Exponentiating in Pairing Groups

Joppe W. Bos, Craig Costello, and Michael Naehrig
SAC 2013
Vancouver, Canada
Microsoft ${ }^{\text { }}$
Research

August 16, 2013

The pairing explosion

- The big (bilinear) bang: [Jou00],[SOK00],[BF01]...

PBC universe still expanding: . . [2013/413],[2013/414] ...

- Secure bilinear maps would have been welcomed by cryptographers regardless of where they came from

Ben Lynn 2007:

". . . that pairings come from the realm of algebraic geometry (on curves) is a happy coincidence"

- Why so happy?
- Already received a huge amount of optimization
- Much more fun than traditional crypto. primitives
- Discrete log problem on curves already under the microscope

ECC and PBC: a symbiotic relationship

$\rightarrow \rightarrow$ Many ECC optimisations quickly transferred to pairings $\rightarrow \rightarrow$
e.g.

- avoiding inversions
- projective space
- fast primes (supersingular curves)
- ...
$\leftarrow \leftarrow$
Pairings helped ECC too
e.g.
- 2008/117: Galbraith-Scott - fast exponentiation on pairing groups using $\psi=\phi \pi \hat{\phi}$
- i.e. Frobenius useful over extension fields
- 2008/194: Galbraith-Lin-Scott (GLS) - fast ECC over extension fields using ψ

Non-Weierstrass models for pairings. . . not so much

- A very successful ECC optimization: non-Weierstrass curves e.g. Montgomery, Hessian, Jacobi quartics, Jacobi intersections, Edwards, twisted Edwards, ... (see EFD)
- Not so successful in PBC ... why?
$P+Q=R \quad, \quad \operatorname{div}(f)=(P)+(Q)-(R)-(\mathcal{O})$

In ECC computations we only need points get R as fast as possible

In pairing computations we need points and functions get R and f as fast as possible

Getting R from P and Q : much faster on Edwards (and others)

Weierstrass faster for pairings

Getting R, f from P and Q : Weierstrass preferable

This work: focus only on the scalar multiplications

Alternative models not faster for pairing, but can they be used to enhance scalar multiplications in pairing groups???

- maybe even bigger speedups for pairing exponentiations
- high dimensional GLV/GLS (\# doublings < \# additions)
- additions is where Weierstrass sucks the most
- e.g. $y^{2}=x^{3}+b$ - Weierstrass add. $\approx 17 \mathbf{m}$, Edwards $\approx 9 \mathbf{m}$!!!
- curve models in pairings very minor improvement at best, but in scalar mulplications big savings possible!

Pairing-based protocols in practice

- pairing computation involves three groups $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$
- often many more standalone operations in any or all of \mathbb{G}_{1}, $\mathbb{G}_{2}, \mathbb{G}_{T}$ than pairing(s) ... can be orders of magnitude more!

Utilizing non-Weierstrass models

- $\mathcal{J}=$ Jacobi quartic $\mathcal{H}=$ Hessian $\mathcal{E}=$ twisted Edwards
- We always have $j=0$ in this work (e.g. \mathcal{H} has $d=0$) Pairing on Scalar mults on iff

- Note $*$: field K has $\# K \equiv 1 \bmod 4$, then $4 \mid E$ is enough, otherwise need point of order 4 for \mathcal{E} (cheers anon. reviewer)

The power of the sextic twist for \mathbb{G}_{2}

- Elements in \mathbb{G}_{2} are points over the extension field $\subset E\left(\mathbb{F}_{p^{k}}\right)$
- k times larger to store
- m times more costly to work over $\mathbb{F}_{p^{k}}$, where $k \ll m \leq k^{2}$!!!
- Can use group isomorphic to \mathbb{G}_{2}, which is on a different curve:

$$
\mathbb{G}_{2}^{\prime} \subseteq E^{\prime}\left(\mathbb{F}_{p^{k / d}}\right)
$$

- E^{\prime} is called the twisted curve
- elements compressed by factor d
- m times faster to work with, where $d \ll m \leq d^{2}$

Sextic twists: $d=6$ is biggest possible for elliptic curves

- only possible if $6 \mid k$ and $j=0$ (i.e. $y^{2}=x^{3}+b$)
- luckily all the best families with $6 \mid k$ have $y^{2}=x^{3}+b$
- $E^{\prime} / \mathbb{F}_{p^{k / d}}: y^{2}=x^{3}+b^{\prime}$, and $\Psi: E^{\prime} \rightarrow E$ to map $\mathbb{G}_{2}^{\prime} \leftrightarrow \mathbb{G}_{2}$

Mapping back and forth to \mathcal{W}

Galbraith-Scott'08

- $\mathbb{G}_{1} \subseteq E\left(\mathbb{F}_{p}\right): y^{2}=x^{3}+b$
- $\phi:(x, y) \mapsto(\zeta x, y), \zeta^{3}=1 \in \mathbb{F}_{p}$
- gives 2-dimensional (GLV) decomposition on \mathbb{G}_{1}
- $\mathbb{G}_{2}^{\prime} \subseteq E^{\prime}\left(\mathbb{F}_{p^{e}}\right): y^{2}=x^{3}+b^{\prime}$
- $\psi=\psi \cdot \pi_{p} \cdot \psi^{-1}$
- gives $\varphi(k)$-dimensional (GLS) decomposition on \mathbb{G}_{2}
- [k]P starts by computing $\phi(P)$ or $\psi^{i}(P)$ for $1 \leq i \leq d-1$
- ideally we'd define (elements of) \mathbb{G}_{1} or \mathbb{G}_{2} on fastest model
- requires endomorphisms to transfer favorably to other model, but only GLV morphism ϕ on $\mathcal{H}: x^{3}+y^{3}+c=0$ does $:$

The general strategy

We apply ϕ or ψ (repeatedly) on \mathcal{W}, map across to \mathcal{J}, \mathcal{H} or \mathcal{E} for the rest of the routine, and come back to \mathcal{W} at the end

Our goal

sec. level	family- k	pairing e	exp. in \mathbb{G}_{1}	exp. in \mathbb{G}_{2}	exp. in \mathbb{G}_{T}
128 -bit	BN-12	$?$	$? ?$	$? ?$	$?$
192-bit	BLS-12	$?$	$? ?$	$? ?$	$?$
256 -bit	BSS-18	$?$	$? ?$	$? ?$	$?$
	?LS-24	$?$	$? ?$	$? ?$	$?$

- to fill in the above table using all of the state of the art techniques for pairings/exponentiations
- give protocol designers a good idea of the ratios

$$
e: \mathbb{G}_{1}: \mathbb{G}_{2}: \mathbb{G}_{T}
$$

- not speed records (no assembly), but ratios should remain \approx same
- find optimal curve models in all ?? cases

$k=12$ Barreto-Naehrig (BN) curves

$$
\begin{aligned}
& p(x)=36 x^{4}+36 x^{3}+24 x^{2}+18 x+1 \\
& n(x)=36 x^{4}+36 x^{3}+18 x^{2}+18 x+1
\end{aligned}
$$

- BN curves are so good: for our purposes, they are too good
- they were meant to be prime - can't even force small cofactor

Prop 1. Let E / \mathbb{F}_{p} be a $B N$ curve with sextic twist $E^{\prime} / \mathbb{F}_{p^{2}}$. The groups $E\left(\mathbb{F}_{p}\right)$ and $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ do not contain points of order 2,3 or 4 .

but for the other popular families . . .

Prop 2. For $p \equiv 3 \bmod 4$, let E / \mathbb{F}_{p} be a $k=12$ BLS curve with sextic twist $E^{\prime} / \mathbb{F}_{p^{2}}$. The group $E\left(\mathbb{F}_{p}\right)$ contains a point of order 3 and can contain a point of order 2, but not 4, while the group $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ does not contain a point of order 2,3 or 4.

Prop 3. Let E / \mathbb{F}_{p} be a $k=18 \mathrm{KSS}$ curve with sextic twist $E^{\prime} / \mathbb{F}_{p^{3}}$. The group $E\left(\mathbb{F}_{p}\right)$ does not contain a point of order 2,3 or 4, while the group $E^{\prime}\left(\mathbb{F}_{p^{3}}\right)$ contains a point of order 3 but does not contain a point of order 2 or 4 .

Prop 4. For $p \equiv 3 \bmod 4$, let E / \mathbb{F}_{p} be a $k=24$ BLS curve and sextic twist $E^{\prime} / \mathbb{F}_{p^{4}}$. The group $E\left(\mathbb{F}_{p}\right)$ can contain points of order 2 or 3 (although not simultaneously), but not 4, while the group $E^{\prime}\left(\mathbb{F}_{p^{4}}\right)$ can contain a point of order 2 , but does not contain a point of order 3 or 4 .

Available models. . .

	\mathbb{G}_{1}		\mathbb{G}_{2}	
family- k	algorithm	models avail.	algorithm	models avail.
BN-12	$2-G L V$	\mathcal{W}	4-GLS	\mathcal{W}
BLS-12	2-GLV	$\mathcal{H}, \mathcal{J}, \mathcal{W}$	4-GLS	\mathcal{W}
KSS-18	2-GLV	\mathcal{W}	6-GLS	\mathcal{H}, \mathcal{W}
BLS-24	$2-G L V$	$\mathcal{H}, \mathcal{J}, \mathcal{W}$	8-GLS	$\mathcal{E}, \mathcal{J}, \mathcal{W}$

model	DBL cost	ADD cost	MIX cost	AFF cost
Weierstrass $-\mathcal{W}$	$\mathbf{7}$	$\mathbf{1 6}$	$\mathbf{1 1}$	$\mathbf{6}$
Jacobi-quartic $-\mathcal{J}$	$\mathbf{9}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$
Hessian $-\mathcal{H}$	$\mathbf{7}$	$\mathbf{1 2}$	$\mathbf{1 0}$	$\mathbf{8}$
twisted Edwards $-\mathcal{E}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$

- operation counts don't/can't assume small constants like ECC

	\mathbb{G}_{1}		\mathbb{G}_{2}	
family- k	algorithm	models avail.	algorithm	models avail.
BN-12	$2-G L V$	\mathcal{W}	4-GLS	\mathcal{W}
BLS-12	2-GLV	Hessian $(1.23 x)$	4-GLS	\mathcal{W}
KSS-18	2-GLV	\mathcal{W}	6-GLS	Hessian $(1.11 \times)$
BLS-24	$2-G L V$	Hessian $(1.19 x)$	8-GLS	twisted Edwards $(1.16 x)$

model	DBL coords	ADD cost	MIX cost	AFF cost
$\mathcal{W} /$ Jost				

- for BLS $k=12$ and BLS $k=24$, define $\mathbb{G}_{1} \subset \mathcal{H} / \mathbb{F}_{p}$ (modify pairing to include initial conversion to \mathcal{W})
- for KSS $k=18$ and BLS $k=24, \mathbb{G}_{2} \subset \mathcal{W} / \mathbb{F}_{p}$, but τ to \mathcal{H}, \mathcal{E} after ψ 's are computed, and τ^{-1} to come back to \mathcal{W} at end

Results

Benchmark results (in millions (M) of clock cycles Intel Core i7-3520M).

sec. level	family- k	pairing e	exp. in \mathbb{G}_{1}	exp. in \mathbb{G}_{2}	exp. in \mathbb{G}_{T}
128-bit	BN-12	7.0	0.9	1.8	3.1
192-bit	BLS-12	47.2	4.4	10.9	17.5
256-bit	KSS-18	63.3	3.5	9.8	15.7
	BLS-24	115.0	5.2	27.6	47.1

- state-of-the-art algorithms (optimal ate, lazy reduction, cyclotomic squarings, etc.)
- not rivalling speed records, but $e: \mathbb{G}_{1}: \mathbb{G}_{2}: \mathbb{G}_{T}$ ratios should stay similar
- should give protocol designers a good idea of ratios
- what's best for 192-bit security (match protocol to family)
- for BN ratios at hardcore level, see:
http://sandia.cs.cinvestav.mx/index.php?n=Site.CPABE
(Zavattoni, Dominguez Perez, Mitsunari, Sanchez, Teruya, Rodriguez-Henriquez)

