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Elliptic curves

Q. Why do cryptographers fancy elliptic curves
A. They are as resilient as a “generic group”

fastest attacks are “generic”

other primitives (RSA, finite fields, etc) incomparable

NSA: “. . . unlike the RSA and Diffie-Hellman cryptosystems

that slowly succumbed to increasingly strong attack

algorithms, elliptic curve cryptography has remained at its full

strength since it was first presented in 1985”.

Nowadays: 256-bit ECDLP compared to 3072-bit DLP or RSA

NSA: “factor 10 speedup over others at 128-bit level” . . .
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Elliptic curves

Q. Why do number theorists fancy elliptic curves
A. They are beautiful, rich and deep objects

Endless uses, from Gauss to Wiles

Fermat’s Last Theorem, BSD conjecture, etc etc

Barry Mazur: “These elliptic curves amply repay the obsessive

interest that mathematicians have for them . . . elliptic curves

seem to be designed to teach us things”
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Elliptic curves

Why do number-theoretic cryptographers fancy elliptic curves
A. The best attacks are generic, but elliptic curves couldn’t be

further from generic groups

Ben Smith: “they have a rich and concrete geometric

structure, which should be exploited for fun and profit”

Can use all of the generic improvements for group
exponentiation, but have access to several curve-specific
optimisations:

endomorphisms, alternative models, coordinate systems, . . .

This work: turbocharged scalar multiplications

Combines two of the most powerful optimisations

→ the Montgomery model/ladder and endomorphisms
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Elliptic curve group addition . . .

Elliptic curve: y2 = x3 + ax + b

ℓ

• Q

• P

•⊖R

•
R = P ⊕ Q
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Montgomery’s idea . . .

Peter: “why the y ’s?- we can do (scalar mults) without them”

ℓ

•Q

•P

•⊖R

•
R = P ⊕ Q
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Montgomery’s idea . . .

Peter: “why the y ’s?- we can do scalar mult. without them”

•
Q

•
P

••
P ⊕ Q

x-line is a pseudo-group, allows only pseudo-group operations

No longer technically a group, but enough to do scalar
multiplications (e.g. Diffie-Hellman)
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Montgomery ladder for elliptic curves . . .

Key: Can compute P + Q from {P ,Q,P − Q} without
y -coords

ℓ

•Q
•
P

•

•
R

•
•

•

•

•
•

•

•

vs. •• •• ••
••

same difference → same result different difference → different result

Endomorphisms on the x-line



An elliptic curve and its quadratic twist

Suppose Fp = F19 (−1 is non square)

E : y 2 = x3 + 11x + 4 E ′ : − y 2 = x3 + 11x + 4
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An elliptic curve and its quadratic twist

Suppose Fp = F19 (−1 is non square)

E : y 2 = x3 + 11x + 4 E ′ : − y 2 = x3 + 11x + 4

(0, 2), (0, 17)

(1, 4), (1, 15)

(3, 8), (3, 11)

.

..

(18, 7), (18, 12)

x = 0?
x3 + 11x + 4 = 4 X

x = 1?
x3 + 11x + 4 = 16 X

x = 2?
x3 + 11x + 4 = 15 ✕

x = 3?
x3 + 11x + 4 = 7 X

x = 4?
x3 + 11x + 4 = 17 ✕

...
x = 18?

x3 + 11x + 4 = 11 X

(2, 2), (2, 17)

(4, 6), (4, 13)
...
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An elliptic curve and its quadratic twist

Suppose Fp = F19 (−1 is non square)

E : y 2 = x3 + 11x + 4 E ′ : − y 2 = x3 + 11x + 4

(0, 2), (0, 17)

(1, 4), (1, 15)

(3, 8), (3, 11)

.

..

(18, 7), (18, 12)

x = 0?
x3 + 11x + 4 = 4 X

x = 1?
x3 + 11x + 4 = 16 X

x = 2?
x3 + 11x + 4 = 15 ✕

x = 3?
x3 + 11x + 4 = 7 X

x = 4?
x3 + 11x + 4 = 17 ✕

...
x = 18?

x3 + 11x + 4 = 11 X

(2, 2), (2, 17)

(4, 6), (4, 13)
...

#E = 19
= prime → ,

#E ′ = 21
= 3 · 7 → /
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The points on E and E ′
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Dropping the y -coordinate

• • • • • • • • • • • • • • • • • • •

Neither red or green sets are a group in their own right

Montgomery’s formulas don’t differentiate between the two
sets (they work identically on both)

So let’s (ignore many practical caveats for now and) not
differentiate either, and work on the x-line

• • • • • • • • • • • • • • • • • • •

Our x-coordinates will come from Fp2 where p = 2127 − 1.

Think two 127-bit strings, or (more ignorance) a 254-bit string

Use BHKL’13 “Elligator”: - keys and transmissions all just
random 254-bit strings
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x-only needs twist-security . . .

Consider NISTp224: p = 2224 − 296 + 1, specific b ∈ Fp

E/Fp : y2 = x3 − 3x + b

#E = 2695994666715063 . . . 21682722368061 (224-bit prime)

What about the order of the quadratic twist of NISTp224?

#E ′ = 32 · 11 · 47 · 3015283 · 40375823 · 267983539294927 ·
177594041488131583478651368420021457 (118-bit prime)

Not a problem if using both coordinates, just check (x , y) ∈ E

If only dealing with x ’s, honest parties all work on E ,. . .
. . . but attackers could send x ’s on E ′ and solve DLP there /

Or inject faults (FRLV’08) to convert x on E to x on E ′

Solution: Use twist-secure curves: both E and E ′ strong
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Endomorphisms

Endomorphisms: a powerful (non-generic) optimisation in
curve-based cryptography

Map P to “big multiple” [λ]P somewhat immediately, on
certain curves

Simple example: on E/Fp : y2 = x3 + b for p ≡ 1 mod 3,

ψ : P 7→ [λ]P , (x , y) 7→ (ξx , y),

where ξ3 = 1 ∈ Fp, but ξ 6= 1. Then scalar λ is big.

Then what . . .
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Twist-security with endomorphisms

Using Montgomery’s fast/compact x-only arithmetic with
endomorphisms has not been done

Why? Two previous methods of endomorphism construction
don’t allow twist-security

GLV curves are special - no hope of twist-secure GLV curves
over best primes

e.g. y2 = x3 + b - at most 6 isomorphism classes / group
orders over any prime

GLS curves remedy the sparseness, BUT still necessarily
twist-insecure, e.g. E/Fp2 implies E ′ defined over Fp

BUT: Smith’13 gives a new endomorphism construction using
Q-curves: can now achieve twist-secure curves with
endomorphisms, over say, Fp2 with p = 2127 − 1
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Using endomorphisms in general (sketch)

Let Q = ψ(P) = [λ]P , perform multiscalar to get to [k]P
(very roughly) around twice as fast

e.g. can start with P + Q, or [2]P + Q or [2]Q + P , and crawl
up in sync (Straus-Shamir)
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Using endomorphisms with x-only

BUT: In our case, can’t add P and Q to kickstart
Can’t move anywhere with just P and Q. . .
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Using endomorphisms with x-only

Need Q ± P or (ψ ± 1)(P) to move quickly to [k]P

Other people have run into this problem and halted
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Computing (ψ ± 1)(P): a fortunate exponent

Smith’13: Let P = (xP , yP) be a point on Montgomery form
By2 = x3 + Ax2 + x of special Hasegawa Q-curve of degree
two over Fp2. Then ψ(P) = (xQ , yQ) = Q, where

xQ = c1

(

x2
P + AxP + 1

xP

)p

, yQ = c2

(

yP(x2
P − 1)

x2
P

)p

(1)

for constants c1 and c2

On the general Montgomery curve By2 = x3 + Ax2 + x

xQ±P =
B (xPyQ ∓ xQyP)

2

xPxQ (xP − xQ)
2 . (2)

Sub (2) into (1): everything simplifies to be relatively
efficient and all yP ’s trivially vanish (using curve
equation), except for one term: y

p+1
P

Looks very unwieldy, but . . .
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Computing (ψ ± 1)(P): a fortunate exponent

yp+1 = (y2)(p+1)/2 =

(

x3 + Ax2 + x

B

)(p+1)/2

BUT: in our case p = 2127 − 1, so exponent is 2126

Exponentiation is 126 squarings in Fp2

In total, computing the values

xQ = ψ(xP), xQ+P = (ψ + 1)(xP), xQ−P = (ψ − 1)(xP)

costs 129 squarings and 15 multiplications

Not as cheap as traditional endomorphisms, or standalone
group operations, but could still be worth it . . .
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Two dimensional differential addition chains. . .

Two dimensional differential addition chains are already in
the literature (for other purposes)

Equipped with ψ, we implemented 3 of them

chain dim. endomorphisms #DBL’s #ADD’s
ψx , (ψ ± 1)x

LADDER 1 — 254 253
DJB 2 affine 128 255
AK 2 affine ≈ 181 ≈ 181

PRAC 2 projective ≈ 74 ≈ 187

DBL’s take roughly 4 multiplications, ADD’s take roughly 6.

So endomorphisms ψx , (ψ ± 1)x cost around 25 ADD’s

(modulo many caveats) Clearly some speedups on the cards
from using ψ . . .
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How fast are we talking?

Disclaimer: There are several others (Bos et al., Longa et al.,
Oliveira et al.) who are faster

But we are simply talking x-only. . .

Table: Intel i7-3520M (Ivy-Bridge) cycles per scalar multiplication at
128-bit security level for x-coordinate only implementations

addition chain dimension uniform? constant time? cycles

Bernstein 1 ✓ ✓ 182,000

(curve25519)

LADDER 1 ✓ ✓ 152,000

DJB 2 ✓ ✓ 145,000

AK 2 ✓ ✗ 130,000

PRAC 2 ✗ ✗ 110,000
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