
Exponentiating in Pairing Groups

Joppe W. Bos, Craig Costello, and Michael Naehrig

SAC 2013
Vancouver, Canada

August 16, 2013

Exponentiating in Pairing Groups



The pairing explosion

The big (bilinear) bang: [Jou00],[SOK00],[BF01]. . .
. . .

. . .
. . .

PBC universe still expanding: . . . [2013/413],[2013/414] . . .

Secure bilinear maps would have been welcomed by
cryptographers regardless of where they came from

Ben Lynn 2007:

“. . . that pairings come from the realm of algebraic geometry (on
curves) is a happy coincidence”

Why so happy?
Already received a huge amount of optimization
Much more fun than traditional crypto. primitives
Discrete log problem on curves already under the microscope

Exponentiating in pairing groups



ECC and PBC: a symbiotic relationship

→→ Many ECC optimisations quickly transferred to pairings →→
e.g.

avoiding inversions

projective space

fast primes (supersingular curves)

. . .

←← Pairings helped ECC too ←←
e.g.

2008/117: Galbraith-Scott - fast exponentiation on pairing
groups using ψ = φπφ̂

i.e. Frobenius useful over extension fields

2008/194: Galbraith-Lin-Scott (GLS) - fast ECC over
extension fields using ψ

Exponentiating in pairing groups



Non-Weierstrass models for pairings. . . not so much

A very successful ECC optimization: non-Weierstrass curves

e.g. Montgomery, Hessian, Jacobi quartics, Jacobi
intersections, Edwards, twisted Edwards, . . . (see EFD)

Not so successful in PBC . . . why?

P + Q = R , div(f ) = (P) + (Q)− (R)− (O)

In ECC computations we only need points

get R as fast as possible

In pairing computations we need points and functions

get R and f as fast as possible

Exponentiating in pairing groups



Non-Weierstrass faster for ECC

•Q

•
P

•
R

•
•

•

P

Q

R

Getting R from P and Q: much faster on Edwards (and others)

Exponentiating in pairing groups



Weierstrass faster for pairings

f

•Q

•
P

•
R

•

P

Q

R

•

•

Getting R , f from P and Q: Weierstrass preferable

Exponentiating in pairing groups



This work: focus only on the scalar multiplications . . .

Alternative models not faster for pairing, but can they be used to
enhance scalar multiplications in pairing groups???

maybe even bigger speedups for pairing exponentiations

high dimensional GLV/GLS (# doublings < # additions)

additions is where Weierstrass sucks the most

e.g. y2 = x3 + b - Weierstrass add. ≈ 17m, Edwards ≈ 9m !!!

curve models in pairings very minor improvement at best, but
in scalar mulplications big savings possible!

Pairing-based protocols in practice

pairing computation involves three groups e : G1 ×G2 → GT

often many more standalone operations in any or all of G1,
G2, GT than pairing(s) . . . can be orders of magnitude more!

Exponentiating in pairing groups



Utilizing non-Weierstrass models

J = Jacobi quartic H = Hessian E = twisted Edwards

We always have j = 0 in this work (e.g. H has d = 0)

Pairing on Scalar mults on iff

J : y2 = dx4 + 2ax2 + 1

τ−1

ss

2 | #W

W : y2 = x3 + b

τ

33

τ ..

τ

''

H : x3 + y3 + c = 0
τ−1nn 3 | #W

E : ax2 + y2 = 1 + dx2y2

τ−1

gg

4 | #W∗

Note ∗: field K has #K ≡ 1 mod 4, then 4 | E is enough,
otherwise need point of order 4 for E (cheers anon. reviewer)

Exponentiating in pairing groups



The power of the sextic twist for G2

Elements in G2 are points over the extension field ⊂ E (Fpk )
k times larger to store
m times more costly to work over Fpk , where k ≪ m ≤ k2 !!!

Can use group isomorphic to G2, which is on a different curve:

G
′

2 ⊆ E ′(Fpk/d )

E ′ is called the twisted curve
elements compressed by factor d
m times faster to work with, where d ≪ m ≤ d2

Sextic twists: d = 6 is biggest possible for elliptic curves

only possible if 6 | k and j = 0 (i.e. y2 = x3 + b)

luckily all the best families with 6 | k have y2 = x3 + b

E ′/Fpk/d : y2 = x3 + b′, and Ψ: E ′ → E to map G′

2 ↔ G2

Exponentiating in pairing groups



Mapping back and forth to W

Galbraith-Scott’08

G1 ⊆ E (Fp) : y2 = x3 + b

- φ : (x , y) 7→ (ζx , y), ζ3 = 1 ∈ Fp

- gives 2-dimensional (GLV) decomposition on G1

G
′

2 ⊆ E ′(Fpe ) : y2 = x3 + b′

- ψ = Ψ · πp ·Ψ
−1

- gives ϕ(k)-dimensional (GLS) decomposition on G2

[k]P starts by computing φ(P) or ψi (P) for 1 ≤ i ≤ d − 1

ideally we’d define (elements of) G1 or G2 on fastest model

requires endomorphisms to transfer favorably to other model,
but only GLV morphism φ on H : x3 + y3 + c = 0 does /

The general strategy

We apply φ or ψ (repeatedly) on W, map across to J , H or E for
the rest of the routine, and come back to W at the end

Exponentiating in pairing groups



Our goal

sec. level family-k pairing e exp. in G1 exp. in G2 exp. in GT

128-bit BN-12 ? ?? ?? ?

192-bit
BLS-12 ? ?? ?? ?
KSS-18 ? ?? ?? ?

256-bit BLS-24 ? ?? ?? ?

to fill in the above table using all of the state of the art
techniques for pairings/exponentiations

give protocol designers a good idea of the ratios
e : G1 : G2 : GT

not speed records (no assembly), but ratios should remain ≈
same

find optimal curve models in all ?? cases

Exponentiating in pairing groups



k = 12 Barreto-Naehrig (BN) curves

BN curves are so good: for our purposes, they are too good

they were meant to be prime - can’t even force small cofactor

Prop 1. Let E/Fp be a BN curve with sextic twist E ′/Fp2. The
groups E (Fp) and E ′(Fp2) do not contain points of order 2, 3 or 4.

Exponentiating in pairing groups



. . . but for the other popular families . . .

Prop 2. For p ≡ 3 mod 4, let E/Fp be a k = 12 BLS curve with
sextic twist E ′/Fp2 . The group E(Fp) contains a point of order 3
and can contain a point of order 2, but not 4, while the group
E ′(Fp2) does not contain a point of order 2, 3 or 4.

Prop 3. Let E/Fp be a k = 18 KSS curve with sextic twist
E ′/Fp3 . The group E(Fp) does not contain a point of order 2, 3 or
4, while the group E ′(Fp3) contains a point of order 3 but does not
contain a point of order 2 or 4.

Prop 4. For p ≡ 3 mod 4, let E/Fp be a k = 24 BLS curve and
sextic twist E ′/Fp4 . The group E(Fp) can contain points of order
2 or 3 (although not simultaneously), but not 4, while the group
E ′(Fp4) can contain a point of order 2, but does not contain a
point of order 3 or 4.

Exponentiating in pairing groups



Available models. . .

G1 G2

family-k algorithm models avail. algorithm models avail.

BN-12 2-GLV W 4-GLS W
BLS-12 2-GLV H,J ,W 4-GLS W
KSS-18 2-GLV W 6-GLS H,W
BLS-24 2-GLV H,J ,W 8-GLS E ,J ,W

model DBL ADD MIX AFF

cost cost cost cost

Weierstrass - W 7 16 11 6
Jacobi-quartic - J 9 13 12 11

Hessian - H 7 12 10 8
twisted Edwards - E 9 10 9 8

operation counts don’t/can’t assume small constants like ECC

Exponentiating in pairing groups



Best models. . .

G1 G2

family-k algorithm models avail. algorithm models avail.

BN-12 2-GLV W 4-GLS W
BLS-12 2-GLV Hessian (1.23x) 4-GLS W
KSS-18 2-GLV W 6-GLS Hessian (1.11x)
BLS-24 2-GLV Hessian (1.19x) 8-GLS twisted Edwards (1.16x)

model/ DBL ADD MIX AFF

coords cost cost cost cost
W / Jac. 7 16 11 6
J / ext. 9 13 12 11
H / proj. 7 12 10 8
E / ext. 9 10 9 8

for BLS k = 12 and BLS k = 24, define G1 ⊂ H/Fp

(modify pairing to include initial conversion to W)

for KSS k = 18 and BLS k = 24, G2 ⊂ W/Fp, but τ to H, E
after ψ’s are computed, and τ−1 to come back to W at end

Exponentiating in pairing groups



Results

Benchmark results (in millions (M) of clock cycles Intel Core i7-3520M).

sec. level family-k pairing e exp. in G1 exp. in G2 exp. in GT

128-bit BN-12 7.0 0.9 1.8 3.1

192-bit
BLS-12 47.2 4.4 10.9 17.5
KSS-18 63.3 3.5 9.8 15.7

256-bit BLS-24 115.0 5.2 27.6 47.1

state-of-the-art algorithms (optimal ate, lazy reduction,
cyclotomic squarings, etc.)
not rivalling speed records, but e : G1 : G2 : GT ratios should
stay similar
should give protocol designers a good idea of ratios
what’s best for 192-bit security (match protocol to family)
for BN ratios at hardcore level, see:
http://sandia.cs.cinvestav.mx/index.php?n=Site.CPABE

(Zavattoni, Dominguez Perez, Mitsunari, Sanchez, Teruya, Rodriguez-Henriquez)

Exponentiating in pairing groups


