
Faster compact Diffie-Hellman

Craig Costello

Work in progress with Huseyin Hisil and Benjamin Smith

June 19, 2013

Faster compact Diffie-Hellman



An elliptic curve and its (quadratic) twist

Suppose Fp = F43 (−1 is non square)

E : y 2 = x3 − 3x − 1 E ′ : − y 2 = x3 − 3x − 1

Faster compact Diffie-Hellman



An elliptic curve and its (quadratic) twist

Suppose Fp = F43 (−1 is non square)

E : y 2 = x3 − 3x − 1 E ′ : − y 2 = x3 − 3x − 1

(1, 13), (1, 30)

(2, 1), (2, 42)

(3, 19), (3, 24)

...

(42, 1), (42, 42)

x = 0?
x3 − 3x − 1 = −1 ✕

x = 1?
x3 − 3x − 1 = −3 X

x = 2?
x3 − 3x − 1 = 1 X

x = 3?
x3 − 3x − 1 = 17 X

x = 4?
x3 − 3x − 1 = 8 ✕

...
x = 42?

x3 − 3x − 1 = 1 X

(0, 1), (0,−1)

(4, 15), (4, 28)
..
.

Faster compact Diffie-Hellman



An elliptic curve and its (quadratic) twist

Suppose Fp = F43 (−1 is non square)

E : y 2 = x3 − 3x − 1 E ′ : − y 2 = x3 − 3x − 1

(1, 13), (1, 30)

(2, 1), (2, 42)

(3, 19), (3, 24)

...

(42, 1), (42, 42)

x = 0?
x3 − 3x − 1 = −1 ✕

x = 1?
x3 − 3x − 1 = −3 X

x = 2?
x3 − 3x − 1 = 1 X

x = 3?
x3 − 3x − 1 = 17 X

x = 4?
x3 − 3x − 1 = 8 ✕

...
x = 42?

x3 − 3x − 1 = 1 X

(0, 1), (0,−1)

(4, 15), (4, 28)
..
.

#E = 43
= prime → ,

#E ′ = 45
= 325 → /

Faster compact Diffie-Hellman



Montgomery ladder for elliptic curves . . .

Can compute P + Q from {P ,Q,P − Q} without y -coords

Key: to compute [k]P , have [n + 1]P and [n]P at each stage

ℓ

•Q
•
P

•

•
R

•
•

•

•

•
•

•

•

vs. •• •• ••
••

same difference → same result different difference → different result

Faster compact Diffie-Hellman



x-only needs twist-security . . .

Consider NISTp224: p = 2224 − 296 + 1

E/Fp : y2 = x3 − 3x + b

with b = 189582 . . . 672564

#E = 2695994666715063 . . . 21682722368061 (224-bit prime)

What about the order of the quadratic twist of NISTp224?

#E ′ = 32 · 11 · 47 · 3015283 · 40375823 · 267983539294927 ·
177594041488131583478651368420021457 (118-bit prime)

Not a problem if using both coordinates, just check (x , y) ∈ E

If only dealing with x ’s, honest parties all work on E ,. . .
. . . but attackers could take x ’s on E ′ and solve DLP there /

Solution: Use twist-secure curves: #E and #E ′ both strong

Faster compact Diffie-Hellman



Combining x-only with endomorphisms???

Using Montgomery’s fast/compact x-only arithmetic with
endomorphisms has not been done

Reason 1: GLV curves are special: twist-security (especially
over best prime/s) is very unlikely

e.g. y2 = x3 + b - at most 6 isomorphism classes / group
orders over any prime
e.g. y2 = x3 + ax - at most 4. . .

Reason 2: GLS curves are much more plentiful, BUT (e.g.
over Fp2) necessarily have insecure E ′

Faster compact Diffie-Hellman



Combining x-only with endomorphisms???

Using Montgomery’s fast/compact x-only arithmetic with
endomorphisms has not been done

Reason 1: GLV curves are special: twist-security (especially
over best prime/s) is very unlikely

e.g. y2 = x3 + b - at most 6 isomorphism classes / group
orders over any prime
e.g. y2 = x3 + ax - at most 4. . .

Reason 2: GLS curves are much more plentiful, BUT (e.g.
over Fp2) necessarily have insecure E ′

NEWSFLASH: Smith’2013/312 gives twist-secure
construction with many curves over any particular field

Q-curves: curves over quadratic number field with isogeny to
their Galois conjugate
≈ p pairs of (E ,E ′) over Fp2

2-dimensional decomposition possible
more news: he’s coming in August, so details in his talk

Faster compact Diffie-Hellman



2GLV using φ. . . having (x , y) vs. having x-only

Reason 3:

To compute [k]P from P

k = [1, 0, 0, 1, 1, 1, 0, 1, 0, . . . , 1, 1, 0, 0, 0, 0, 1, 0, 1] (256 bits)

Suppose φ(P) = Q, so [k]P = [k0]P + [k1]Q

k0 = [0, 1, 0, 0, . . . 0, 1, 0, 1] (128 bits)
k1 = [1, 1, 1, 0, . . . 1, 1, 0, 0] (128 bits)

Usual approach fine when we have (x , y) and can perform add
P and Q immediately or add whatever/whenever we like

BUT: can’t add (in Montgomery land) with x-only

Can’t move anywhere with just P and Q

Faster compact Diffie-Hellman



Can’t move anywhere with just P and Q. . .

Faster compact Diffie-Hellman



Need Q − P or Q + P to move quickly to [k ]P

Faster compact Diffie-Hellman



Computing (φ − 1)(P) and (φ + 1)(P)

Smith: Hasegawa Q-curves of degree 2 over Fp2

φ(x , y) = (x ′, y ′) on the Weierstrass model, given as

(x ′, y ′) =
(

−xp

2
− cp

xp−4
, yp

√
−2

(

−1
2

+ cp

(xp−4)2

))

for some curve constant c

Write x-coordinate, x+, of φ(P) + P explicitly

x+ = λ2 − x − x ′ =

(

y ′ − y

x ′ − x

)2

− x − x ′

=

(

yp · f (x) − y

x ′ − x

)2

− x − x ′

=

(

(y2)p − 2f (x)yp+1 + y2

(x ′ − x)2

)

− x − x ′

the y2 terms go away, it’s just yp+1 that is left . . .

Faster compact Diffie-Hellman



Computing (φ − 1)(P) and (φ + 1)(P)

How to deal with yp+1: p is odd, so

yp+1 = (y2)(p+1)/2

= (x3 + ax + b)(p+1)/2

Still a fairly undesirable exponentiation in general, BUT . . .

Faster compact Diffie-Hellman



Computing (φ − 1)(P) and (φ + 1)(P)

How to deal with yp+1: p is odd, so

yp+1 = (y2)(p+1)/2

= (x3 + ax + b)(p+1)/2

Still a fairly undesirable exponentiation in general, BUT . . .

Let’s target 128-bit security, and take E/Fp2 with

p = 2127 − 1

Exponent is now 2126, i.e. requires 126 repeated squarings

Squarings much cheaper than multiplications in Fp2 = Fp(i)

Translation to Montgomery form is immediate

. . .maybe not so bad after all . . .

Faster compact Diffie-Hellman



Two dimensional differential addition chains. . .

To compute [m]P + [n]Q ‘differentially’, Bernstein proposed
fast constant-time chain

1 DBL + 2 ADD per bit of log2 (max(m, n))

Faster compact Diffie-Hellman



How fast are we talking?

Compare to Bernstein’s curve25519 (best x-only):

255 montDBL + 255 montADD

Q-curve over Fp2 with p = 2127 − 1:

φ cost + 127 montDBL + 254 montADD

φ costs a little more than 126 squarings, but we save as many
montDBL’s (2 mults + 2 squarings each)

bonus: we work over Mersenne quadratic extension, fast
modular (lazy) reduction

. . . timings (and much more) to come . . .

Faster compact Diffie-Hellman



Some questions to be answered . . .

1 can non-constant time addition chains (with half as many ops
per bit - e.g. Peter’s PRAC) rival the non-resistant records?

2 can we avoid decomposition and simply start with k0 and k1?

3 is it possible to do better in computing φ ± 1 explicitly?

4 how to make things truly constant-time?

5 what more can we do when we know the point (coordinate)
xP in advance (i.e. fixed base scenario)?

6 φ ± 1 maps on the genus 2 Kummers: not giving up yet /. . .

Faster compact Diffie-Hellman


