# A tribute to Pierrick - Parts I & II, followed by A special tribute to Culture Club

Craig Costello

Technische Universiteit Eindhoven

October 29, 2012

ECC2012 - Querétaro, Mexico

#### A tribute to Pierrick - Part I

Joint work with ...



Joppe Bos Craig Costello Huseyin Hisil Kristin Lauter

## The Kummer surface $\mathcal{K}$ : so much faster than $\operatorname{Jac}(\mathcal{C})$

- **2005:** Gaudry proposes working on  $\mathcal{K}$  instead of  $Jac(\mathcal{C})$
- ullet  $\mathcal K$  is (later re-) defined as

$$\mathcal{K}: \quad E'xyzt = ((x^2 + y^2 + z^2 + t^2) - F(xt + yz) - G(xz + yt) - H(xy + zt))^2$$

- $\bullet (x, y, z, t) = (\vartheta_1^2(\mathbf{z}), \vartheta_2^2(\mathbf{z}), \vartheta_3^2(\mathbf{z}), \vartheta_4^2(\mathbf{z}))$ 
  - -the squared fundamental Theta functions
- E', F, G, H functions of  $(\vartheta_1(0)^2, \vartheta_2^2(0), \vartheta_3^2(0), \vartheta_4^2(0))$ -the squared fundamental Theta constants

Curve: Let  $p = 2^{128} - 237$  and take  $\mathbb{Q}[x]/(x^4 + 25x^2 + 145)$  as quartic CM field.

Then CM method gives Jacobian with  $\# Jac = 16 \cdot r$ , r a 253-bit prime, from which an associated  $\mathcal{K}$  is given by

E' = 332371133554703752153743957854113212587, F = 132548732776531240551503236526338110642, G = 198219842417172000280660546928795447629, H = 293899164222979967538360298717156893328.

# Timings . . .

Performance timings (Ivy Bridge) of primitives in  $10^3$  cycles over prime fields.

| Primitive                 | g | SCR          | security | $10^3$ cycles |
|---------------------------|---|--------------|----------|---------------|
| Bernstein "curve25519"    | 1 | ✓            | 125.8    | 182           |
| Hisil "ecfp256e"          | 1 | ×            | 126.8    | 227           |
| Longa-Sica "2-GLV"        | 1 | ×            | 127.0    | 145           |
| Gaudry-Thome "surf127eps" | 2 | $\checkmark$ | 124.8    | 236           |
| NISTp-224                 | 1 | $\checkmark$ | 111.8    | 302           |
| NISTp-256                 | 1 | ?            | 127.8    | 658           |
| Kummer128                 | 2 | <b>√</b>     | 125.8    | 171           |

 Kummer128: fastest side-channel resistant implementation over any prime field!

#### A tribute to Pierrick - Part 2

#### Joint work with ...



#### A monster computation and a much faster Kummer

 2010: Gaudry and Schost find much better twist-secure squares-only Kummer surface, using generic Schoof-Pila (1,000,000 CPU hours)

#### Let $p = 2^{127} - 1$ .

Then  $\mathcal{K}$  parameterized by  $(a^2, b^2, c^2, d^2) = (11, -22, -19, 3)$  is a Kummer corresponding to a curve C with twist C' whose Jacobians have orders  $16 \cdot r$  and  $16 \cdot r'$ , with r and r' 250- and 251-bit primes respectively.

- Mersenne prime allows much faster arithmetic . . .
- some curve constants are small . . .

#### A new speed record.

• First prime field implementation to break the 140k barrier!

| Primitive                 | g | SCR          | security | $10^3$ cycles |
|---------------------------|---|--------------|----------|---------------|
| Bernstein "curve25519"    | 1 | ✓            | 125.8    | 182           |
| Hisil "ecfp256e"          | 1 | X            | 126.8    | 227           |
| Longa-Sica "2-GLV"        | 1 | ×            | 127.0    | 145           |
| Gaudry-Thome "surf127eps" | 2 | $\checkmark$ | 124.8    | 236           |
| NISTp-224                 | 1 | $\checkmark$ | 111.8    | 302           |
| NISTp-256                 | 1 | ?            | 127.8    | 658           |
| Kummer128                 | 2 | ✓            | 125.8    | 171           |
| Kummer127                 | 2 | $\checkmark$ | 124.8    | <b>≪ 140</b>  |

• See http://eprint.iacr.org/2012/XXX.pdf for the speed record!

## A tribute to Culture Club



## The paper: much more than Kummer

- The Kummer surface implementation is just one aspect of our paper
- Taxonomy of fast algorithms for genus 2 cryptography over prime fields
- Head-to-head comparison of NIST-friendly vs.
   Montgomery-friendly field arithmetic in all scenarios
- 4-dimensional GLV over Buhler-Koblitz (BK) curves  $y^2 = x^5 + b$  and Furukawa-Kawazoe-Takahashi (FKT) curves  $y^2 = x^5 + ax$
- Improved formulas for generic hyperelliptic curves
- A tribute to Pierrick Part III
- And more . . . 9/13

## Curves offering the best of both worlds

 We use analytic theory to help define a class of curves which offer 4-dimensional GLV decomposition and fast arithmetic on the Kummer surface

#### Let p be any style of prime you like allowing $p \equiv 1 \mod 20$ .

We can amply find twist-secure Buhler-Koblitz curves  $C: y^2 = x^5 + b$  with  $\operatorname{Jac}(C) = 16 \cdot r$ , and which offer both 4-dimensional GLV **and** fast arithmetic on the Kummer surface  $\mathcal{K}$ .

- Can't say the same if  $p \equiv 11 \mod 20$ , or for FKT curves.
- $\bullet$  If you want fastest Diffie-Hellman, use psuedo-addition on  $\mathcal K$
- If you need additions, switch to the BK curve

# Curves offering the best of both worlds . . .

Since these curves allow us to morph to match the scenario, we call them...

## Kummer Chameleons



#### **Thanks**

# see http://eprint.iacr.org/2012/XXX.pdf

