Exponentiating in Pairing Groups

Joppe W. Bos, Craig Costello, and Michael Naehrig SAC 2013 Vancouver, Canada

Microsoft[®] Research

August 16, 2013

Exponentiating in Pairing Groups

• The big (bilinear) bang: [Jou00],[SOK00],[BF01]...

PBC universe still expanding: ... [2013/413],[2013/414] ...

. . .

. . .

• Secure bilinear maps would have been welcomed by cryptographers regardless of where they came from

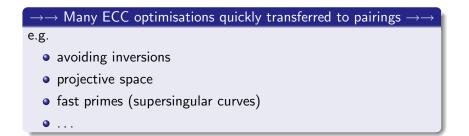
Ben Lynn 2007:

"... that pairings come from the realm of algebraic geometry (on curves) is a happy coincidence"

• Why so happy?

- Already received a huge amount of optimization
- Much more fun than traditional crypto. primitives
- Discrete log problem on curves already under the microscope

ECC and PBC: a symbiotic relationship



Pairings helped ECC too

e.g.

- 2008/117: Galbraith-Scott fast exponentiation on pairing groups using $\psi=\phi\pi\hat{\phi}$
- i.e. Frobenius useful over extension fields
- 2008/194: Galbraith-Lin-Scott (GLS) fast ECC over extension fields using ψ

Non-Weierstrass models for pairings...not so much

- A very successful ECC optimization: non-Weierstrass curves e.g. Montgomery, Hessian, Jacobi quartics, Jacobi intersections, Edwards, twisted Edwards, ... (see EFD)
- Not so successful in PBC ... why?
- P+Q=R , $\operatorname{div}(f)=(P)+(Q)-(R)-(\mathcal{O})$

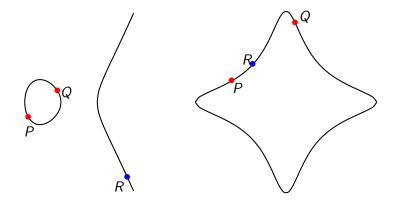
In ECC computations we only need points

get R as fast as possible

In pairing computations we need points and functions

get R and f as fast as possible

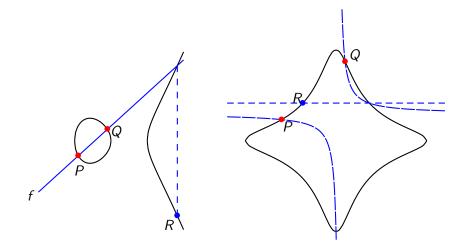
Non-Weierstrass faster for ECC



Getting *R* from *P* and *Q*: much faster on Edwards (and others)

Exponentiating in pairing groups

Weierstrass faster for pairings



Getting R, f from P and Q: Weierstrass preferable

Exponentiating in pairing groups

This work: focus only on the scalar multiplications

Alternative models not faster for pairing, **but** can they be used to enhance scalar multiplications in pairing groups???

- maybe even bigger speedups for pairing exponentiations
- high dimensional GLV/GLS (# doublings < # additions)
- additions is where Weierstrass sucks the most
- e.g. $y^2 = x^3 + b$ Weierstrass add. ≈ 17 m, Edwards ≈ 9 m !!!
- curve models in pairings very minor improvement at best, but in scalar mulplications big savings possible!

Pairing-based protocols in practice

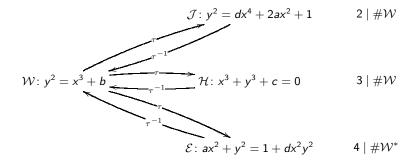
- pairing computation involves three groups $e\colon \mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_{\textit{T}}$
- often many more standalone operations in any or all of \mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T than pairing(s) ... can be orders of magnitude more!

Utilizing non-Weierstrass models

- $\mathcal{J} = \mathsf{Jacobi}$ quartic $\mathcal{H} = \mathsf{Hessian}$ $\mathcal{E} = \mathsf{twisted}$ Edwards
- We always have j = 0 in this work (e.g. \mathcal{H} has d = 0)

Pairing on

Scalar mults on iff



 Note *: field K has #K ≡ 1 mod 4, then 4 | E is enough, otherwise need point of order 4 for E (cheers anon. reviewer)

The power of the sextic twist for \mathbb{G}_2

- Elements in \mathbb{G}_2 are points over the extension field $\subset E(\mathbb{F}_{p^k})$
 - k times larger to store
 - *m* times more costly to work over \mathbb{F}_{p^k} , where $k \ll m \leq k^2$!!!
- Can use group isomorphic to \mathbb{G}_2 , which is on a different curve:

 $\mathbb{G}'_2 \subseteq E'(\mathbb{F}_{p^{k/d}})$

- E' is called the **twisted curve**
 - elements compressed by factor d
 - *m* times faster to work with, where $d \ll m \le d^2$

Sextic twists: d = 6 is biggest possible for elliptic curves

- only possible if $6 \mid k$ and j = 0 (i.e. $y^2 = x^3 + b$)
- luckily all the best families with $6 \mid k$ have $y^2 = x^3 + b$
- $E'/\mathbb{F}_{p^{k/d}}$: $y^2 = x^3 + b'$, and $\Psi \colon E' \to E$ to map $\mathbb{G}'_2 \leftrightarrow \mathbb{G}_2$

Mapping back and forth to $\ensuremath{\mathcal{W}}$

Galbraith-Scott'08

•
$$\mathbb{G}_1 \subseteq E(\mathbb{F}_p) : y^2 = x^3 + b$$

- $\phi : (x, y) \mapsto (\zeta x, y), \ \zeta^3 = 1 \in \mathbb{F}_p$
- gives 2-dimensional (GLV) decomposition on \mathbb{G}_1
• $\mathbb{G}'_2 \subseteq E'(\mathbb{F}_{p^e}) : y^2 = x^3 + b'$
- $\psi = \Psi \cdot \pi_p \cdot \Psi^{-1}$
- gives $\varphi(k)$ -dimensional (GLS) decomposition on \mathbb{G}_2

- [k]P starts by computing $\phi(P)$ or $\psi^i(P)$ for $1 \le i \le d-1$
- \bullet ideally we'd define (elements of) \mathbb{G}_1 or \mathbb{G}_2 on fastest model
- requires endomorphisms to transfer favorably to other model, but only GLV morphism φ on H : x³ + y³ + c = 0 does ⁽³⁾

The general strategy

We apply ϕ or ψ (repeatedly) on \mathcal{W} , map across to \mathcal{J} , \mathcal{H} or \mathcal{E} for the rest of the routine, and come back to \mathcal{W} at the end

sec. level	family- <i>k</i>	pairing e	exp. in \mathbb{G}_1	exp. in \mathbb{G}_2	exp. in $\mathbb{G}_{\mathcal{T}}$
128-bit	BN-12	?	??	??	?
100 hit	BLS-12	?	??	??	?
192-DIt	KSS-18	?	??	??	?
256-bit	BLS-24	?	?? ?? ?? ??	??	?

- to fill in the above table using all of the state of the art techniques for pairings/exponentiations
- give protocol designers a good idea of the ratios $e: \mathbb{G}_1: \mathbb{G}_2: \mathbb{G}_T$
- $\bullet\,$ not speed records (no assembly), but ratios should remain $\approx\,$ same
- find optimal curve models in all ?? cases

k = 12 Barreto-Naehrig (BN) curves

- BN curves are so good: for our purposes, they are too good
- they were meant to be prime can't even force small cofactor

Prop 1. Let E/\mathbb{F}_p be a BN curve with sextic twist E'/\mathbb{F}_{p^2} . The groups $E(\mathbb{F}_p)$ and $E'(\mathbb{F}_{p^2})$ do not contain points of order 2, 3 or 4.

Prop 2. For $p \equiv 3 \mod 4$, let E/\mathbb{F}_p be a k = 12 BLS curve with sextic twist E'/\mathbb{F}_{p^2} . The group $E(\mathbb{F}_p)$ contains a point of order 3 and can contain a point of order 2, but not 4, while the group $E'(\mathbb{F}_{p^2})$ does not contain a point of order 2, 3 or 4.

Prop 3. Let E/\mathbb{F}_p be a k = 18 KSS curve with sextic twist E'/\mathbb{F}_{p^3} . The group $E(\mathbb{F}_p)$ does not contain a point of order 2, 3 or 4, while the group $E'(\mathbb{F}_{p^3})$ contains a point of order 3 but does not contain a point of order 2 or 4.

Prop 4. For $p \equiv 3 \mod 4$, let E/\mathbb{F}_p be a k = 24 BLS curve and sextic twist E'/\mathbb{F}_{p^4} . The group $E(\mathbb{F}_p)$ can contain points of order 2 or 3 (although not simultaneously), but not 4, while the group $E'(\mathbb{F}_{p^4})$ can contain a point of order 2, but does not contain a point of order 3 or 4.

		\mathbb{G}_1		\mathbb{G}_2
family- <i>k</i>	algorithm	models avail.	algorithm	models avail.
BN-12	2-GLV	\mathcal{W}	4-GLS	\mathcal{W}
BLS-12	2-GLV	$\mathcal{H}, \mathcal{J}, \mathcal{W}$	4-GLS	$\mathcal W$
KSS-18	2-GLV	${\mathcal W}$	6-GLS	\mathcal{H},\mathcal{W}
BLS-24	2-GLV	$\mathcal{H},\mathcal{J},\mathcal{W}$	8-GLS	$\mathcal{E},\mathcal{J},\mathcal{W}$

model	DBL	ADD	MIX	AFF
	cost	cost	cost	cost
Weierstrass - ${\cal W}$	7	16	11	6
Jacobi-quartic - ${\cal J}$	9	13	12	11
Hessian - ${\cal H}$	7	12	10	8
twisted Edwards - ${\cal E}$	9	10	9	8

• operation counts don't/can't assume small constants like ECC

		\mathbb{G}_1				\mathbb{G}_2			
	family- <i>k</i>	algorithm	models avail.		il.	alg	orithm		models avail.
-	BN-12	2-GLV		\mathcal{W}		4	-GLS		$\mathcal W$
	BLS-12	2-GLV H	lessia	an (1.2	3x)	4	-GLS		${\mathcal W}$
	KSS-18	2-GLV		${\mathcal W}$		6	-GLS		Hessian (1.11x)
	BLS-24	2-GLV H	Hessian (1.19x)		9x)	8	-GLS	twis	sted Edwards (1.16x)
					-				
		model/	/	DBL	ADD)	MIX	AFF	
		coords		cost	cost	t	cost	cost	
		\mathcal{W} / Jac	с.	7	16		11	6	
		${\cal J}$ / ext		9	13		12	11	
		\mathcal{H} / pro	j.	7	12		10	8	
		\mathcal{E} / ext		9	10		9	8	

- for BLS k = 12 and BLS k = 24, define G₁ ⊂ H/F_p (modify pairing to include initial conversion to W)
- for KSS k = 18 and BLS k = 24, $\mathbb{G}_2 \subset \mathcal{W}/\mathbb{F}_p$, but τ to \mathcal{H}, \mathcal{E} after ψ 's are computed, and τ^{-1} to come back to \mathcal{W} at end

Benchmark results (in millions (M) of clock cycles Intel Core i7-3520M).

sec. level	family- <i>k</i>	pairing e	exp. in \mathbb{G}_1	exp. in \mathbb{G}_2	exp. in $\mathbb{G}_{\mathcal{T}}$
128-bit	BN-12	7.0	0.9	1.8	3.1
100 64	BLS-12	47.2	4.4	10.9	17.5
192-DIL	KSS-18	63.3	3.5	9.8	15.7
256-bit	BLS-24	115.0	5.2	1.8 10.9 9.8 27.6	47.1

- state-of-the-art algorithms (optimal ate, lazy reduction, cyclotomic squarings, etc.)
- not rivalling speed records, but e: G₁: G₂: G_T ratios should stay similar
- should give protocol designers a good idea of ratios
- what's best for 192-bit security (match protocol to family)
- for BN ratios at hardcore level, see:

http://sandia.cs.cinvestav.mx/index.php?n=Site.CPABE

(Zavattoni, Dominguez Perez, Mitsunari, Sanchez, Teruya, Rodriguez-Henriquez)

Exponentiating in pairing groups