Efficient pairing computation at the 192-bit and 256-bit security levels

Craig Costello

Technische Universiteit Eindhoven

October 30, 2012

ECC2012 - Querétaro, Mexico

Colin Boyd

Juanma Gonzalez Nieto

Kenneth Wong

Huseyin Hisil

Tanja Lange

Michael Naehrig

Kristin Lauter

Douglas Stebila

A brief history of pairing speeds...

• 1993	
Menezes	a few minutes
	:
÷	÷
• 2002	
Barreto-Kim-Lynn-Scott (BKLS)	30-60ms
Galbraith-Harrison-Soldera (GHS)	÷
÷	÷
• 2008	
Hankerson-Menezes-Scott	14.2ms
	:
:	÷

The 128-bit records...

6th April 2010: Naehrig et al.: 4,300,000 cycles

The 128-bit records...

17th June 2010: Beuchat et al.: 2,600,000 cycles

The 128-bit records...

13th October 2010: Aranha et al.: 1,600,000 cycles

How safe are pairings at the 128-bit le	vel? (www.keylength.com)
• ECRYPT II - 2011	safe until 2040
• NIST (USA) - 2011	safe until at least 2030
• FNISA (France) -2010	safe until at least 2020

How safe are pairings at the 128-bit le	vel? (www.keylength.com)
• ECRYPT II - 2011	safe until 2040
• NIST (USA) - 2011	safe until at least 2030
• FNISA (France) -2010	safe until at least 2020

SOME REASONS ...

- Some governments, militaries are more paranoid than others
- Let history be our guide: we often underestimate ourselves (cf. Takuya's talk tomorrow)
- Much more fun to be had interesting things happen beyond 128-bit pairings

- Bilinearity and pairing-friendly curves
- O How to compute pairings
- Optimisations
- Pairings at the 256-bit security level (and beyond)
- Pairings at the 192-bit security level
- Work in progress

1. Bilinearity and pairing-friendly curves

Cryptographic pairings and bilinearity

 A cryptographic pairing on an elliptic curve E/F_q is a bilinear map

• Bilinear means

$$e(P + P', Q) = e(P, Q) \cdot e(P', Q),$$

 $e(P, Q + Q') = e(P, Q) \cdot e(P, Q'),$

from which it follows that, for scalars $a, b \in \mathbb{Z}$, we have $e([a]P, [b]Q) = e(P, [b]Q)^a = e([a]P, Q)^b = e(P, Q)^{ab} = e([b]P, [a]Q).$

- $\mathbb{G}_1 \in E[r]$ and $\mathbb{G}_2 \in E[r]$ must be linearly independent
- Cases of interest: we want r to be as close to $\#E(\mathbb{F}_q)$ as possible, so think $r \approx q$
- Only one order-*r* subgroup in $E(\mathbb{F}_q)$
- To find another linearly independent torsion subgroup, we must extend F_q, but how far do we need to go?

The embedding degree k

 Balasubramanian and Koblitz told us exactly how far we need to extend F_q to find more torsion: namely, to F_{q^k} where:

The embedding degree k

The embedding degree is the smallest $k \in \mathbb{Z}^+$ such that $r \mid q^k - 1$.

• Once we find one more torsion point in $E(\mathbb{F}_{q^k})$, we find all r^2 points in $E(\overline{\mathbb{F}}_q)[r] \subseteq E(\mathbb{F}_{q^k})$

•
$$\mathbb{F}_{q^k}$$
 is also where we find μ_r

• So \mathbb{F}_{a^k} is where the computations take place

$$\begin{array}{lcl} e: & E[r] & \times & E[r] & \to & \mu_r \\ e: & E(\mathbb{F}_{q^k}) & \times & E(\mathbb{F}_{q^k}) & \to & \mu_r \in \mathbb{F}_{q^k} \end{array}$$

• We need k to be small, i.e. k < 50

Definition: *E* is a pairing-friendly curve if...

- k is small (less than 50)
- the prime r dividing #E has $r \geq \sqrt{q}$
- Hasse-Bound: group order can lie anywhere between $q+1-\lfloor 2\sqrt{q} \rfloor$ and $q+1+\lfloor 2\sqrt{q} \rfloor$

 $\label{eq:q} 115792089210356248762697446949407573529405578681527665431107311373540212604928 \\ q = 115792089210356248762697446949407573530086143415290314195533631308867097853951 \\ 11579208921035624876269744694940757353076670814905296295995951244193983102976 \\ \end{cases}$

- ... then think of *r* and *q* as independent of each other (from half way down)
- k being small enough is extremely unlikely in general
- Moral of the story: pairing-friendly curves are very rare!

Polynomial parameterisations of pairing-friendly curves

• We need to find q, r, t such that there exists E/\mathbb{F}_q with

$$r \mid \#E(\mathbb{F}_q) = q+1-t$$
 and $r \mid q^k-1$

for some small k

- Miyaji-Nakabayashi-Takano (MNT): r | q^k 1 implies r | Φ_k(q) . . .
- Barreto-Lynn-Scott (BLS): r | Φ_k(q) and r | q + 1 − t together imply r | Φ_k(t − 1), so use this instead

General strategy for finding parameterised families

Fix k small, then search for t(x) and r(x) such that

 $r(x) | \Phi_k(t(x) - 1)$ and r(x) | q(x) + 1 - t(x)

 This strategy has been most successful in finding pairing-friendly curves ...

The Barreto-Naehrig (BN) family

- For k = 12, $\Phi_{12}(z) = z^4 z^2 + 1$
- Setting $t(x) = 6x^2 + 1$, gives $\Phi_{12}(t(x) 1) = r(x)r(-x)$ with $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$
- Set #E = r(x) and then q(x) = r(x) 1 + t(x), so $q(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$
- Search x's (appropriately sized) for r(x) and q(x) both prime
- Guaranteed curve always of form E/F_q: y² = x³ + b (no CM needed)
- Guaranteed k = 12, so pairing computation takes place over $\mathbb{F}_{q^{12}}$

• For example, a BN curve is found with x = 448873741399, where

q(x) = 1461501624496790265145448589920785493717258890819r(x) = 1461501624496790265145447380994971188499300027613

- The situation here is ideal because $\log_2(q) \approx \log_2(r)$
- We know this happens for large x because q(x) and r(x) have the same degree
- The ρ -value tells us the ratio between the sizes of q and r

$$\rho = \frac{\log \left(\deg(q(x)) \right)}{\log \left(\deg(r(x)) \right)}$$

 So ρ ⋅ k gives us the ratio between 𝔽_{q^k} (where DLP lies) and r (where ECDLP lies)

Balancing ECDLP and DLP security

 So to target a particular security level, we consider families whose ρ · k values are close to optimal

2. How to compute pairings

The Weil and Tate pairings of $P, Q \in E[r]$

André Weil

John Tate

- Define the divisors $D_P \sim (P) (\mathcal{O})$ and $D_Q \sim (Q) (\mathcal{O})$
- Let $f_{r,P}$ be the (unique up to constant) function with divisor

 $(f_{r,P}) = r(P) - r(\mathcal{O})$

Weil pairing (in crypto): $e(P, Q) = \frac{f_{r,P}(Q)}{f_{r,Q}(P)}$

Tate pairing (in crypto): $e(P,Q) = f_{r,P}(Q)^{(q^k-1)/r}$ The function $f_{r,P}(Q)$ is huuuuuge!

The size of $f_{r,P}(Q)$ for 128-bit security

• The pairing function $f_{r,P}(Q)$ is of degree r, where

r = 16798108731015832284940804142231733909759579603404752749028378864165570215949

 The coefficients in f_{r,P}(Q) depend on P's coordinates, so are all of the size

 $P_{\rm x} = {}_{
m 15283023184232661393336451140837190640382743162584629974443682653991135323854}$

• This huge function is impossible to store with all the computing power in the world. Somehow we need to evaluate it at D_Q , where Q's x coordinate is

• Even bigger for higher security levels!

A naive (pre-Miller) pairing

• At any intermediate stage of the "naive" algorithm, we have a function $f_{m,P}$ with divisor

$$(f_{m,P}) = m(P) - ([m]P) - (m-1)(O)$$

• Squaring the function doubles the number of zeros and poles

• We can get from $f_{m,P}$ to $f_{2m,P}$ in one step

Miller's algorithm for $f_{r,P}(D_Q)$

 $r = (r_{l-1}, \dots, r_1, r_0)_2$ and initialize: R = P, f = 1for i = l - 2 to 0 do

a. i. Compute ℓ/ν in the doubling of Rii. $R \leftarrow [2]R$ iii. $f \leftarrow f^2 \cdot \ell/\nu(D_Q)$

b. if $r_i = 1$ then

i. Compute ℓ'/ν' in the addition of R+P

ii. $R \leftarrow R + P$ //(ADD) iii. $f \leftarrow f \cdot \ell' / v'(D_Q)$

//(DBL)

3. Optimisations

 $r = (r_{l-1}, \dots, r_1, r_0)_2$ and initialize: R = P, f = 1for i = l - 2 to 0 do

0

//(Miller loop)

a. i. Compute ℓ/v in the doubling of Rii. $R \leftarrow [2]R$ iii. $f \leftarrow f^2 \cdot \ell/v(Q)$ b. if $r_i = 1$ then i. Compute ℓ'/v' in the addition of R + Pii. $R \leftarrow R + P$ iii. $f \leftarrow f \cdot \ell'/v'(Q)$ 2 $f \leftarrow f^{(q^k-1)/r}$

(final exponentiation)

et al.: Never mind D_Q , use Q!

 $r = (r_{l-1}, \dots, r_1, r_0)_2$ and initialize: R = P, f = 1for i = l - 2 to 0 do

1

//(Miller loop)

a. i. Compute ℓ in the doubling of Rii. $R \leftarrow [2]R$ iii. $f \leftarrow f^2 \cdot \ell(Q)$ b. if $r_i = 1$ then i. Compute ℓ' in the addition of R + Pii. $R \leftarrow R + P$ iii. $f \leftarrow f \cdot \ell'(Q)$

2
$$f \leftarrow f^{(q^k-1)/r}$$

(final exponentiation)

et al.: Can do without v(Q)!

 $r = (r_{l-1}, \dots, r_1, r_0)_2$ and initialize: R = P, f = 1for i = l - 2 to 0 do

1

2
$$f \leftarrow f^{(q^k-1)/r}$$

(final exponentiation)

Ρ

et al.: Avoid inversions altogether!

 $r = (r_{l-1}, ..., r_1, r_0)_2$ and initialize: R = P, f = 1for i = l - 2 to 0 do

//(Miller loop)

r = 41187805643304101483499299841134807881

 $r = (r_{l-1}, \dots, r_1, r_0)_2$ and initialize: R = P, f = 1for i = l - 2 to 0 do

0

//(Miller loop)

a. i. Compute l in the projective doubling of R
ii. R ← [2]R
iii. f ← f² · l(Q)
b. if r_i = 1 (unlikely) then
i. Compute l'' in the projective addition of R + P
ii. R ← R + P
iii. f ← f · l'(Q)

2 f ← f^{(q^k-1)/r} (final exponential expo

(final exponentiation)

Torsion subgroups, twisted curves, and Type 3 pairings

• Recall that once we extend up to \mathbb{F}_{q^k} , we collect all r^2 points in the *r*-torsion

• They must form (r+1) cyclic subgroups of order r ...

Defining \mathbb{G}_1 and \mathbb{G}_2 in the torsion $E[r] \cong \mathbb{Z}_r \times \mathbb{Z}_r$

• Galbraith-Paterson-Smart (Shacham): 4 types of pairings depending on our placement of \mathbb{G}_2

Pairing types

Type 1: supersingular only $k \leq 6$

Type 3: no $\psi : \mathbb{G}_2 \to \mathbb{G}_1$

Type 2: can't keep hashing

Type 4: \mathbb{G}_2 not cyclic

The twisted curve

• There is an efficiently computable isomorphism from the trace-zero subgroup $\mathbb{G}_2 \in E[r]$ to the "base-field" subgroup of its twist $E'/\mathbb{F}_{q^{k/d}}$

The twisted curve

• There is an efficiently computable isomorphism from the trace-zero subgroup $\mathbb{G}_2 \in E[r]$ to the "base-field" subgroup of its twist $E'/\mathbb{F}_{q^{k/d}}$

e.g. $E/\mathbb{F}_{11}: y^2 = x^3 + 4$, $\#E(\mathbb{F}_{11}) = 12$, so r = 3 with k = 2 and d = 2, i.e. $E'/\mathbb{F}_{11}: y^2 = x^3 - 4$

The twisted curve

- A twist of degree d means E' is defined over $\mathbb{F}_{a^{k/d}}$.
- For elliptic curves we can have $d \in \{2, 3, 4, 6\}$

• Warning: can work with $Q' = \Psi^{-1}(Q) \in E'(\mathbb{F}_{q^{k/d}})$, but must move back at function evaluation time so pairing is in \mathbb{F}_{q^k}

 d = 2 quadratic twists always available (when 2 | k), but higher twists need special curves

•
$$d = 3,6$$
 need $y^2 = x^3 + b$ (i.e. $j(E) = 0$ or $D = -3$)
• $d = 4$ need $y^2 = x^3 + ax$ (i.e. $j(E) = 1728$ or $D = -1$)

- Fortunately all of the best parameterised families give curves of the shape we want (e.g. k = 12 BN had $y^2 = x^3 + b$)
- We also prefer $k = 2^i \cdot 3^j$ because ...

Towered extension field arithmetic

Koblitz-Menezes '05

- For $k = 2^{i}3^{j}$, build extension field as a sequence of quadratic and cubic subextensions (preferably binomials)
 - Karatsuba-like tricks make arithmetic much faster
 - easier to implement and twisted subfields constructed inherently

• e.g. a
$$k = 12$$
 tower

$$\mathbb{F}_{q} \xrightarrow{\beta^{2} - \alpha} \mathbb{F}_{q^{2}} \xrightarrow{\gamma^{3} - \beta} \mathbb{F}_{q^{6}} \xrightarrow{\delta^{2} - \gamma} \mathbb{F}_{q^{12}}.$$

- Instead of $\mathbb{F}_{q^{12}}$ multiplications costing 144 \mathbb{F}_q multiplications, they cost $3 \cdot 3 \cdot 6 = 54 \mathbb{F}_q$ multiplications
- Finding a nice tower is not always possible

Straight to ate (sorry η_T): Miller 3.0

Hess - Smart - Vercauteren

- In \mathbb{G}_2 (the trace-zero subgroup), we have $\pi(Q) = [q]Q$
- ullet Frobenius acts non-trivially and stays within \mathbb{G}_2
- Use this to define a Tate-like pairing, but with a shorter loop

$$a_T(Q,P) = f_{T,Q}(P)^{(q^k-1)/r}$$

- Note Q and P have switched roles, so most of the work in Miller's algorithm is done in the extension field F_{a^k}
- But we use the twist to pull computation down to $\mathbb{F}_{a^{k/d}}$
- Trade-off very favourable when $T \ll r$ and d = 4, 6

Vercauteren's optimal ate pairing: Miller 3.1

• Vercauteren: ate pairing *a*_T is just a special case of a more general pairing

$$\mathsf{a}_{\lambda_i}(Q,P)=\mathsf{f}_{\lambda_i,Q}(P)^{(q^k-1)/r}$$

where $\lambda_i = q^i \mod r$.

- We want smallest λ_i (loop length) possible
- Can do even better: find linear combination $\sum_{i=0}^{l-1} c_i \lambda_i \equiv 0 \mod r$, where c_i are all short, then

$$(Q, P) \mapsto \prod_{i=0}^{l} f_{c_i,Q}(P) \cdot \prod_{i=0}^{l} \ell_i$$

defines a bilinear pairing, where the ℓ_i are all simple "one-off" line functions

- Vercauteren proves: $\max\{c_i\} \le r^{1/\varphi(k)}$
- Optimal pairing: loop length at most $\log_2 r/\varphi(k) + \epsilon$
- Parameterised families make it easy to satisfy this bound (one c_i(x))

Miller 3.1: optimal ate pairing

and initialize: $R' = Q' = \Psi^{-1}(Q)$, $m = (m_{l-1}, \ldots, m_1, m_0)_2$ f = 1for i = l - 2 to 0 do //(Miller loop) a. i. Compute ℓ in the projective doubling of R'ii. $R' \leftarrow [2]R'$ iii. $f \leftarrow f^2 \cdot \ell(P)$ (untwist Q') b. if $m_i = 1$ then i. Compute ℓ'' in the projective addition of R + Pii. $R' \leftarrow R' + Q'$ iii. $f \leftarrow f \cdot \ell'(P)$ (untwist Q') 2 $f \leftarrow f^{(q^k-1)/r}$ (final exponentiation) BN k = 12 curves have $\varphi(k) = 4$

Instead of looping to $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$, we loop to c(x) = 6x + 2, e.g. our loop changes from r = 1461501624496790265145447380994971188499300027613 to m = 448873741399

Fast explicit formulas

- C-Lange-Naehrig PKC2010: presented fastest explicit formulas for doing the group operation and line computation
- All practical scenarios covered

Curve		DBL	Prev.	DBL
Curve order	Record	ADD	Record	ADD
Twist deg.		mADD		mADD
$y^2 = x^3 + ax$	C-Lange-	2 m + 8 s	Ionica-Joux	1m + 11s
-	Naehrig'10	12m + 7s	Arene <i>et al.</i>	10m + 6s
<i>d</i> = 2, 4	$\mathcal{W}_{(1,2)}$	9m + 5s	\mathcal{J}	7 m + 6 s
$y^2 = x^3 + c^2$	C-Hisil-Boyd-	3 m + 5 s	Arene et al.	3 m + 8 s
3 #E	Gonzalez Nieto-Wong'09	14m + 2s	\mathcal{P}	10m + 6s
d = 2, 6	\mathcal{P}	10m + 2s		7 m + 6 s
$y^2 = x^3 + b$	C-Lange-	2 m + 7 s	Arene et al.	3 m + 8 s
3∤#E	Naehrig'10	14m + 2s	$\mathcal J$	10m + 6s
<i>d</i> = 2, 6	${\mathcal P}$	10m + 2s		7 m + 6 s
$y^2 = x^3 + b$	C-Lange-	6 m + 7 s	El Mrabet et al.	8 m + 9 s
-	Naehrig'10	16m + 3s	\mathcal{P}	ADD/mADD
<i>d</i> = 3	\mathcal{P}	13m + 3s		not reported

• Note: improvements/adjusements have since been made in various scenarios - Aranha *et al.* tweaked our formulas in their record-breaking paper

4. Pairings at the 256-bit security level (and beyond)

256-bit security wants $\rho \cdot k = 30$

The BLS family with k = 24

 e.g. Barreto-Lynn-Scott (among many other contributions) gave curves with k = 24:

$$q(x) = (x - 1)^{2}(x^{8} - x^{4} + 1)/3 + x$$

$$n(x) = (x - 1)^{2}(x^{8} - x^{4} + 1)/3;$$

$$r(x) = x^{8} - x^{4} + 1; \quad t(x) = x + 1$$

- when q = q(x), r = r(x) are prime, guaranteed a curve $E/\mathbb{F}_q : y^2 = x^3 + b$ with $r \mid n = \#E$.
- Notice $\rho = 1.25$, so $\rho \cdot k = 30$ (nice!)
- Note that deg(t(x)) = deg(r(x))/φ(k), so ate pairing is already optimal loop length is x (nice)

$$q(x) = (x-1)^2(x^8 - x^4 + 1)/3 + x;$$
 $r(x) = x^8 - x^4 + 1.$

- Kick-start with x = 2⁶⁴ = 18446744073709551616 (targeting 256-bit security): x ≡ 1 mod 3, x ← x + 3
- soon enough x = 18446744073709563373 q = 1520813539207408098927270665245849463397810363302189592817723052340011038722052073552003555850543059610293588875674461210160589181740516396182213025676897921852432341904308046467786796909960221 • soon after x = 18446744073709568134q = 152081353920741202406074204344187845907416165206148514542547681060676871445712171751406826067585

8946726622675208621738650395266513452695828995492519266950330867144614888025492087559518474496777

• moral: thousands/millions/billions... of possible curves to choose from... some of them are much better than others!

Attractive subfamilies of BLS curves for high-security

C-Lauter-Naehrig'11

Instead of $x \equiv 1 \mod 3$

x	p(x)	n(x)	efficient	curve	correct
mod 72	mod 72	mod 72	tower	E	twist E'
7	19	12	1	$y^2 = x^3 + 1$	$y^2 = x^3 \pm 1/v$
16	19	3	✓	$y^2 = x^3 + 4$	$y^2 = x^3 \pm 4v$
31	43	12	~	$y^2 = x^3 + 1$	$y^2 = x^3 \pm v$
64	19	27	~	$y^2 = x^3 - 2$	$y^2 = x^3 \pm 2/v$

Can always tower with any of ...

Twist type: *M* vs. *D*

- For quartic and sextic twists, there are actually two possibilities for the twist only one has r | #E(F_{q^{k/d}}) this is the one we want
- e.g. For E/\mathbb{F}_q : $y^2 = x^3 + b$, sextic twist is one of $y^2 = x^3 + b \cdot i$ (type M) or $y^2 = x^3 + b/i$ (type D)
- Scott'09: either type-*M* or type-*D* will have a worse "untwisting" isomorphism than the other, so reject those instances

Remedy: C-Lange-Naehrig'10

If (optimal) ate $a_m(Q, P) = a_m(\Psi(Q'), P)$ is bilinear, then so is $a_m(Q', P')$, i.e. can compute pairing entirely on E or E'

- If twist is Type-M, then $a_m(Q', P')$ (twisting) is best
- If twist is Type-D, then $a_m(Q, P)$ (untwisting) is best

Particularly friendly members of family trees

- For BLS k = 24, we used $x = 7, 16, 31, 64 \mod 72$ instead of $x \equiv 1 \mod 3 \ldots$
- But what happened to the other congruencies?
- "Particularly friendly members of family trees": eprint 2012/072 - wrote a script that exhausts the subcongruencies in each family until all the best options are found
- For all the most popular families with k = 8, 12, 16, 18, 24, 27, 32, 36, 48, constructs a *family tree*...
- Tree branches depending on
 - Best tower
 - Q Curve constant
 - Twist type

e.g. KSS k = 16 family tree: $y^2 = x^3 + ax$

Picking fruits in the trees: KSS k = 16

rating	equiv. class for x'	tower	а	twist	\mathbb{G}_1 gen.	\mathbb{G}_{2}^{\prime} gen.	%
	(x' = x/5)			type	$[h](\cdot, \cdot)$	$[h^{T}](\cdot, \cdot)$	
	61, 93 mod 112	T_1	1	М	-	$(v-1, \sqrt{(v-1)^3 + v(v-1)})$	12.2
	5, 37 mod 112	T_1	1	D	-	$\left(-v,\sqrt{-v^3-1}\right)$	12.7
* * * * *	47, 79 mod 112	T_1	2	D	-	$\left(2/v, \sqrt{\frac{8}{v^3} + \frac{4}{v^2}}\right)$	12.1
	23, 103 mod 112	T_1	$^{-2}$	М	$(1, \sqrt{-1})$	-	13.1
* * * *	$\{19,,1531\}_{16}\ {\sf mod}\ 1680$	T_2	3	М	(1, 2)	$\left(3/v, \sqrt{\frac{27}{v^3} + \frac{9}{v^2}}\right)$	7.9
* * *	1153, 1633 mod 1680	T_2	5	D	$\left(2, 2\sqrt{3}\right)$	-	0.9

Favourite picks from the k = 16 KSS tree.

$\mathbb{F}_{p} \xrightarrow{\mathbb{F}_{p}[u]/(u^{2}+u_{i})} \mathbb{F}_{p^{2}} \xrightarrow{\mathbb{F}_{p^{2}}[v]/(u^{8}-v_{i})} \mathbb{F}_{p^{16}}$					
T_i	T_1	T_2	T_3		
(u_i, v_i)	(2, <i>u</i>)	(3, <i>u</i>)	(5, <i>u</i>)		

Efficient towering options in the k = 16 KSS tree.

Particularly friendly members of family trees

- Gives a way to streamline your search and pre-order your pairing properties
- More useful at higher security levels where
 - Search space grows
 - Primality testing slows down
- Details how to search, but also provides many low-hamming weight curves that save you having to
- However, paper needs a re-write

5. Pairings at the 192-bit security level

192-bit security wants $\rho \cdot k \approx 20$

The best family for 192-bit security

- BN curves with k = 12 fall short (i.e. ground field is too big)
- KSS curves with k = 16 have ρ = 1.25 so ρ ⋅ k = 20, but only have a quartic twist down to F_{p⁴}
- KSS curves with k = 18 have $\rho = 1.33$ so $\rho \cdot k = 24$, but they have a sextic twist down to \mathbb{F}_{p^3}
- Final exponentiations are similar
- So which family reigns supreme?

BLS k = 12 for 192-bit security

- Pairing 2012: Aranha, Fuentes-Castañeda, Knapp, Menezes and Rodríguez-Henríquez: None of the above!!!
- Surprising result: BLS k = 12 curves have $\rho = 1.5$, and were overlooked by myself, Mike Scott, and others...
- 14,000,000 cycles for 192-bit pairing (compare to 1,600,000 at 128-bit level)
- Another cool result from Aranha *et al.* (×2): **the Weil pairing is back!**
- At higher levels of security, the final exponentiation swamps the computation, so the (shortened) Weil pairing can outperform optimal ate (in parallelizable environments)
- Simpler polynomials yield nicer final exponentiations (KSS are more complicated)

6. Work in progress

Whoops!

- Very common scenario: in the pairing e(P, Q), one of the arguments is fixed as a long term secret key (or constant public param, etc)
- We can exploit this and perform precomputations
- C-Stebila'10 merging iterations gives speedups for optimal ate pairings
- Scott'11: "would give a small but useful speedup"
- But: I majorly stuffed up at LatinCrypt'10: used affine, but recently realised projective would be much better

	128-bit op	otimal pairing	256-bit op	otimal pairing	
	k = 12 BN curve		k = 24 BLS curve		
	$\mathbb{F}_q =$	$\mathbb{F}_q = 254$ bits		639 bits	
precomp	Miller loop \approx storage		Miller loop	pprox storage	
method	cost	required (bits)	cost	required (bits)	
none	6469 m ₁	-	19069 m ₁	-	
Scott '05	5017 m ₁	70,000	14794 m_1	340,000	
quadrupling	4446 m ₁	75,000	12898 m_1	368,000	
octupling	4053 m ₁ 100,000		11673 \mathbf{m}_1	510,000	

Updated projections

Thanks for your attention