/en-us/projects/nums/</u> for solutions to these problems and more...

• The recoding is mathematically correct, and facilitates constant-time implementations, BUT only assuming the ECC formulas do their job!

PART I : CHOOSING CURVES

Speed-records and security hunches Prime fields and modular reduction Curve models and killing cofactors Montgomery ladder and twist-security Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars **Exception-free algorithms and Weierstrass "completeness"** Performance numbers and practical considerations Conclusions and recommendations

Guaranteeing exception-free routines

- The running multiple Q = [m]P of P could be one of the values $P, [3]P, ..., [2^w 1]P$ in the lookup table, or their inverse
- Not a problem if addition formulas are complete, but recall that:

(i) complete Edwards additions are not the fastest(ii) typical Weierstrass additions far from complete

- Not only variable-base scenario [k]P for P (as before), but fixed-base scenario where P is known (precomps mean larger lookup table more potential trouble)
- Can only claim "constant-time" if all combinations of k and P compute [k]P without exception

Guaranteeing exception-free routines

 Propositions 4,6: (under prior recoding) Weierstrass and twisted Edwards variable-base scalar multiplications will compute without exception if:

fastest dedicated addition formulas are used throughout, except the final addition, which needs to be unified (for our proof to go through)

• **Propositions 5,7: (**under fixed-base recoding) Weierstrass and twisted Edwards fixed-base scalar multiplications will compute without exception if:

complete additions are used throughout (for our proof to go through)

Weierstrass completeness

 Impossibility Theorem (Bosma-Lenstra): for general elliptic curves, we need to compute at least two sets of explicit formulae to guarantee every sum is computed:

i.e. no f_X , f_Y , f_Z such that

$$\begin{aligned} X_3 &= f_X(X_1, Y_1, Z_1, X_2, Y_2, Z_2) \\ Y_3 &= f_Y(X_1, Y_1, Z_1, X_2, Y_2, Z_2) \\ Z_3 &= f_Z(X_1, Y_1, Z_1, X_2, Y_2, Z_2) \end{aligned}$$

computes the correct sum $(X_3: Y_3: Z_3) = (X_1: Y_1: Z_1) + (X_2: Y_2: Z_2)$ for all points on a general curve

• Need (f_X, f_Y, f_Z) and (f_X', f_Y', f_Z') , where at least one set will always do the job...

Weierstrass completeness

• e.g. specialized to $y^2 = x^3 + ax + b$, and in homogeneous space, the sum $(X_1: Y_1: Z_1) + (X_2: Y_2: Z_2)$ will be at least one of $(X_3: Y_3: Z_3)$ or $(X_3': Y_3': Z_3')$:

$$\begin{split} X_{3} &= (X_{1}Y_{2} - X_{2}Y_{1})(Y_{1}Z_{2} + Y_{2}Z_{1}) - (X_{1}Z_{2} - X_{2}Z_{1})(a(X_{1}Z_{2} + X_{2}Z_{1}) + 3bZ_{1}Z_{2} - Y_{1}Y_{2}); \\ Y_{3} &= -(3X_{1}X_{2} + aZ_{1}Z_{2})(X_{1}Y_{2} - X_{2}Y_{1}) + (Y_{1}Z_{2} - Y_{2}Z_{1})(a(X_{1}Z_{2} + X_{2}Z_{1}) + 3bZ_{1}Z_{2} - Y_{1}Y_{2}); \\ Z_{3} &= (3X_{1}X_{2} + aZ_{1}Z_{2})(X_{1}Z_{2} - X_{2}Z_{1}) - (Y_{1}Z_{2} + Y_{2}Z_{1})(Y_{1}Z_{2} - Y_{2}Z_{1}); \\ X'_{3} &= -(X_{1}Y_{2} + X_{2}Y_{1})(a(X_{1}Z_{2} + X_{2}Z_{1}) + 3bZ_{1}Z_{2} - Y_{1}Y_{2}) - (Y_{1}Z_{2} + Y_{2}Z_{1})(3b(X_{1}Z_{2} + X_{2}Z_{1}) + a(X_{1}X_{2} - aZ_{1}Z_{2})); \\ Y'_{3} &= Y_{1}^{2}Y_{2}^{2} + 3aX_{1}^{2}X_{2}^{2} - 2a^{2}X_{1}X_{2}Z_{1}Z_{2} - (a^{3} + 9b^{2})Z_{1}Z_{2}^{2} + (X_{1}Z_{2} + X_{2}Z_{1})(3b(3X_{1}X_{2} - aZ_{1}Z_{2}) - a^{2}(X_{2}Z_{1} + X_{1}Z_{2})); \\ Z'_{3} &= (3X_{1}X_{2} + aZ_{1}Z_{2})(X_{1}Y_{2} + X_{2}Y_{1}) + (Y_{1}Z_{2} + Y_{2}Z_{1})(Y_{1}Y_{2} + 3bZ_{1}Z_{2} + a(X_{1}Z_{2} + X_{2}Z_{1})). \end{split}$$

- For our a = -3 Weierstrass curves, our first attempt to optimize the above gave $22M + 4M_b$ (compared to $\approx 14M$ for dedicated projective additions)
- AND the true cost ratio would be far worse than the multiplications indicate

... there's got to be a better way...

Weierstrass "pseudo-completeness"

- We give a "pseudo-complete" addition algorithm for general Weierstrass curves
- Exploits similarity in doubling and addition formulas (two main cases)
- Resemblance to Chevallier-Mames, Ciet, and Joye: "Side-channel Atomicity", but they give separate routines we merge into one with masking

	Algorithm 18 Complete (mixed) addition using masking and Jacobian/affine coordinates on					
	prime-order Weierstrass curves E_b .					
	Input: $P, Q \in E_b(\mathbf{F}_p)$ such that $P = (X_1, Y_1, Z_1)$ is in Jacobian coordinates and $Q = (x_2, y_2)$ is in affine coordinates.					
	 Output: R = P + Q ∈ E_b(F_p) in Jacobian coordinates. Computations marked with [•] are implement constant time using masking. 1. T[0] = Ø {T[i] = (X̃_i, Ỹ_i, Ž_i) for 0 ≤ i < 4} 22. Z̃₃ = Z̃₂ 2. T[1] = Ø 23. if mask ≠ 0 then t₃ = t₂ 	[*]				
_	3. $t_2 = Z_1^2$ 24. if mask $\neq 0$ then $t_6 = t_5$ 4. $t_3 = Z_1 \times t_2$ 25. $t_2 = t_3 \times t_6$ 5. $t_1 = x_2 \times t_2$ 26. $t_3 = t_2/2$ 6. $t_4 = y_2 \times t_3$ 27. $t_3 = t_2 + t_3$	[*]				
Compare	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[*]				
	12. if $t_4 = 0$ then index = 2 $\{R = 2P\}$ [*] 33. if mask = 0 then $t_4 = \tilde{X}_2$ else $t_4 = \tilde{X}_3$ 13. if $P = \mathcal{O}$ then index = 1 $\{R = Q\}$ [*] 34. $t_1 = t_1 - t_4$ 14. mask = 0 35. $t_4 = t_3 \times t_1$	[*]				
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	[*] [*]				
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	[*]				

- Edwards elegance unrivalled, but this gets the job done for Weierstrass!
- Jac+aff (dedicated) = 8M+3S, Jac+aff (complete-masking) = 8M+3S+ ϵ ($\epsilon \approx 20\%$)

PART I : CHOOSING CURVES

Speed-records and security hunches Prime fields and modular reduction Curve models and killing cofactors Montgomery ladder and twist-security Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars Exception-free algorithms and Weierstrass "completeness" Performance numbers and practical considerations

Conclusions and recommendations

TLS handshake with PFS: ECDH(E)-ECDSA

Three scenarios

• Variable-base: $k, P \mapsto [k]P$

(P not known in advance)

(*P* known in advance)

- both sides of static DH
- half of ephemeral DH(E)
- constant time (recoding as before, final addition unified)
- Fixed-base $k, P \mapsto [k]P$
- - other half of ephemeral DH(E)
 - ECDSA signing
 - constant time (fixed-base recoding, all additions complete)
- **Double-scalar** $a, b, P, Q \mapsto [a]P + [b]Q$

(*P* known in advance, *Q* not)

- ECDSA verification
- constant time unnecessary!

Security Level	Prime	Curve	Variable -base	Fixed -base	Double -scalar
128	$p = 2^{256} - 189$	Weierstrass twisted Edwards	270 216	107 82	289 231
192	$p = 2^{384} - 317$	Weierstrass twisted Edwards	714 588	252 201	758 614
256	$p = 2^{512} - 569$	Weierstrass twisted Edwards	1,504 1,242	488 391	1,596 1,308

- Fastest report NIST P-256 (Gueron & Krasnov '13): $\approx 400k$ cycles var-based
- Fixed-base may get a fair bit faster in all scenarios, unified/complete adds not necessary?? [Hamburg, a few days ago, private communication]
- No assembly above field layer (solid gains possible for our curves)
- Compare Curve25519 \approx 194,000 to twisted Edwards \approx 216,000 (sandy)

PART I : CHOOSING CURVES

Speed-records and security hunches Prime fields and modular reduction Curve models and killing cofactors Montgomery ladder and twist-security Our chosen curves: the NUMS curves

PART II : IMPLEMENTING THEM

Constant-time implementations and recoding scalars Exception-free algorithms and Weierstrass "completeness" Performance numbers and practical considerations

Conclusions and recommendations

Our work (in a nutshell)

The sell: what did we do differently?

- Modular/consistent implementation across three security levels
 - twisted Edwards curves generated and implemented the same way
 - same for Weierstrass
- Also considered/implemented new/better prime-order curves
 - concrete performance comparison
 - true gauge on pros and cons of shifting to Edwards
- Two different styles of primes/field arithmetic
 - Montgomery and Pseudo-Mersenne
 - Stayed fixed on "full-length" Pseudo-Mersenne primes
- Choose Edwards everywhere over Montgomery ladder
 - Consistency and no real performance hit
 - More versatile

What could we do differently?

• Define curves as Edwards, not twisted

- Douglas Stebila (8 Aug, 2014) on CFRG mailing list:

"implementations [should] readily expose both a scalar point multiplication operation and a point addition operation"

 Perhaps better to define as Edwards equipped with complete add (and optionally use Hamburg's isogeny trick?)

- Fortunately for 3 mod 4, we get minimal d in either form (just rewrite)

• Remove d > 0 with t > 0 restriction

- Mike Hamburg (12 Aug, 2014) on CFRG mailing list:

"If these requirements become final, then surely the complete curves mod the Microsoft primes with a=1 and no restriction on the sign of d (choose the one with q<p) should be in the running".

- Unrestricted curves in our first preprint, imposed d > 0 in v2, go back?

... see also ...

• Report: http://eprint.iacr.org/2014/130.pdf

- MSR ECC Library: <u>http://research.microsoft.com/en-us/projects/nums/</u>
- Specification of curve selection: <u>http://research.microsoft.com/apps/pubs/default.aspx?id=219966</u>
- IETF Internet Draft (authored by Benjamin Black) <u>http://tools.ietf.org/html/draft-black-numscurves-02</u>