# A tribute to Pierrick - Parts I \& II, followed by <br> A special tribute to Culture Club 

Craig Costello

Technische Universiteit Eindhoven

October 29, 2012

ECC2012 - Querétaro, Mexico

## A tribute to Pierrick - Part I

Joint work with ...


Joppe Bos Craig Costello Huseyin Hisil Kristin Lauter

## The Kummer surface $\mathcal{K}$ : so much faster than $\operatorname{Jac}(C)$

- 2005: Gaudry proposes working on $\mathcal{K}$ instead of $\operatorname{Jac}(C)$
- $\mathcal{K}$ is (later re-) defined as
$\mathcal{K}: \quad E^{\prime} x y z t=\left(\left(x^{2}+y^{2}+z^{2}+t^{2}\right)-F(x t+y z)-G(x z+y t)-H(x y+z t)\right)^{2}$
- $(x, y, z, t)=\left(\vartheta_{1}^{2}(\mathbf{z}), \vartheta_{\mathbf{2}}^{\mathbf{2}}(\mathbf{z}), \vartheta_{\mathbf{3}}^{\mathbf{2}}(\mathbf{z}), \vartheta_{\mathbf{4}}^{\mathbf{2}}(\mathbf{z})\right)$
-the squared fundamental Theta functions
- $E^{\prime}, F, G, H$ functions of $\left(\vartheta_{1}(0)^{2}, \vartheta_{2}^{2}(0), \vartheta_{3}^{2}(0), \vartheta_{4}^{2}(0)\right)$
-the squared fundamental Theta constants

```
Curve: Let \(p=2^{128}-237\) and take \(\mathbb{Q}[x] /\left(x^{4}+25 x^{2}+145\right)\) as quartic CM field.
```

Then CM method gives Jacobian with \#Jac $=16 \cdot r, r$ a 253-bit prime, from which an associated $\mathcal{K}$ is given by

```
E'=332371133554703752153743957854113212587, F= 132548732776531240551503236526338110642,
G=198219842417172000280660546928795447629, H=293899164222979967538360298717156893328.
```


## Timings . . .

Performance timings (Ivy Bridge) of primitives in $10^{3}$ cycles over prime fields.

| Primitive | $g$ | SCR | security | $10^{3}$ cycles |
| :--- | :---: | :---: | :---: | :---: |
| Bernstein "curve25519" | 1 | $\checkmark$ | 125.8 | 182 |
| Hisil "ecfp256e" | 1 | $\times$ | 126.8 | 227 |
| Longa-Sica "2-GLV" | 1 | $\times$ | 127.0 | 145 |
| Gaudry-Thome "surf127eps" | 2 | $\checkmark$ | 124.8 | 236 |
| NISTp-224 | 1 | $\checkmark$ | 111.8 | 302 |
| NISTp-256 | 1 | $?$ | 127.8 | 658 |
| Kummer128 | 2 | $\checkmark$ | 125.8 | 171 |

- Kummer128: fastest side-channel resistant implementation over any prime field!


## A tribute to Pierrick - Part 2

Joint work with ...


## A monster computation and a much faster Kummer

- 2010: Gaudry and Schost find much better twist-secure squares-only Kummer surface, using generic Schoof-Pila (1,000,000 CPU hours)

$$
\text { Let } p=2^{127}-1 \text {. }
$$

Then $\mathcal{K}$ parameterized by $\left(a^{2}, b^{2}, c^{2}, d^{2}\right)=(11,-22,-19,3)$ is a Kummer corresponding to a curve $C$ with twist $C^{\prime}$ whose Jacobians have orders $16 \cdot r$ and $16 \cdot r^{\prime}$, with $r$ and $r^{\prime} 250$ - and 251-bit primes respectively.

- Mersenne prime allows much faster arithmetic ...
- some curve constants are small...


## A new speed record.

- First prime field implementation to break the 140 k barrier!

| Primitive | $g$ | SCR | security | $10^{3}$ cycles |
| :--- | :---: | :---: | :---: | :---: |
| Bernstein "curve25519" | 1 | $\checkmark$ | 125.8 | 182 |
| Hisil "ecfp256e" | 1 | $\times$ | 126.8 | 227 |
| Longa-Sica "2-GLV" | 1 | $\times$ | 127.0 | 145 |
| Gaudry-Thome "surf127eps" | 2 | $\checkmark$ | 124.8 | 236 |
| NISTp-224 | 1 | $\checkmark$ | 111.8 | 302 |
| NISTp-256 | 1 | $?$ | 127.8 | 658 |
| Kummer128 | 2 | $\checkmark$ | 125.8 | 171 |
| Kummer127 | 2 | $\checkmark$ | 124.8 | $\ll 140$ |

- See http://eprint.iacr.org/2012/XXX.pdf for the speed record!



## The paper: much more than Kummer

- The Kummer surface implementation is just one aspect of our paper
- Taxonomy of fast algorithms for genus 2 cryptography over prime fields
- Head-to-head comparison of NIST-friendly vs. Montgomery-friendly field arithmetic in all scenarios
- 4-dimensional GLV over Buhler-Koblitz (BK) curves $y^{2}=x^{5}+b$ and Furukawa-Kawazoe-Takahashi (FKT) curves $y^{2}=x^{5}+a x$
- Improved formulas for generic hyperelliptic curves
- A tribute to Pierrick - Part III
- And more ...


## Curves offering the best of both worlds

- We use analytic theory to help define a class of curves which offer 4-dimensional GLV decomposition and fast arithmetic on the Kummer surface

Let $p$ be any style of prime you like allowing $p \equiv 1 \bmod 20$.
We can amply find twist-secure Buhler-Koblitz curves
$C: y^{2}=x^{5}+b$ with $\operatorname{Jac}(C)=16 \cdot r$, and which offer both
4-dimensional GLV and fast arithmetic on the Kummer surface $\mathcal{K}$.

- Can't say the same if $p \equiv 11 \bmod 20$, or for FKT curves.
- If you want fastest Diffie-Hellman, use psuedo-addition on $\mathcal{K}$
- If you need additions, switch to the BK curve


## Curves offering the best of both worlds ...

Since these curves allow us to morph to match the scenario, we call them...

## Kummer Chameleons



## Thanks

see http://eprint.iacr.org/2012/XXX.pdf


