Fast Cryptography in Genus 2

Joppe W. Bos, Craig Costello, Huseyin Hisil and Kristin Lauter

EUROCRYPT 2013

Athens, Greece

Microsoft ${ }^{\circ}$ Research

May 27, 2013

Recall that curves are much better than \mathbb{F}_{q}^{*}

$$
\mathbb{F}_{q}^{*} \text { (today } q \approx 3072 \text { bits) }
$$

E / \mathbb{F}_{q} (today $q \approx 256$ bits)

$\operatorname{Jac}\left(C_{g} / \mathbb{F}_{q}\right)$ (today, $g=2, q \approx 128$ bits)

Why fields of half the size?

$$
y^{2}=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

$$
y^{2}=x^{5}+b_{4} x^{4}+\cdots+b_{0}
$$

Both curves have around q points over \mathbb{F}_{q}

Why fields of half the size?

$y^{2}=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$

$y^{2}=x^{5}+b_{4} x^{4}+\cdots+b_{0}$

Can't do "chord-and-tangent" in genus 2

Why fields of half the size?

$y^{2}=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$

$$
y^{2}=x^{5}+b_{4} x^{4}+\cdots+b_{0}
$$

Roughly speaking: group elements are pairs of points

$$
\# E\left(\mathbb{F}_{q}\right) \approx q \quad \text { vs. } \quad \# \operatorname{Jac}(C)\left(\mathbb{F}_{q}\right) \approx q^{2}
$$

This work/talk

(1) Finding cryptographically suitable curves
(2) Arithmetic of general genus 2 curves

- GLV decompositions
© The Kummer surface
- Results / Open Question

1. Finding cryptographically suitable genus 2 curves

Finding genus 2 curves

(1) Point Counting (Schoof-Pila)

- Until <5 years ago, 128-bit security still far out of reach
- Gaudry-Schost'12 state-of-the-art
- 1,000 CPU hours to find group order of any curve
- 1,000,000+ CPU hours to find Kummer (used in this work)
(2) Real Multiplication (RM)
- Gaudry-Kohel-Smith'12
- Accelerated Schoof-Pila for genus 2 curves with efficiently computable RM (endomorphism)
- Finds 2-GLV curves
(3) Complex Multiplication (CM)
- Very practical for low-discriminant CM fields
- Fix a prime p, fix quartic CM field $K=\mathbb{Q}[x] /\left(x^{4}+A x^{2}+B\right)$
- If p splits (nicely) in \mathcal{O}_{K}, can write down $\# \operatorname{Jac}\left(C / \mathbb{F}_{p}\right)$
- Input \mathbb{F}_{p}-roots of Igusa Class Polynomials into Mestre to get C
- Igusas are the hard part (although Kohel/Thomé databases)

Finding genus 2 curves with CM over fast primes

Picky with prime $p \rightarrow$ flexible with CM field

- Mersenne prime $p=2^{127}-1$ performs fastest at this level
- Search many CM fields to find good curves
- Can't hope to find secure curve for particular family (CM field)

Picky with CM field \rightarrow flexible with prime p

- Sometimes need particular CM field (e.g. if you want endomorphisms)
- Montgomery-friendly primes: $p=2^{64} \cdot\left(2^{63}-c\right)+1$
- NIST-friendly primes: $p=2^{128}-c$
- Both take $c \ll 2^{63}$ (more than enough flexibility)

2. Arithmetic of general genus 2 curves

Mumford coordinates

$$
\begin{gathered}
\text { sextic }=\left(x-x_{P_{1}}\right)\left(x-x_{P_{2}}\right)\left(x-x_{Q_{1}}\right)\left(x-x_{Q_{2}}\right)\left(x-x_{R_{1}}\right)\left(x-x_{R_{2}}\right)=0 \\
\rightarrow \text { quadratic }=\left(x-x_{R_{1}}\right)\left(x-x_{R_{2}}\right)=0
\end{gathered}
$$

Computing with actual points means root finding in \mathbb{F}_{q}

Mumford coordinates

$$
\begin{aligned}
\text { sextic }=\left(x^{2}\right. & \left.+\alpha_{P} x+\beta_{P}\right)\left(x^{2}+\alpha_{Q} x+\beta_{Q}\right)\left(x^{2}+\alpha_{R} x+\beta_{R}\right)=0 \\
& \rightarrow \text { quadratic }=\left(x^{2}+\alpha_{R} x+\beta_{R}\right)=0
\end{aligned}
$$

Mumford coordinates avoid root finding

The cost of genus 2 group operations

- Based on C-Lauter'11, we optimized genus 2 formulas for 128-bit fields

op.	Divisor doubling	Divisor addition	Divisor mix add.
$g=2$	$34 \mathbf{M}+6 \mathbf{S}+34 a$	$44 \mathbf{M}+4 \mathbf{S}+29 a$	$37 \mathbf{M}+5 \mathbf{S}+29 a$

\mathbb{F}_{p} operations for common divisor operations in genus 2

implementation	prime p	cycles/scalar mult.
generic128	$2^{128}-173$	364,000
generic127	$2^{127}-1$	248,000

Timings on Intel Core i7-3520M (Ivy Bridge) at 2893.484 MHz
3. GLV scalar decomposition

4-GLV: e.g. Buhler-Koblitz curves

- Let $p=2^{64} \cdot\left(2^{63}-27443\right)+1$, and let

$$
C / \mathbb{F}_{p}: y^{2}=x^{5}+17
$$

- \#Jac $=2894802230938876595115567942144885248333820972386635583563634241789912751$
- Notice that $(x, y) \in C \Longrightarrow\left(\xi_{5} x, y\right) \in C$, where $\xi_{5}^{5}=1$, \Longrightarrow "easy to compute" map ϕ on $\operatorname{Jac}(C)$
- For $D \in \operatorname{Jac}(C)$, we get the scalar multiples $\phi(D)=[\lambda] D$, $\phi^{2}(D)=\left[\lambda^{2}\right] D$ and $\phi^{3}(D)=\left[\lambda^{3}\right] D$ for free
- $[k] D$ as $[k] D=\left[k_{0}\right] D+\left[k_{1}\right] \phi(D)+\left[k_{2}\right] \phi^{2}(D)+\left[k_{3}\right] \phi^{3}(D)$
- eg. $k={ }^{23477399837278936923599493713286470955314785798347519197199578120259089016680}$ $\left(k_{0}, k_{1}, k_{2}, k_{3}\right)=$
(-6344646642321980551, -3170471730617986668, -4387949940648063094, 3721725683392112311)

4-GLV: e.g. Buhler-Koblitz curves

- k was 254 bits, but instead we multiexponentiate by

$$
\begin{array}{rll}
D & k_{0}=[1,0,1,1,0,0,0,0,0,0,0,1, \ldots] & (63 \text { bits }) \\
\phi(D) & k_{1}=[0,1,0,1,0,1,1,1,1,1,1,1, \ldots] & (63 \text { bits }) \\
\phi^{2}(D) & k_{2}=[0,1,1,1,1,0,0,1,1,1,0,0, \ldots] & (63 \text { bits }) \\
\phi^{3}(D) & k_{3}=[0,1,1,0,0,1,1,1,0,1,0,0, \ldots] & (63 \text { bits })
\end{array}
$$

- 254 DBL +127 ADD $\rightarrow 63$ DBL +80 ADD (Straus-Shamir)

implementation	prime p	cycles/scalar mult.
generic128	$2^{128}-173$	364,000
4GLV-BK	$2^{128}-24935$	164,000
4GLV-BK	$2^{64} \cdot\left(2^{63}-27443\right)+1$	156,000

Timings on Intel Core i7-3520M (Ivy Bridge) at 2893.484 MHz

4. The Kummer surface

Montgomery ladder for elliptic curves

- Can compute $P+Q$ from $\{P, Q, P-Q\}$ without y-coords
- Key: to compute $[k] P$, have $[n+1] P$ and $[n] P$ at each stage

same difference \rightarrow same result

Genus 2 analogue: the Kummer surface \mathcal{K}

- Montgomery identified $P=\left(P_{x}, P_{y}\right)$ and $-P=\left(P_{x},-P_{y}\right)$
- Smart-Siksek'99: $g=2$ analogue. . $\operatorname{Jac}(C) \rightarrow \mathcal{K}$ is 2-to-1

- Gaudry'07: much better Kummer surface from theta theory
- The "Squares-only" Kummer is best (Cosset'10)

$$
\mathcal{K}: E_{x y z t}=\left(\left(x^{2}+y^{2}+z^{2}+t^{2}\right)-F(x t+y z)-G(x z+y t)-H(x y+z t)\right)^{2}
$$

- No longer a group, but enough to do secure crypto (e.g. DH)
- Each ladder step needs DBL $\mathcal{K}+$ "ADD" \mathcal{K} - only $25 \mathbb{F}_{p}$ muls !!!
- Compare to non-Kummer - DBL ≈ 40 and ADD ≈ 50

implementation	prime p	cycles/scalar mult.
generic128	$2^{128}-173$	364,000
generic127	$2^{127}-1$	248,000
4GLV-BK	$2^{128}-24935$	164,000
4GLV-BK	$2^{64} \cdot\left(2^{63}-27443\right)+1$	156,000
Kummer	$2^{128}-237$	166,000
Kummer	$2^{127}-1$	117,000

Timings on Intel Core i7-3520M (Ivy Bridge) at 2893.484 MHz

- See eBACS for more performance numbers... http://bench.cr.yp.to

5. Results / Open Question

Results: genus 1 and 2 implementations over prime fields

who	primitive	g	constant time	10^{3} cycles
OpenSSL	NISTp256	1	$?$	658
Hisil	ecfp256e	1	X	227
Bernstein	curve25519	1	\checkmark	182
Longa-Sica	GLV-2	1	X	145
this work	Generic-p1271	$\mathbf{2}$	\mathbf{X}	$\mathbf{2 4 8}$
	GLV-4-BK-Mont	$\mathbf{2}$	\mathbf{X}	$\mathbf{1 5 6}$
	Kummer-p1271	$\mathbf{2}$	\checkmark	$\mathbf{1 1 7}$

- Kummer offers fastest Diffie-Hellman over prime fields
- Bonus: Kummer also runs in constant-time
- Kummer chameleons: curves which can be Kummer or 4GLV, depending on scenario (see full version)

Open question

- Using endomorphisms (GLV) gives big speedups:

$$
364,000 \rightarrow 156,000
$$

- Using Kummer surface gives big speedups:

$$
248,000 \rightarrow 117,000
$$

- Question: can we do GLV on the Kummer surface?
- Gaudry also noticed that certain Kummers can have an endomorphism ϕ
- We found some cryptographically sized examples
- But GLV on pseudo-groups is harder (several caveats)
- Nevertheless, big speedups possible
- See the full version - eprint 2012/670

