Faster Compact Diffie-Hellman: Endomorphisms on the x-line

Craig Costello

Joint work with Huseyin Hisil and Benjamin Smith

4th Annual MSR Privacy Workshop

Microsoft ${ }^{\circ}$
 Research

October 25, 2013

Q. Why do cryptographers fancy elliptic curves

A. They are as resilient as a "generic group"

- fastest attacks are "generic"
- other primitives (RSA, finite fields, etc) incomparable
- NSA: ". . . unlike the RSA and Diffie-Hellman cryptosystems that slowly succumbed to increasingly strong attack algorithms, elliptic curve cryptography has remained at its full strength since it was first presented in 1985".
- Nowadays: 256-bit ECDLP compared to 3072-bit DLP or RSA
- NSA: "factor 10 speedup over others at 128-bit level" . . .

Elliptic curves

Q. Why do number theorists fancy elliptic curves

A. They are beautiful, rich and deep objects

- Endless uses, from Gauss to Wiles
- Fermat's Last Theorem, BSD conjecture, etc etc
- Barry Mazur: "These elliptic curves amply repay the obsessive interest that mathematicians have for them . . elliptic curves seem to be designed to teach us thingss"

Elliptic curves

Why do number-theoretic cryptographers fancy elliptic curves

A. The best attacks are generic, but elliptic curves couldn't be further from generic groups

- Ben Smith: "they have a rich and concrete geometric structure, which should be exploited for fun and profit"
- Can use all of the generic improvements for group exponentiation, but have access to several curve-specific optimisations:
- endomorphisms, alternative models, coordinate systems, ...

This work: turbocharged scalar multiplications

Combines two of the most powerful optimisations
\rightarrow the Montgomery model/ladder and endomorphisms

Elliptic curve group addition . . .

Elliptic curve: $\quad y^{2}=x^{3}+a x+b$

Montgomery's idea

Peter: "why the y 's?- we can do (scalar mults) without them"

Montgomery's idea

Peter: "why the y 's?- we can do scalar mult. without them"

- x-line is a pseudo-group, allows only pseudo-group operations
- No longer technically a group, but enough to do scalar multiplications (e.g. Diffie-Hellman)

Montgomery ladder for elliptic curves

- Key: Can compute $P+Q$ from $\{P, Q, P-Q\}$ without y-coords

same difference \rightarrow same result

different difference \rightarrow different result

An elliptic curve and its quadratic twist

$$
\begin{gathered}
\text { Suppose } \mathbb{F}_{p}=\mathbb{F}_{19}(-1 \text { is non square }) \\
E: y^{2}=x^{3}+11 x+4 \quad E^{\prime}:-y^{2}=x^{3}+11 x+4
\end{gathered}
$$

An elliptic curve and its quadratic twist

$$
\begin{gather*}
\text { Suppose } \mathbb{F}_{p}=\mathbb{F}_{19}(-1 \text { is non square }) \\
E: y^{2}=x^{3}+11 x+4 \quad E^{\prime}:-y^{2}=x^{3}+11 x+4 \\
x=0 ? \\
(0,2),(0,17) \tag{0,2}\\
x^{3}+11 x+4=4 \\
x=1 ? \tag{1,4}\\
(1,4),(1,15) \\
x^{3}+11 x+4=16 \tag{2,2}\\
x=2 ? \\
x^{3}+11 x+4=15 \times 3 \\
x=3 ? \\
x^{3}+11 x+4=7 \tag{4,6}\\
x=4 ? \\
x^{3}+11 x+4=17 \times \tag{18,7}\\
\vdots \\
(3,8),(3,11) \\
x=18 ? \\
\vdots \\
(18,7),(18,12)
\end{gather*}
$$

An elliptic curve and its quadratic twist

$$
\begin{align*}
& \text { Suppose } \mathbb{F}_{p}=\mathbb{F}_{19}(-1 \text { is non square }) \\
& E: y^{2}=x^{3}+11 x+4 \quad E^{\prime}:-y^{2}=x^{3}+11 x+4 \\
& x=0 \text { ? } \\
& x^{3}+11 x+4=4 \checkmark \tag{0,2}\\
& x=1 \text { ? } \\
& x^{3}+11 x+4=16 \tag{1,4}\\
& x=2 \text { ? } \\
& x^{3}+11 x+4=15 x \tag{2,2}\\
& x=3 \text { ? } \\
& x^{3}+11 x+4=7 \checkmark \tag{3,8}\\
& x=4 \text { ? } \\
& x^{3}+11 x+4=17 \times \tag{4,6}\\
& x=18 \text { ? } \\
& x^{3}+11 x+4=11 \checkmark \tag{18,7}\\
& \# E=19 \\
& =\text { prime } \rightarrow \text {; } \\
& \# E^{\prime}=21 \\
& =3 \cdot 7 \rightarrow \text { © }
\end{align*}
$$

The points on E and E^{\prime}

Dropping the y-coordinate

- Neither red or green sets are a group in their own right
- Montgomery's formulas don't differentiate between the two sets (they work identically on both)
- So let's (ignore many practical caveats for now and) not differentiate either, and work on the x-line
- Our x-coordinates will come from $\mathbb{F}_{p^{2}}$ where $p=2^{127}-1$.
- Think two 127 -bit strings, or (more ignorance) a 254 -bit string
- Use BHKL'13 "Elligator": - keys and transmissions all just random 254-bit strings

x-only needs twist-security

- Consider NISTp224: $p=2^{224}-2^{96}+1$, specific $b \in \mathbb{F}_{p}$

$$
E / \mathbb{F}_{p}: y^{2}=x^{3}-3 x+b
$$

- $\# E=2695994666715063 \ldots 21682722368061$ (224-bit prime)
- What about the order of the quadratic twist of NISTp224?
- $\# E^{\prime}=3^{2} \cdot 11 \cdot 47 \cdot 3015283 \cdot 40375823 \cdot 267983539294927$. 177594041488131583478651368420021457 (118-bit prime)
- Not a problem if using both coordinates, just check $(x, y) \in E$
- If only dealing with x 's, honest parties all work on $E \oplus \ldots$... but attackers could send x 's on E^{\prime} and solve DLP there (*)
- Or inject faults (FRLV'08) to convert x on E to x on E^{\prime}
- Solution: Use twist-secure curves: both E and E^{\prime} strong

Endomorphisms

- Endomorphisms: a powerful (non-generic) optimisation in curve-based cryptography
- Map P to "big multiple" $[\lambda] P$ somewhat immediately, on certain curves
- Simple example: on $E / \mathbb{F}_{p}: y^{2}=x^{3}+b$ for $p \equiv 1 \bmod 3$,

$$
\psi: P \mapsto[\lambda] P, \quad(x, y) \mapsto(\xi x, y),
$$

where $\xi^{3}=1 \in \mathbb{F}_{p}$, but $\xi \neq 1$. Then scalar λ is big.

- Then what ...

Twist-security with endomorphisms

- Using Montgomery's fast/compact x-only arithmetic with endomorphisms has not been done
- Why? Two previous methods of endomorphism construction don't allow twist-security
- GLV curves are special - no hope of twist-secure GLV curves over best primes
- e.g. $y^{2}=x^{3}+b$ - at most 6 isomorphism classes / group orders over any prime
- GLS curves remedy the sparseness, BUT still necessarily twist-insecure, e.g. $E / \mathbb{F}_{p^{2}}$ implies E^{\prime} defined over \mathbb{F}_{p}
- BUT: Smith'13 gives a new endomorphism construction using \mathbb{Q}-curves: can now achieve twist-secure curves with endomorphisms, over say, $\mathbb{F}_{p^{2}}$ with $p=2^{127}-1$

Using endomorphisms in general (sketch)

- Let $Q=\psi(P)=[\lambda] P$, perform multiscalar to get to $[k] P$ (very roughly) around twice as fast

- e.g. can start with $P+Q$, or [2] $P+Q$ or [2] $Q+P$, and crawl up in sync (Straus-Shamir)

Using endomorphisms with x-only

- BUT: In our case, can't add P and Q to kickstart
- Can't move anywhere with just P and $Q \ldots$

Using endomorphisms with x-only

- Need $Q \pm P$ or $(\psi \pm 1)(P)$ to move quickly to $[k] P$

- Other people have run into this problem and halted

Computing $(\psi \pm 1)(P)$: a fortunate exponent

- Smith'13: Let $P=\left(x_{P}, y_{P}\right)$ be a point on Montgomery form $B y^{2}=x^{3}+A x^{2}+x$ of special Hasegawa \mathbb{Q}-curve of degree two over $\mathbb{F}_{p^{2}}$. Then $\psi(P)=\left(x_{Q}, y_{Q}\right)=Q$, where

$$
\begin{equation*}
x_{Q}=c_{1}\left(\frac{x_{P}^{2}+A x_{P}+1}{x_{P}}\right)^{p}, \quad y_{Q}=c_{2}\left(\frac{y_{P}\left(x_{P}^{2}-1\right)}{x_{P}^{2}}\right)^{p} \tag{1}
\end{equation*}
$$

for constants c_{1} and c_{2}

- On the general Montgomery curve $B y^{2}=x^{3}+A x^{2}+x$

$$
\begin{equation*}
x_{Q \pm P}=\frac{B\left(x_{P} y_{Q} \mp x_{Q} y_{P}\right)^{2}}{x_{P} x_{Q}\left(x_{P}-x_{Q}\right)^{2}} \tag{2}
\end{equation*}
$$

- Sub (2) into (1): everything simplifies to be relatively efficient and all y_{P} 's trivially vanish (using curve equation), except for one term: y_{P}^{p+1}
- Looks very unwieldy, but ...

Computing $(\psi \pm 1)(P)$: a fortunate exponent

$$
y^{p+1}=\left(y^{2}\right)^{(p+1) / 2}=\left(\frac{x^{3}+A x^{2}+x}{B}\right)^{(p+1) / 2}
$$

- BUT: in our case $p=2^{127}-1$, so exponent is 2^{126}
- Exponentiation is 126 squarings in $\mathbb{F}_{p^{2}}$
- In total, computing the values

$$
x_{Q}=\psi\left(x_{P}\right), \quad x_{Q+P}=(\psi+1)\left(x_{P}\right), \quad x_{Q-P}=(\psi-1)\left(x_{P}\right)
$$

costs 129 squarings and 15 multiplications

- Not as cheap as traditional endomorphisms, or standalone group operations, but could still be worth it ...
- Two dimensional differential addition chains are already in the literature (for other purposes)
- Equipped with ψ, we implemented 3 of them
chain dim. endomorphisms \#DBL's \#ADD's

$\psi_{x},(\psi \pm 1)_{x}$				
LADDER	1	-	254	253
DJB	2	affine	128	255
AK	2	affine	≈ 181	≈ 181
PRAC	2	projective	≈ 74	≈ 187

- DBL's take roughly 4 multiplications, ADD's take roughly 6 .
- So endomorphisms $\psi_{x},(\psi \pm 1)_{x}$ cost around 25 ADD's
- (modulo many caveats) Clearly some speedups on the cards from using $\psi \ldots$

How fast are we talking?

- Disclaimer: There are several others (Bos et al., Longa et al., Oliveira et al.) who are faster
- But we are simply talking x-only...

Table: Intel i7-3520M (Ivy-Bridge) cycles per scalar multiplication at 128 -bit security level for x-coordinate only implementations

addition chain	dimension	uniform?	constant time?	cycles
Bernstein (curve25519)	1	\checkmark	\checkmark	182,000
LADDER	1			
DJB	2	\checkmark	\checkmark	152,000
AK	2	\checkmark	\checkmark	145,000
PRAC	2	\boldsymbol{x}	\mathbf{x}	130,000

