#### Fast Cryptography in Genus 2

Joppe W. Bos, Craig Costello, Huseyin Hisil and Kristin Lauter

EUROCRYPT 2013 Athens, Greece







May 27, 2013

Recall that curves are much better than  $\mathbb{F}_{q}^{*}$ 



 $\mathbb{F}_q^*$  (today qpprox 3072 bits)



 $E/\mathbb{F}_q$  (today  $q \approx 256$  bits)



 $\operatorname{Jac}(\mathit{C}_g/\mathbb{F}_q)$  (today, g= 2, qpprox 128 bits)

Why fields of half the size?



Both curves have around q points over  $\mathbb{F}_q$ 

#### Why fields of half the size?



#### Can't do "chord-and-tangent" in genus 2

Why fields of half the size?



Roughly speaking: group elements are pairs of points  $\#E(\mathbb{F}_q) \approx q$  vs.  $\#\operatorname{Jac}(C)(\mathbb{F}_q) \approx q^2$ 

• Finding cryptographically suitable curves

Arithmetic of general genus 2 curves

GLV decompositions

• The Kummer surface

Results / Open Question

# 1. Finding cryptographically suitable genus 2 curves

#### Finding genus 2 curves

#### **O Point Counting (Schoof-Pila)**

- $\bullet~{\rm Until}<5$  years ago, 128-bit security still far out of reach
- Gaudry-Schost'12 state-of-the-art
- 1,000 CPU hours to find group order of any curve
- 1,000,000+ CPU hours to find Kummer (used in this work)

#### **2** Real Multiplication (RM)

- Gaudry-Kohel-Smith'12
- Accelerated Schoof-Pila for genus 2 curves with efficiently computable RM (endomorphism)
- Finds 2-GLV curves

#### **Orgonal States Complex Multiplication (CM)**

- Very practical for low-discriminant CM fields
- Fix a prime *p*, fix quartic CM field  $K = \mathbb{Q}[x]/(x^4 + Ax^2 + B)$
- If p splits (nicely) in  $\mathcal{O}_K$ , can write down  $\# \operatorname{Jac}(C/\mathbb{F}_p)$
- Input  $\mathbb{F}_p$ -roots of Igusa Class Polynomials into Mestre to get C
- Igusas are the hard part (although Kohel/Thomé databases)

#### Finding genus 2 curves with CM over fast primes

#### Picky with prime $p \rightarrow$ flexible with CM field

- Mersenne prime  $p = 2^{127} 1$  performs fastest at this level
- Search many CM fields to find good curves
- Can't hope to find secure curve for particular family (CM field)

#### Picky with CM field $\rightarrow$ flexible with prime *p*

- Sometimes need particular CM field (e.g. if you want endomorphisms)
- Montgomery-friendly primes:  $p = 2^{64} \cdot (2^{63} c) + 1$
- NIST-friendly primes:  $p = 2^{128} c$
- Both take  $c \ll 2^{63}$  (more than enough flexibility)

## 2. Arithmetic of general genus 2 curves

#### Mumford coordinates



sextic = 
$$(x - x_{P_1})(x - x_{P_2})(x - x_{Q_1})(x - x_{Q_2})(x - x_{R_1})(x - x_{R_2}) = 0$$
  
 $\rightarrow$  quadratic =  $(x - x_{R_1})(x - x_{R_2}) = 0$ 

Computing with actual points means root finding in  $\mathbb{F}_q$ 

#### Mumford coordinates



sextic = 
$$(x^2 + \alpha_P x + \beta_P)(x^2 + \alpha_Q x + \beta_Q)(x^2 + \alpha_R x + \beta_R) = 0$$
  
 $\rightarrow$  quadratic =  $(x^2 + \alpha_R x + \beta_R) = 0$ 

#### Mumford coordinates avoid root finding

#### The cost of genus 2 group operations

 Based on C-Lauter'11, we optimized genus 2 formulas for 128-bit fields

| op.   | Divisor doubling                       | Divisor addition                       | Divisor mix add.                       |
|-------|----------------------------------------|----------------------------------------|----------------------------------------|
| g = 2 | 34 <b>M</b> + 6 <b>S</b> + 34 <i>a</i> | 44 <b>M</b> + 4 <b>S</b> + 29 <i>a</i> | 37 <b>M</b> + 5 <b>S</b> + 29 <i>a</i> |

 $\mathbb{F}_p$  operations for common divisor operations in genus 2

| implementation | prime <i>p</i>  | cycles/scalar mult. |  |
|----------------|-----------------|---------------------|--|
| generic128     | $2^{128} - 173$ | 364,000             |  |
| generic127     | $2^{127} - 1$   | 248,000             |  |

Timings on Intel Core i7-3520M (Ivy Bridge) at 2893.484 MHz

### 3. GLV scalar decomposition

#### 4-GLV: e.g. Buhler-Koblitz curves

• Let 
$$p = 2^{64} \cdot (2^{63} - 27443) + 1$$
, and let  
 $C/\mathbb{F}_p: y^2 = x^5 + 17$ 

- # Jac = 28948022309328876595115567994214488524823328209723866335483563634241778912751
- Notice that  $(x, y) \in C \implies (\xi_5 x, y) \in C$ , where  $\xi_5^5 = 1$ ,  $\implies$  "easy to compute" map  $\phi$  on  $\operatorname{Jac}(C)$
- For  $D \in \text{Jac}(C)$ , we get the scalar multiples  $\phi(D) = [\lambda]D$ ,  $\phi^2(D) = [\lambda^2]D$  and  $\phi^3(D) = [\lambda^3]D$  for free
- [k]D as  $[k]D = [k_0]D + [k_1]\phi(D) + [k_2]\phi^2(D) + [k_3]\phi^3(D)$
- eg. k = 23477399837278936923599493713286470955314785798347519197199578120259089016680 $(k_0, k_1, k_2, k_3) = (-6344646642321980551, -3170471730617986668, -4387949940648063094, 3721725683392112311)$

#### 4-GLV: e.g. Buhler-Koblitz curves

• k was 254 bits, but instead we multiexponentiate by

$$D \qquad k_0 = [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, \dots] \qquad (63 \ bits)$$

$$\phi(D) \qquad k_1 = [0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \dots] \qquad (63 \ bits)$$

$$\phi^2(D)$$
  $k_2 = [0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, \dots]$  (63 bits)

$$\phi^{3}(D)$$
  $k_{3} = [0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, \dots]$  (63 bits)

• 254 DBL + 127 ADD  $\rightarrow$  63 DBL + 80 ADD (Straus-Shamir)

| implementation | prime <i>p</i>                      | cycles/scalar mult. |  |
|----------------|-------------------------------------|---------------------|--|
| generic128     | $2^{128} - 173$                     | 364,000             |  |
| 4GLV-BK        | 2 <sup>128</sup> — 24935            | 164,000             |  |
| 4GLV-BK        | $2^{64} \cdot (2^{63} - 27443) + 1$ | 156,000             |  |

Timings on Intel Core i7-3520M (Ivy Bridge) at 2893.484 MHz

## 4. The Kummer surface

#### Montgomery ladder for elliptic curves ....

Can compute P + Q from {P, Q, P - Q} without y-coords
Key: to compute [k]P, have [n + 1]P and [n]P at each stage



#### Genus 2 analogue: the Kummer surface $\mathcal{K}$

- Montgomery identified  $P = (P_x, P_y)$  and  $-P = (P_x, -P_y)$
- Smart-Siksek'99: g = 2 analogue. . . Jac(C)  $\rightarrow \mathcal{K}$  is 2-to-1



- Gaudry'07: much better Kummer surface from theta theory
- The "Squares-only" Kummer is best (Cosset'10)

 $\mathcal{K} : Exyzt = ((x^2 + y^2 + z^2 + t^2) - F(xt + yz) - G(xz + yt) - H(xy + zt))^2$ 

- No longer a group, but enough to do secure crypto (e.g. DH)
- Each ladder step needs  $DBL_{\mathcal{K}}$  + "ADD"  $_{\mathcal{K}}$  only 25  $\mathbb{F}_p$  muls !!!
- $\bullet~\mbox{Compare}$  to non-Kummer DBL  $\approx 40$  and ADD  $\approx 50$

#### The Kummer surface

| implementation | prime <i>p</i>                      | cycles/scalar mult. |  |
|----------------|-------------------------------------|---------------------|--|
| generic128     | $2^{128} - 173$                     | 364,000             |  |
| generic127     | $2^{127} - 1$                       | 248,000             |  |
| 4GLV-BK        | 2 <sup>128</sup> - 24935            | 164,000             |  |
| 4GLV-BK        | $2^{64} \cdot (2^{63} - 27443) + 1$ | 156,000             |  |
| Kummer         | 2 <sup>128</sup> – 237              | 166,000             |  |
| Kummer         | $2^{127} - 1$                       | 117,000             |  |

Timings on Intel Core i7-3520M (Ivy Bridge) at 2893.484 MHz

• See eBACS for more performance numbers ....

http://bench.cr.yp.to

## 5. Results / Open Question

#### Results: genus 1 and 2 implementations over prime fields

| who        | primitive     | g | constant     | 10 <sup>3</sup> |
|------------|---------------|---|--------------|-----------------|
|            |               |   | time         | cycles          |
| OpenSSL    | NISTp256      | 1 | ?            | 658             |
| Hisil      | ecfp256e      | 1 | Х            | 227             |
| Bernstein  | curve25519    | 1 | $\checkmark$ | 182             |
| Longa-Sica | GLV-2         | 1 | Х            | 145             |
|            | generic-p1271 | 2 | Х            | 248             |
| this work  | GLV-4-BK-Mont | 2 | Х            | 156             |
|            | Kummer-p1271  | 2 | $\checkmark$ | 117             |

- Kummer offers fastest Diffie-Hellman over prime fields
- Bonus: Kummer also runs in constant-time
- Kummer chameleons: curves which can be Kummer or 4GLV, depending on scenario (see full version)

Using endomorphisms (GLV) gives big speedups:

```
364,000 \rightarrow 156,000
```

• Using Kummer surface gives big speedups:

 $248,000\,\to\,117,000$ 

- Question: can we do GLV on the Kummer surface?
  - $\bullet\,$  Gaudry also noticed that certain Kummers can have an endomorphism  $\phi\,$
  - We found some cryptographically sized examples
  - But GLV on pseudo-groups is harder (several caveats)
  - Nevertheless, big speedups possible
  - See the full version eprint 2012/670