Faster compact Diffie-Hellman

Craig Costello
Work in progress with Huseyin Hisil and Benjamin Smith

June 19, 2013

An elliptic curve and its (quadratic) twist

$$
\begin{gathered}
\text { Suppose } \mathbb{F}_{p}=\mathbb{F}_{43}(-1 \text { is non square }) \\
E: y^{2}=x^{3}-3 x-1 \quad E^{\prime}:-y^{2}=x^{3}-3 x-1
\end{gathered}
$$

An elliptic curve and its (quadratic) twist

Suppose $\mathbb{F}_{p}=\mathbb{F}_{43}(-1$ is non square $)$
$E: y^{2}=x^{3}-3 x-1 \quad E^{\prime}:-y^{2}=x^{3}-3 x-1$
$(1,13),(1,30)$

$$
\begin{array}{cc}
x=0 ? & (0,1),(0,-1) \\
x^{3}-3 x-1=-1 \times & \\
x=1 ? \\
x^{3}-3 x-1=-3 \\
x=2 ? & \\
x^{3}-3 x-1=1 \\
x=3 ? & \\
x^{3}-3 x-1=17 \\
x=4 ? & \\
x^{3}-3 x-1=8 \times & (4,15),(4,28) \\
\vdots & \vdots \\
x=42 ? & \\
x^{3}-3 x-1=1
\end{array}
$$

An elliptic curve and its (quadratic) twist

$$
\begin{aligned}
& \text { Suppose } \mathbb{F}_{p}=\mathbb{F}_{43}(-1 \text { is non square }) \\
& E: y^{2}=x^{3}-3 x-1 \\
& E^{\prime}:-y^{2}=x^{3}-3 x-1 \\
& x=0 \text { ? } \\
& x^{3}-3 x-1=-1 \times \quad(0,1),(0,-1) \\
& (1,13),(1,30) \\
& x=1 \text { ? } \\
& x^{3}-3 x-1=-3 \checkmark \\
& x=2 \text { ? } \\
& (2,1),(2,42) \\
& x^{3}-3 x-1=1 \checkmark \\
& x=3 \text { ? } \\
& x^{3}-3 x-1=17 \\
& x=4 \text { ? } \\
& x^{3}-3 x-1=8 \times \\
& (4,15),(4,28) \\
& (42,1),(42,42) \\
& x=42 \text { ? } \\
& x^{3}-3 x-1=1 \checkmark \\
& \# E=43 \quad \# E^{\prime}=45 \\
& =3^{2} 5 \rightarrow \text { © }
\end{aligned}
$$

Montgomery ladder for elliptic curves

- Can compute $P+Q$ from $\{P, Q, P-Q\}$ without y-coords
- Key: to compute $[k] P$, have $[n+1] P$ and $[n] P$ at each stage

same difference \rightarrow same result

different difference \rightarrow different result

x-only needs twist-security

- Consider NISTp224: $p=2^{224}-2^{96}+1$

$$
E / \mathbb{F}_{p}: y^{2}=x^{3}-3 x+b
$$

$$
\text { with } b=189582 \ldots 672564
$$

- $\# E=2695994666715063 \ldots 21682722368061$ (224-bit prime)
- What about the order of the quadratic twist of NISTp224?
- $\# E^{\prime}=3^{2} \cdot 11 \cdot 47 \cdot 3015283 \cdot 40375823 \cdot 267983539294927$. 177594041488131583478651368420021457 (118-bit prime)
- Not a problem if using both coordinates, just check $(x, y) \in E$
- If only dealing with x 's, honest parties all work on $E \oplus \ldots$... but attackers could take x^{\prime} s on E^{\prime} and solve DLP there $)^{(2)}$
- Solution: Use twist-secure curves: $\# E$ and $\# E^{\prime}$ both strong

Combining x-only with endomorphisms???

- Using Montgomery's fast/compact x-only arithmetic with endomorphisms has not been done
- Reason 1: GLV curves are special: twist-security (especially over best prime/s) is very unlikely
- e.g. $y^{2}=x^{3}+b$ - at most 6 isomorphism classes / group orders over any prime
- e.g. $y^{2}=x^{3}+a x$ - at most 4 ...
- Reason 2: GLS curves are much more plentiful, BUT (e.g. over $\mathbb{F}_{p^{2}}$) necessarily have insecure E^{\prime}

Combining x-only with endomorphisms???

- Using Montgomery's fast/compact x-only arithmetic with endomorphisms has not been done
- Reason 1: GLV curves are special: twist-security (especially over best prime/s) is very unlikely
- e.g. $y^{2}=x^{3}+b$ - at most 6 isomorphism classes / group orders over any prime
- e.g. $y^{2}=x^{3}+a x$ - at most $4 \ldots$
- Reason 2: GLS curves are much more plentiful, BUT (e.g. over $\mathbb{F}_{p^{2}}$) necessarily have insecure E^{\prime}
- NEWSFLASH: Smith'2013/312 gives twist-secure construction with many curves over any particular field
- \mathbb{Q}-curves: curves over quadratic number field with isogeny to their Galois conjugate
- $\approx p$ pairs of $\left(E, E^{\prime}\right)$ over $\mathbb{F}_{p^{2}}$
- 2-dimensional decomposition possible
- more news: he's coming in August, so details in his talk

2GLV using $\phi .$. having (x, y) vs. having x-only

Reason 3:

- To compute $[k] P$ from P

$$
k=[1,0,0,1,1,1,0,1,0, \ldots, 1,1,0,0,0,0,1,0,1] \text { (256 bits) }
$$

- Suppose $\phi(P)=Q$, so $[k] P=\left[k_{0}\right] P+\left[k_{1}\right] Q$

$$
\begin{aligned}
& k_{0}=[0,1,0,0, \ldots 0,1,0,1] \text { (128 bits) } \\
& k_{1}=[1,1,1,0, \ldots 1,1,0,0] \text { (128 bits) }
\end{aligned}
$$

- Usual approach fine when we have (x, y) and can perform add P and Q immediately or add whatever/whenever we like
- BUT: can't add (in Montgomery land) with x-only
- Can't move anywhere with just P and Q

Can't move anywhere with just P and $Q . .$.

Need $Q-P$ or $Q+P$ to move quickly to $[k] P$

Computing $(\phi-1)(P)$ and $(\phi+1)(P)$

- Smith: Hasegawa \mathbb{Q}-curves of degree 2 over $\mathbb{F}_{p^{2}}$
- $\phi(x, y)=\left(x^{\prime}, y^{\prime}\right)$ on the Weierstrass model, given as

$$
\left(x^{\prime}, y^{\prime}\right)=\left(\frac{-x^{p}}{2}-\frac{c^{p}}{x^{p}-4} \quad, \quad \frac{y^{p}}{\sqrt{-2}}\left(\frac{-1}{2}+\frac{c^{p}}{\left(x^{p}-4\right)^{2}}\right)\right)
$$

for some curve constant c

- Write x-coordinate, x^{+}, of $\phi(P)+P$ explicitly

$$
\begin{aligned}
x^{+}=\lambda^{2}-x-x^{\prime} & =\left(\frac{y^{\prime}-y}{x^{\prime}-x}\right)^{2}-x-x^{\prime} \\
& =\left(\frac{y^{p} \cdot f(x)-y}{x^{\prime}-x}\right)^{2}-x-x^{\prime} \\
& =\left(\frac{\left(y^{2}\right)^{p}-2 f(x) y^{p+1}+y^{2}}{\left(x^{\prime}-x\right)^{2}}\right)-x-x^{\prime}
\end{aligned}
$$

- the y^{2} terms go away, it's just y^{p+1} that is left \ldots

Computing $(\phi-1)(P)$ and $(\phi+1)(P)$

- How to deal with $y^{p+1}: p$ is odd, so

$$
\begin{aligned}
y^{p+1} & =\left(y^{2}\right)^{(p+1) / 2} \\
& =\left(x^{3}+a x+b\right)^{(p+1) / 2}
\end{aligned}
$$

- Still a fairly undesirable exponentiation in general, BUT ...

Computing $(\phi-1)(P)$ and $(\phi+1)(P)$

- How to deal with $y^{p+1}: p$ is odd, so

$$
\begin{aligned}
y^{p+1} & =\left(y^{2}\right)^{(p+1) / 2} \\
& =\left(x^{3}+a x+b\right)^{(p+1) / 2}
\end{aligned}
$$

- Still a fairly undesirable exponentiation in general, BUT ...
- Let's target 128 -bit security, and take $E / \mathbb{F}_{p^{2}}$ with

$$
p=2^{127}-1
$$

- Exponent is now 2^{126}, i.e. requires 126 repeated squarings
- Squarings much cheaper than multiplications in $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(i)$
- Translation to Montgomery form is immediate
... maybe not so bad after all ...

Two dimensional differential addition chains. . .

- To compute $[m] P+[n] Q$ 'differentially', Bernstein proposed fast constant-time chain

- $1 \mathrm{DBL}+2$ ADD per bit of $\log _{2}(\max (m, n))$

How fast are we talking?

- Compare to Bernstein's curve25519 (best x-only):

255 montDBL +255 montADD

- \mathbb{Q}-curve over $\mathbb{F}_{p^{2}}$ with $p=2^{127}-1$:
ϕ cost +127 montDBL +254 montADD
- ϕ costs a little more than 126 squarings, but we save as many montDBL's (2 mults +2 squarings each)
- bonus: we work over Mersenne quadratic extension, fast modular (lazy) reduction
... timings (and much more) to come ...

Some questions to be answered

(1) can non-constant time addition chains (with half as many ops per bit - e.g. Peter's PRAC) rival the non-resistant records?
(2) can we avoid decomposition and simply start with k_{0} and k_{1} ?
(3) is it possible to do better in computing $\phi \pm 1$ explicitly?
(9) how to make things truly constant-time?
(3) what more can we do when we know the point (coordinate) x_{P} in advance (i.e. fixed base scenario)?
(($\phi \pm 1$ maps on the genus 2 Kummers: not giving up yet $\cdot \ldots$

