Faster Compact Diffie-Hellman: Endomorphisms on the *x*-line

Craig Costello

Joint work with Huseyin Hisil and Benjamin Smith

4th Annual MSR Privacy Workshop

Research

October 25, 2013

Faster Compact Diffie-Hellman: Endomorphisms on the x-line

- **Q. Why do cryptographers fancy elliptic curves** A. They are as resilient as a "generic group"
- fastest attacks are "generic"
- other primitives (RSA, finite fields, etc) incomparable
- NSA: "... unlike the RSA and Diffie-Hellman cryptosystems that slowly succumbed to increasingly strong attack algorithms, elliptic curve cryptography has remained at its full strength since it was first presented in 1985".
- Nowadays: 256-bit ECDLP compared to 3072-bit DLP or RSA
- NSA: "factor 10 speedup over others at 128-bit level"

Q. Why do number theorists fancy elliptic curves A. They are beautiful, rich and deep objects

- Endless uses, from Gauss to Wiles
- Fermat's Last Theorem, BSD conjecture, etc etc
- Barry Mazur: "These elliptic curves amply repay the obsessive interest that mathematicians have for them ... elliptic curves seem to be designed to teach us things"

Why do number-theoretic cryptographers fancy elliptic curves A. The best attacks are generic, but elliptic curves couldn't be further from generic groups

- Ben Smith: "they have a rich and concrete geometric structure, which should be exploited for fun and profit"
- Can use all of the generic improvements for group exponentiation, but have access to several curve-specific optimisations:
 - endomorphisms, alternative models, coordinate systems, ...

This work: turbocharged scalar multiplications

Combines two of the most powerful optimisations

 \rightarrow the Montgomery model/ladder and endomorphisms

Elliptic curve group addition ...

Montgomery's idea . . .

Peter: "why the y's?- we can do (scalar mults) without them"

Endomorphisms on the x-line

Peter: "why the y's?- we can do scalar mult. without them"

- x-line is a *pseudo-group*, allows only *pseudo-group* operations
- No longer technically a group, but enough to do scalar multiplications (e.g. Diffie-Hellman)

Montgomery ladder for elliptic curves

• **Key:** Can compute P + Q from $\{P, Q, P - Q\}$ without *y*-coords

An elliptic curve and its quadratic twist

Suppose
$$\mathbb{F}_p = \mathbb{F}_{19}$$
 (-1 is non square)
 $E: y^2 = x^3 + 11x + 4$ $E': -y^2 = x^3 + 11x + 4$

An elliptic curve and its quadratic twist

Suppose
$$\mathbb{F}_{p} = \mathbb{F}_{19} (-1 \text{ is non square})$$

 $E: y^{2} = x^{3} + 11x + 4$
 $E': -y^{2} = x^{3} + 11x + 4$

$$(0, 2), (0, 17) \qquad x^{3} + 11x + 4 = 4 \checkmark$$

$$(1, 4), (1, 15) \qquad x^{3} + 11x + 4 = 16 \checkmark$$

$$x = 2?$$

$$x^{3} + 11x + 4 = 15 \times$$

$$(2, 2), (2, 17)$$

$$x = 3?$$

$$(3, 8), (3, 11) \qquad x^{3} + 11x + 4 = 7 \checkmark$$

$$x = 4?$$

$$x^{3} + 11x + 4 = 17 \times$$

$$(4, 6), (4, 13)$$

$$\vdots$$

$$(18, 7), (18, 12) \qquad x^{3} + 11x + 4 = 11 \checkmark$$

An elliptic curve and its quadratic twist

Suppose	e $\mathbb{F}_{ ho}=\mathbb{F}_{19}$ $(-1$ is	s non square)	
$E: y^2 = x^3 + 11$	x + 4 E	$x': -y^2 = x^3 + 11x + 4$	4
(0,2), (0,17)	$x = 0?$ $x^3 + 11x + 4 = 4$	L√	
(1,4), (1,15)	x = 1? $x^3 + 11x + 4 = 16$	6 √	
	x = 2? $x^3 + 11x + 4 = 15$ x = 22	5 × (2, 2), (2, 17)	
(3,8), (3,11)	x = 3 $x^{3} + 11x + 4 = 7$ x = 47	· 🗸	
:	$x^{3} + 11x + 4 = 17$	7 X (4,6), (4,13)	
(18,7), (18,12)	: x = 18? $x^3 + 11x + 4 = 11$:	
#E = 1	.9 7	# <i>E'</i> = 21	
= prime —	→ ⁽)	$= 3 \cdot 7 \rightarrow @$)

The points on E and E'

Endomorphisms on the x-line

.

- Neither red or green sets are a group in their own right
- Montgomery's formulas don't differentiate between the two sets (they work identically on both)
- So let's (ignore many practical caveats for now and) not differentiate either, and work on the *x*-line

.

- Our x-coordinates will come from \mathbb{F}_{p^2} where $p = 2^{127} 1$.
- Think two 127-bit strings, or (more ignorance) a 254-bit string
- Use BHKL'13 "Elligator": keys and transmissions all just random 254-bit strings

x-only needs twist-security ...

- Consider NISTp224: $p = 2^{224} 2^{96} + 1$, specific $b \in \mathbb{F}_p$ $E/\mathbb{F}_p: y^2 = x^3 - 3x + b$
- #*E* = 2695994666715063... 21682722368061 (224-bit prime)
- What about the order of the quadratic twist of NISTp224?
- #E' = 3² · 11 · 47 · 3015283 · 40375823 · 267983539294927 · 177594041488131583478651368420021457 (118-bit prime)
- Not a problem if using both coordinates, just check $(x, y) \in E$
- If only dealing with x's, honest parties all work on E ©...
 ... but attackers could send x's on E' and solve DLP there ©
- Or inject faults (FRLV'08) to convert x on E to x on E'
- Solution: Use twist-secure curves: both E and E' strong

- Endomorphisms: a powerful (non-generic) optimisation in curve-based cryptography
- Map P to "big multiple" [λ]P somewhat immediately, on certain curves
- Simple example: on E/\mathbb{F}_p : $y^2 = x^3 + b$ for $p \equiv 1 \mod 3$,

 $\psi \colon P \mapsto [\lambda]P, \quad (x,y) \mapsto (\xi x, y),$

where $\xi^3 = 1 \in \mathbb{F}_p$, but $\xi \neq 1$. Then scalar λ is big.

Then what ...

Twist-security with endomorphisms

- Using Montgomery's fast/compact *x*-only arithmetic with endomorphisms has not been done
- Why? Two previous methods of endomorphism construction don't allow twist-security
- **GLV curves** are special no hope of twist-secure GLV curves over best primes
 - e.g. y² = x³ + b at most 6 isomorphism classes / group orders over any prime
- GLS curves remedy the sparseness, BUT still necessarily twist-insecure, e.g. E/F_{p²} implies E' defined over F_p

Using endomorphisms in general (sketch)

 Let Q = ψ(P) = [λ]P, perform multiscalar to get to [k]P (very roughly) around twice as fast

 e.g. can start with P + Q, or [2]P + Q or [2]Q + P, and crawl up in sync (Straus-Shamir)

Using endomorphisms with *x*-only

BUT: In our case, can't add P and Q to kickstart
Can't move anywhere with just P and Q...

Using endomorphisms with *x*-only

• Need $Q \pm P$ or $(\psi \pm 1)(P)$ to move quickly to [k]P

• Other people have run into this problem and halted

Endomorphisms on the x-line

Computing $(\psi \pm 1)(P)$: a fortunate exponent

 Smith'13: Let P = (x_P, y_P) be a point on Montgomery form By² = x³ + Ax² + x of special Hasegawa Q-curve of degree two over F_{p²}. Then ψ(P) = (x_Q, y_Q) = Q, where

$$x_Q = c_1 \left(\frac{x_P^2 + Ax_P + 1}{x_P} \right)^p, \quad y_Q = c_2 \left(\frac{y_P(x_P^2 - 1)}{x_P^2} \right)^p$$
 (1)

for constants c_1 and c_2

• On the general Montgomery curve $By^2 = x^3 + Ax^2 + x$

$$x_{Q\pm P} = \frac{B (x_P y_Q \mp x_Q y_P)^2}{x_P x_Q (x_P - x_Q)^2}.$$
 (2)

- Sub (2) into (1): everything simplifies to be relatively efficient and all y_P 's trivially vanish (using curve equation), except for one term: y_P^{p+1}
- Looks very unwieldy, but ...

Computing $(\psi \pm 1)(P)$: a fortunate exponent

$$y^{p+1} = (y^2)^{(p+1)/2} = \left(\frac{x^3 + Ax^2 + x}{B}\right)^{(p+1)/2}$$

- BUT: in our case $p = 2^{127} 1$, so exponent is 2^{126}
- Exponentiation is 126 squarings in \mathbb{F}_{p^2}
- In total, computing the values

$$x_Q = \psi(x_P), \quad x_{Q+P} = (\psi + 1)(x_P), \quad x_{Q-P} = (\psi - 1)(x_P)$$

costs 129 squarings and 15 multiplications

• Not as cheap as traditional endomorphisms, or standalone group operations, but could still be worth it ...

Two dimensional differential addition chains...

- Two dimensional **differential** addition chains are already in the literature (for other purposes)
- Equipped with ψ , we implemented 3 of them

chain	dim.	endomorphisms	#DBL's	# ADD's
		ψ_{x} , $(\psi\pm1)_{x}$		
LADDER	1	—	254	253
DJB	2	affine	128	255
AK	2	affine	pprox 181	pprox 181
PRAC	2	projective	pprox 74	pprox 187

- DBL's take roughly 4 multiplications, ADD's take roughly 6.
- So endomorphisms ψ_{X} , $(\psi\pm1)_{\mathsf{X}}$ cost around 25 ADD's
- (modulo many caveats) Clearly some speedups on the cards from using ψ . . .

How fast are we talking?

- **Disclaimer**: There are several others (Bos *et al.*, Longa *et al.*, Oliveira *et al.*) who are faster
- But we are simply talking *x*-only...

Table: Intel i7-3520M (Ivy-Bridge) cycles per scalar multiplication at128-bit security level for x-coordinate only implementations

addition chain	dimension	uniform?	constant time?	cycles
Bernstein	1	✓	\checkmark	182,000
(curve25519)				
LADDER	1	✓	\checkmark	152,000
DJB	2	\checkmark	\checkmark	145,000
AK	2	✓	×	130,000
PRAC	2	×	×	110,000