
An Introduction to Elliptic Curves and the
Computation of Cryptographic Pairings

Craig Costello

Technische Universiteit Eindhoven

October 28, 2012

ECC2012 - Querétaro, Mexico

1 / 69

Why ECC is awesome. . .

Why ECC (elliptic curve cryptography) is awesome. . .

It’s faster, more compact and more elegant than other
public-key crypto. settings
It brings algebraic/arithmetic geometry and number theory to
life - these things have real-world importance!
It’s more interesting & fun than other crypto. settings

Why ECC (this conference) is awesome. . .

It brings some of ECC’s biggest experts to you!
The co-inventors of ECC are both here!
It’s more interesting & fun than other crypto.
conferences

2 / 69

This lecture is

1 . . . for students & newcomers

2 . . . slow moving: I will assume you have not seen ECC
before: therefore this talk will be elementary and
(intentionally) slow-moving

3 . . . example driven: what I lack in formality and
completeness, I make up for by referring you to Ben Smith’s
excellent “Useful stuff” intro from ECC2011:
http://ecc2011.loria.fr/slides/summerschool-smith.pdf

4 . . . accompanied by pictures: what I lack in Spanish, I will
make up for in pictures

5 . . . accompanied by Magma: I will be working alongside
examples in Magma (all examples/code hyperlinked from my
thesis)

3 / 69

http://ecc2011.loria.fr/slides/summerschool-smith.pdf

Overview

1 Motivation

2 Elliptic curves are groups

3 Elliptic curves as cryptographic groups

4 Divisors

5 A very brief look at pairings

4 / 69

1. Motivation

5 / 69

Private-key vs. Public-key cryptography

BC - WWII:
Caesar Mary, Queen of Scots Enigma Code

must communicate beforehand

1970’s:
Diffie-Hellman-Merkle Rivest-Shamir-Adleman (RSA) Ellis-Cocks-Williamson

BREAKTHROUGH: no need for prior communication!!!
6 / 69

Diffie-Hellman (Merkle): a toy example

Public values:

q = 10000000000000061 (prime), g = 832022676086941 (generator of Zq).

Secret values:

Alice’s secret: a=4275315603725493 Bob’s secret: b=1083333300180813

Alice computes (public key): Bob computes (public key):

g
a mod q = 9213047582249495 g

b mod q = 9893308140872135

Bob can compute: Alice can compute:

9893308140872135a = 8817060794020263 = 9213047582249495b

= gab

Secret keys safe as long as discrete log problem (DLP) is hard

Joint secret safe as long as Diffie-Hellman problem is hard

7 / 69

Modulus (key) sizes: then and now

1970’s:

q = 1606938044258990275541962092341162602522202993782792835301301.
(200-bit prime)

NOW:

q =
1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084773224075360211
2011387987139335765878976881441662249284743063947412437776789342486548527630221960124609411945308295208
5005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137111.
(1024-bit prime)

8 / 69

Elliptic curves cryptography (ECC)

mid 1980’s:

Neal Koblitz Victor Miller

Use elliptic curve (more abstract) groups instead!
y 2 = x3 + ax + b

Subexponential attacks on standard groups don’t apply anymore!!!

q =
1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084773224075360211
2011387987139335765878976881441662249284743063947412437776789342486548527630221960124609411945308295208
5005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137111.

(1024-bit prime)

vs.
q = 1461501637330902918203684832716283019655932542929

(160-bit prime)

9 / 69

2. Elliptic curves are groups

10 / 69

Abelian groups

Recall the definition of an abelian group:

Group (definition)

A group G is a set with an operation + that combines any two
elements to form a third element, satisfying four axioms:

1. Closure - a, b ∈ G implies a + b ∈ G

2. Associativity - (a + b) + c = a + (b + c) for a, b, c ∈ G

3. Identity - unique e ∈ G such that a + e = e + a = a

4. Inverses - for every a ∈ G , there exists a unique element b
such that a + b = b + a = e

If, in addition, c + d = d + c (always), then G is said to be
abelian.

11 / 69

Cubic equations

Two roots of a cubic polynomial imply the third root

If α, β are roots of a3x
3 + a2x

2 + a1x + a0 = 0, then the third
root is . . .

12 / 69

Cubic equations

Two roots of a cubic polynomial imply the third root

If α, β are roots of a3x
3 + a2x

2 + a1x + a0 = 0, then the third
root is . . . γ = a0/(a3αβ), since a3(x − α)(x − β)(x − γ) = 0

Roughly speaking: elliptic curves are groups that make use of
this. . . more formally. . .

Bezout’s theorem

Two curves with degrees m and n intersect mn times.

13 / 69

Cubic equations

Two roots of a cubic polynomial imply the third root

If α, β are roots of a3x
3 + a2x

2 + a1x + a0 = 0, then the third
root is . . . γ = a0/(a3αβ), since a3(x − α)(x − β)(x − γ) = 0

Roughly speaking: elliptic curves are groups that make use of
this. . . more formally. . .

Bezout’s theorem (special case - all we need)

Two curves with degrees 3 and 1 intersect 3 times.

14 / 69

Cubic equations

Two roots of a cubic polynomial imply the third root

If α, β are roots of a3x
3 + a2x

2 + a1x + a0 = 0, then the third
root is . . . γ = a0/(a3αβ), since a3(x − α)(x − β)(x − γ) = 0

Roughly speaking: elliptic curves are groups that make use of
this. . . more formally. . .

Bezout’s theorem (special case - all we need)

Two curves with degrees 3 and 1 intersect 3 times.

Given P = (xP , yP) and Q = (xQ, yQ) on a cubic curve,
the line between them intersects the curve once more

This is what we use!

15 / 69

Cubic equation → short Weierstrass equation

General cubic curve (defined over field K)

C/K : a9x
3 + a8x

2y + a7xy
2 + a6y

3 + a5x
2

+ a4xy + a3y
2 + a2x + a1y + a0 = 0

. . . after some manipulation (left as an exercise) assuming
Char(K) 6= 2, 3 . . .

Short Weierstrass equation (for elliptic curve over K)

E/K : y2 = x3 + ax + b
Defined over K if a, b ∈ K

Points on E can be (x , y) ∈ K̄ × K̄

16 / 69

Elliptic curves: singular vs. smooth

In E/K : y2 = x3 + ax + b, we need 4a3 + 27b2 6= 0 in K , or
else things don’t go “smoothly”

•

Singular curve
y2 = x3 − 3x + 2
over R.

•

Singular curve
y2 = x3

over R.

Smooth curve
y2 = x3+x+1
over R.

Smooth curve
y2 = x3 − x
over R.

17 / 69

Group law example: addition on E/R : y 2 = x3 − 2x

•(0, 0)
•(−1,−1)

E/R : y2 = x3 − 2x :

18 / 69

Group law example: addition on E/R : y 2 = x3 − 2x

ℓ : y = x

•(0, 0)
•

•(2, 2)

(−1,−1)

E/R : y2 = x3 − 2x : addition.

19 / 69

Group law example: addition on E/R : y 2 = x3 − 2x

ℓ : y = x

•(0, 0)
•

•(2, 2)

(−1,−1)

•(2,−2)

E/R : y2 = x3 − 2x : addition.

20 / 69

Group law example: doubling on E/R : y 2 = x3 − 2x

•
(−1,−1)

E/R : y2 = x3 − 2: doubling.

21 / 69

Group law example: doubling on E/R : y 2 = x3 − 2x

ℓ′ : y = − x
2 − 3

2

•
(−1,−1)

•
(9
4 ,

21
8)

•
(9
4 ,−21

8)

E/R : y2 = x3 − 2: doubling.

22 / 69

Elliptic curve group law: addition and doubling

ℓ

•Q
•P

•⊖R

•
R = P ⊕ Q

ℓ

•P

•⊖R

•
R = P ⊕ P

Note: an elliptic curve is a group that is defined over a field

Points form a group, but coordinates come from underlying
field

Computing group operation requires field arithmetic . . .

23 / 69

Elliptic curve group law: addition and doubling

ℓ

•Q
•P

•⊖R

•
R = P ⊕ Q

ℓ

•P

•⊖R

•
R = P ⊕ P

Addition: y = λx + ν, λ =
yQ−yP

xQ−xP
, ν = yP − λxP ,

xR = λ2 − xP − xQ , yR = −(λxR + ν)

Doubling: same with λ =
3x2

P
+a

2yP
and xP = xQ

24 / 69

Example E/Q : y 2 = x3 − 2

b

b

b

b

b

b

b

Of the first 10 multiples of
P = (3, 5) in E (Q), 7 had x < 6.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Of the first 100 multiples of
P = (3, 5) in E (Q), 64 had x < 6.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Of the first 1000 multiples of
P = (3, 5) in E (Q), 635 had x < 6.

E : y2 = x3 − 2 over R.

25 / 69

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

•

•

•
•

•

•

•

•

•

•

•

E/F11 : y2 = x3 − 2x : the points (excluding O) on E (F11).

26 / 69

Recall: group law axioms

Closure:
if P ,Q ∈ E (K)
→ cubic equation has coefficients in K
→ third root in K
→ P + Q ∈ E (K)
→ closed.

What about associativity?

What about the identity?

What about inverses?

Is it abelian?

27 / 69

Associativity: “proof” by picture

•

•
P ⊕ Q

••
P

•Q
•

R

•(P ⊕ Q) ⊕ R

(P ⊕ Q) ⊕ R .

•

•
Q ⊕ R

••
P

•Q
•

R

•P ⊕ (Q ⊕ R)

P ⊕ (Q ⊕ R).

(real proof left as exercise)
28 / 69

Inverse and Identity: O in affine space?

•−P

•P

−R•

•
R

Besides all of the rational points (x , y) ∈ A2(K), we need an
additional point O, the point at infinity

Helpful in affine drawing to picture it as infinitely high/low, but
formal definition requires projective space - another coordinate...

29 / 69

Homogeneous projective coordinates for E

Substitute x = X/Z and y = Y /Z into E : y2 = x3 + ax + b

Projective equation is Eproj : Y 2Z = X 3 + aXZ 2 + bZ 3,
coordinates written as (X : Y : Z)

Notice all (x , y) ∈ E correspond to (λX : λY : λZ) ∈ Eproj for
λ ∈ K̄

But there is a point on Eproj that can’t be scaled back to
E???

30 / 69

Homogeneous projective coordinates for E

Substitute x = X/Z and y = Y /Z into E : y2 = x3 + ax + b

Projective equation is Eproj : Y 2Z = X 3 + aXZ 2 + bZ 3,
coordinates written as (X : Y : Z)

Notice all (x , y) ∈ E correspond to (λX : λY : λZ) ∈ Eproj for
λ ∈ K̄

But there is a point on Eproj that can’t be scaled back to
E???

This point is O = (0: λ : 0) - the point at infinity

31 / 69

Projective space: points in A2(K) are lines in P2(K)

x

y

b

b

b

b

Three points in A2(K).

X

Y

Z

b

b

b

b

b

Z = 1

Three lines in P2(K).

X
Y

Z

b

b b
b

bZ = 1

Three lines in P2(K).

Y

Z

b b
O = (0 : 1 : 0)

b b bbZ = 1

Three lines in P2(K).
32 / 69

Group law axioms

Closure:
if P ,Q ∈ E (K)
→ cubic equation has coefficients in K
→ third root in K
→ P + Q ∈ E (K)
→ closed.

Associativity - yes, “proof by picture”, but see textbooks or
try for yourself

Identity - the point at infinity O

Inverses - inverse of (x , y) is (x ,−y)

Abelian - yes, line through P and Q is line through Q and P

33 / 69

Group law axioms

Closure:
if P ,Q ∈ E (K)
→ cubic equation has coefficients in K
→ third root in K
→ P + Q ∈ E (K)
→ closed.

Associativity - yes, “proof by picture”, but see textbooks or
try for yourself

Identity - the point at infinity O

Inverses - inverse of (x , y) is (x ,−y)

Abelian - yes, line through P and Q is line through Q and P

Elliptic curves are groups!
34 / 69

3. Elliptic curves as
cryptographic groups

35 / 69

Setting up ECDLP instances

To set up discrete logarithm instances, we need to compute

[m]P = P + P + · · · + P (m times)

m will be huge, so we need to double-and-add to compute
[m]P in O(log2 m) steps

e.g. m = 104143711012733238876513676535587592720823664060901595554869421344539731012577

(1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1,

1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1,

0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1,

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1,

1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0,

1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1)

Double-and-add takes 255 doublings and 123 additions

36 / 69

Interlude: Why ECC is awesome (cont.)

Compare traditional groups to ECC at 128-bit security

37 / 69

Interlude: Why ECC is awesome (cont.)

Compare traditional groups to ECC at 128-bit security

ECDLP over 256-bit p
= 115792089210356248762697446949407573530086143415290314195533631308867097853951

38 / 69

Interlude: Why ECC is awesome (cont.)

Compare traditional groups to ECC at 128-bit security

ECDLP over 256-bit p
= 115792089210356248762697446949407573530086143415290314195533631308867097853951

Comparable to standard DLP over q = p12

= 5809605979138106448096366229894164925191029060964736088043830102874701260870776
6482173033611664754318259437411636363721864991002021782371074490715059944181840
0342787085568400070101868479077691777913820328875711553963993872359271410692118
2842047937244197120686781367972159048261418604511611344078747035121694997713540
2837492929213422600429025184602648562538880748083950512261873985381670986780770
3289556673190854870391629285162566732999470768100097360667042569028375009057813
2879917770402824470487308666594740986238656937509695173630104358360328020157275
7031519995321613484296864529039945826777471856903687985607353073750418292349157
7048399629016421118853172422732137921315256777383769924837799393651892520114015
5310447529182432257109321985968734700568576388269448211861140030742321384794381
4986670503424178211639598575042459804527837974825281240063036698943378230288199
84622457165830536184233243850824347514038491736860262401

39 / 69

Secure vs. insecure curves: the importance of #E

e.g. NIST-p256 curve (128-bit security)

Let E/Fp : y2 = x3 − 3x + b

p = 115792089210356248762697446949407573530086143415290314195533631308867097853951

b = 41058363725152142129326129780047268409114441015993725554835256314039467401291

#E = 115792089210356248762697446949407573529996955224135760342422259061068512044369

#E = 256− bit prime (≈ 128-bit security)

e.g. b = 4 instead

Let E/Fq : y2 = x3 − 3x + b

q = 115792089210356248762697446949407573530086143415290314195533631308867097853951

b = 4

#E = 115792089210356248762697446949407573530301458765764575276748425375978192226668

#E = 2
2 · 13 · 19 · 179 · 13003 · 1307093479 · 218034068577407083

· 16884307952548170257 · 10464321644447000442097

#E ’s biggest prime factor is 74-bits (37-bit security)
40 / 69

How many points on E (Fq)?

Hasse’s bound for #E , namely

q + 1 − 2
√

q ≤ #E ≤ q + 1 + 2
√

q

e.g. take q from NISTp256
q + 1 − ⌊2

√
q⌋ = 115792089210356248762697446949407573529405578681527665431107311373540212604928

.

.

.

#E (good) = 115792089210356248762697446949407573529996955224135760342422259061068512044369

.

.

.

q = 115792089210356248762697446949407573530086143415290314195533631308867097853951

.

.

.

#E (bad) = 115792089210356248762697446949407573530301458765764575276748425375978192226668

.

.

.

q + 1 + ⌊2
√

q⌋ = 115792089210356248762697446949407573530766708149052962959959951244193983102976

This offset of #E from q + 1 is called t - the trace of
Frobenius, i.e. #E = q + 1 − t, |t| ≤ 2

√
q

41 / 69

Schoof’s algorithm to find #E = q + 1 − t

Computing #E means computing the trace of Frobenius t

Schoof’s alg. computes t mod 3, t mod 5, t mod 7, . . . ,
t mod ℓ such that 3 · 5 · 7 · · · · ℓ > 4

√
q

. . . (skipping details for now) . . .

Computes #E in O((log q)8) (polynomial time)

Makes ECC practical (also timely, invented in ‘85)

42 / 69

Torsion

A point P is said to be in the r -torsion E [r] of E , if it is killed
by r , i.e. if [r]P = O

e.g. Let E/F101 : y2 = x3 + x + 1, #E = 105 = |〈P〉|,
P = (47, 12)

Lagrange’s theorem: points in 〈P〉 will have order in
{1, 3, 5, 7, 15, 21, 35, 105}.
[3]P = (27, 7) ∈ E [35]

[7]P = (83, 3) ∈ E [15]

[21]P = (46, 76) ∈ E [5], also (46, 76) ∈ E [15] and (46, 76) ∈ E [35]

For P ∈ E [r], division by 0 occurs in addition of P and
[r − 1]P = −P (same x coordinate)

Can we know r -torsion in advance. . . ?

43 / 69

Division polynomials of E : y 2 = x3 + ax + b

Can we guess points of order r in advance (i.e. without testing
multiplication by r)?

Compute [r](x , y) (leave indeterminate) and look at which (x , y)
values make denominators vanish

More formally, division polynomials (defined recursively depending
on E) do this . . .

Division polynomials on E

The roots of the r -th division polynomial ψr (x , y) correspond to r -torsion
points of E

ψ2m+1 ∈ Z[x , a, b] and ψ2m ∈ 2yZ[x , a, b]

e.g. recall E/F101 : y2 = x3 + x + 1 with #E = 105 = 3 · 5 · 7

ψ2(x) = 4x3 + 4x + 4 - irreducible in Fp[x], so no 2-torsion over Fp

ψ3(x) = 3x4 + 6x2 + 12x + 100 = (x + 73)(x + 84)(x2 + 45x + 36),
x = 17 and x = 28 will give 3-torsion points (over Fp or F2

p) 44 / 69

Endomorphisms on E/K

Endomorphisms φ are homomorphisms from E to itself, i.e.
φ : E → E .

We have already seen them several times: e.g. the doubling
map is an endomorphism on E , i.e. [2] : E → E

In fact, the multiplication-by-m map [m] : E → E is an
endomorphism for all m ∈ Z

[m] : (x , y) 7→
(

x − ψm−1ψm+1

ψ2
n

,
ψ2m

2ψ4
m

)

There can be others depending on E , e.g. E : y2 = x3 + b
then φ : (x , y) 7→ (ξ3x , y) is a map

45 / 69

End(E) - the endomorphism ring of E

Endomorphisms on E form a ring End(E),

addition in End(E) is as usual - (φ1 +φ2)(P) = φ1(P)+φ2(P)
multiplication is composition - (φ1φ2)(P) = φ1(φ2(P))

Since each m ∈ Z induces an endomorphism [m] on E ,
End(E) is as least as big as Z

If there is any additional, e.g. φ : (x , y) 7→ (ξ3x , y) on
E : y2 = x3 + b, then we saw E has complex multiplication
(CM)

Over finite fields Fq, we always have an additional
endomorphism regardless of E . . .

46 / 69

The Frobenius endomorphism π

The q-power Frobenius endomorphism

For an elliptic curve E/Fq, the q-power Frobenius endomorphism
π : E → E is defined by π : (x , y) 7→ (xq, yq)

e.g. q = 67, E/Fq : y2 = x3 + 4x + 3, F2
q = Fq(i) where i2 = −1

P1 = (15, 50) ∈ E (Fq), so
π(P1) = (15q, 50q) = (15, 50) = P1

P2 = (16 + 2i , 39 + 30i) ∈ E (F2
q), so

π(P2) = ((16 + 2i)q, (39 + 30i)q) = (16 + 65i , 39 + 37i)
(“complex conjugation”)

π maps any point in E (F̄q) to another point in E (F̄q). . .

the set of points fixed by π is exactly E (Fq)

47 / 69

Schoof using π’s characteristic poly.

In End(E), π satisfies

π2 − [t] ◦ π + [q] = 0,

meaning that for any point on E (K), we have

(xq2
, yq2

) − [t](xq, yq) + [q](x , y) = O
Recall Schoof wanted t mod ℓ for many primes ℓ→ work on
above equation modulo ℓ to find it!

We don’t know where/what ℓ-torsion points are (since we
don’t know #E), so we treat them as (x , y) ∈ Fq[x , y]

How to work “modulo ℓ” on E = work modulo division
polynomials ψℓ(x , y)

This is what keeps computations feasible, allows us to
compute #E in polynomial time

48 / 69

Summary so far. . .

What we have seen
How to compute the group law (double and add) on E , so we
can compute [m]P efficiently (and therefore do
(EC)DLP-based protocols)
How to count points efficiently, so we can also make sure the
curves we work on are secure (large prime subgroup)

What we haven’t seen
There have been many advances to making ECC even more
efficient
e.g. different curve models (not y2 = x3 + ax + b) that allow
faster arithmetic (Edwards, Hessian, Jacobi-Quartic)
e.g. using endomorphisms to speed up [m]P computation
(GLV/GLS scalar decomposition)
e.g. extensions of double-and-add, i.e. windowing,
double-base, NAF etc
Hyperelliptic curves. . .
Attacks and cryptanalysis!!!
Much more . . .

49 / 69

4. Divisors

50 / 69

The language of divisors

The language of divisors is very natural and convenient

A divisor D on E is a nice way to write a multi-set of points
on E , written as the formal sum

D =
∑

P∈E(K)

nP(P)

where all but finitely many nP are zero.

(Defn:) The support supp(D) of D is the set of P where
nP 6= 0

(Defn:) The degree deg(D) of D is the sum of all the nP

Divisors form a group Div(E), where addition is natural

51 / 69

An example

D1 = 2(P) − 3(Q) and D2 = 3(Q) − (R) − (S) for P ,Q,R ,S ∈ E

D1 ∈ Div(E) and D2 ∈ Div(E)

supp(D1) = {P ,Q} and supp(D2) = {Q,R ,S}

deg(D1) = −1 and deg(D2) = 1

D1 + D2 = 2(P) − (R) − (S)

deg(D1 + D2) = 0

52 / 69

Divisors of functions

Divisors are most useful because the simplify everything we need to
know about a function f on the curve

When studying f ∈ Fq(E), we only care about where f
intersects/coincides with E

The divisor of a function f , written as (f), writes down the zeros
and poles (with multiplicities) of f on E

(f) =
∑

P∈E(F̄q)

ordP(f)(P),

(fg) = (f) + (g) and (f /g) = (f) − (g), etc

if D = (f), then D determines f up to constant

Thm: Divisors of functions have degree 0.

Proof: Galbraith’s new book (Th 7.7.1)

53 / 69

Examples (we’ve already seen)

ℓ

•Q

•P

•−(P + Q)

(ℓ) = (P) + (Q) + (−(P + Q)) − 3(O).

ℓ

•P
•−[2]P

(ℓ) = 2(P) + (−[2]P) − 3(O).

If you have a function and you know all the zeros on E , just
subtract the appropriate multiple of O

54 / 69

The divisor class group

Divisors of functions are called principal divisors, denoted
Prin(E)

Divisors of functions have degree 0, but the converse is not
always true, i.e.

Prin(E) ⊂ Div0(E) ⊂ Div(E)

The divisor class group

The divisor class group, or Picard group, of E is the quotient group

Pic0(E) = Div0(E)/Prin(E).

So, we work only with degree zero divisors, and all divisors
which are (f) for any f ’s are zero

55 / 69

The group law in terms of divisors

ℓ

•Q
•P

•⊖R

•
R = P ⊕ Q

ℓ

•P
•⊖R

•R = P ⊕ P

(ℓ) = (P)+ (Q)+ (−R)− 3(O) and (v) = (R)+ (−R)− 2(O)

So (ℓ/v) = (P) + (Q) − (R) − (O), but (ℓ/v) ∼ 0 in
Pic0(E). . .

(P) − (O) + (Q) − (O) = (R) − (O)

T ∈ E to (T) − (O) ∈ Pic0(E) is a group homomorphism

56 / 69

Reduced divisors

A divisor
∑

P∈E(K̄) nP(P) is called effective if nP ≥ 0
Take the “effective part” to be the part with all nP ≥ 0

A consequence of the Riemann-Roch theorem

On a curve of genus g , every divisor class has a representative
divisor with effective part of degree at most g

ℓ̃

•P̃1

•̃
P2

•P̃3

•Q

•R

ṽ

Reduce (P̃1) + (P̃2) + (P̃3) − 3(O) to (R) − (O) in Pic0(E) (genus 1).
57 / 69

The genus 2 group law

Elliptic curves are genus 1 - their higher genus analogues are called
hyperelliptic curves

e.g. addition on a genus 2 curve: y2 = x5 + a4x
4 + · · · + a0

•P1 •
P2

•Q1

ℓ

•Q2 •

•R1

R̄1

•

•R2

R̄2

58 / 69

The genus 3 group law

A genus 3 hyperelliptic curve y2 = x7 + · · · + a0

•P1

•P2•P3

•Q1

•
Q2

•Q3

ℓ

•R̄1

•̄R2

•R̄3

•R̄4

The first stage of reduction.

•R̄1

•̄
R2

•R̄3

•R̄4

•R1

•R2

•R3

The second stage of reduction.

59 / 69

Functions of divisors

Let f be a function on E , and D =
∑

P∈E(K̄) nP(P), then

f (D) =
∏

P∈E(K̄)

f (P)nP

e.g. E/F163 : y2 = x3 − x − 2 P = (43, 154), Q = (46, 38), R = (12, 35),
S = (5, 66)

functions ℓP,Q = y + 93x + 85, ℓP,P = y + 127x + 90 and
ℓQ,Q = y + 13x + 16

divisors D1 = 2(R) + (S), D2 = 3(R) − 3(S) and
D3 = (R) + (S) − 2(O)

e.g. ℓP,Q(D1) = (yR + 93xR + 85)2(yS + 93xS + 85) = 122

e.g. ℓP,P(D2) = (yR + 127xR + 90)3/(yS + 127xS + 90)3 = 53

e.g. can’t evaluate any functions at D3, since O ∈ supp(D3) and O
also in supports of (ℓP,Q), (ℓP,P) and (ℓQ,Q)

60 / 69

Weil reciprocity

Weil reciprocity on elliptic curves (but general)

Let f , g on E have disjoint support, then f ((g)) = g((f))

•P
•−[2]P ℓ′

•
R

•
S

ℓ

•T

ℓ(ℓ′) = ℓ′(ℓ).

61 / 69

5. Pairings on elliptic curves

62 / 69

Pairings are bilinear maps

The most general definition of an elliptic curve pairing e

e : G1 × G2 → GT

e : E/Fq[r] × E/Fq[r] → µr ∈ F·
qk

e : P × Q 7→ e(P, Q)

Bilinear means

e(P + P ′,Q) = e(P ,Q) · e(P ′,Q),

e(P ,Q + Q ′) = e(P ,Q) · e(P ,Q ′),

from which it follows that, for scalars a, b ∈ Z, we have

e([a]P , [b]Q) = e(P , [b]Q)a = e([a]P ,Q)b = e(P ,Q)ab = e([b]P , [a]Q).

63 / 69

The power of bilinearity (some famous examples)

Joux Boneh-Franklin

One-ride tripartite DH Identity-based encryption (IBE)

Gentry-Silverberg Sahai- Waters

Heirarchical ID-based encryption (HIBE) Attribute-based encryption (ABE)

64 / 69

The Weil and Tate pairings

André Weil John Tate

Let fr ,P be the (unique up to constant) function with divisor
(fr ,P) = r(P) − r(O)

Weil pairing (in crypto): e(P ,Q) =
fr,P(Q)
fr,Q(P) ;

Tate pairing (in crypto): e(P ,Q) = fr ,P(Q)(q
k−1)/r ,

The function fr ,P(Q) is huuuuuge!
65 / 69

The size of fr ,P(Q): 128-bit security

The pairing function fr,P(Q) is of degree r , where
r = 16798108731015832284940804142231733909759579603404752749028378864165570215949

The coefficients in fr,P(Q) depend on P ’s coordinates, so are all of
the size
Px = 15283023184232661393336451140837190640382743162584629974443682653991135323854

This huge function is impossible to store with all the computing
power in the world. Somehow we need to evaluate it at Q, whose x
coordinate is

Qx = ((15550921060303536733405227206218421303411153835059642979852113370177068459559 · u+

3600690644796987290442135137031285206249789514588827679002920807555440045456) · v2+
(5475264847170057761513968927972623766794030526092071182289628553939256498415 · u+
16045231392378269041781500461472571507692250280489500368315808811462293278705) · v+
(13578969743206791049626159973437892548805434308942546900125761281664803554809 · u+
8414705805435201691796063348962631501393112240468038251361145485591996962517)) · w+
(2095760324718272519234982374519336043146898698412090865684809945855004557738 · u+

10991749562144480578133596744105999544930359103290000221828602811069330922292) · v2+
(563526440913857199739302175501170867491400605855901007410492904987821568516 · u+
12175465566401923735806619064706225201231722038674162959277121785143969709483) · v+
5977392629488041467394421854470109162392545860735885669496575455742917555185 · u+
16414735455238441715243107544357668247548687753217062857281803216595664241398

66 / 69

The size of fr ,P(Q): 128-bit security

The pairing function fr,P(Q) is of degree r , where
r = 16798108731015832284940804142231733909759579603404752749028378864165570215949

The coefficients in fr,P(Q) depend on P ’s coordinates, so are all of
the size
Px = 15283023184232661393336451140837190640382743162584629974443682653991135323854

This huge function is impossible to store with all the computing
power in the world. Somehow we need to evaluate it at Q, whose x
coordinate is

Qx = ((15550921060303536733405227206218421303411153835059642979852113370177068459559 · u+

3600690644796987290442135137031285206249789514588827679002920807555440045456) · v2+
(5475264847170057761513968927972623766794030526092071182289628553939256498415 · u+
16045231392378269041781500461472571507692250280489500368315808811462293278705) · v+
(13578969743206791049626159973437892548805434308942546900125761281664803554809 · u+
8414705805435201691796063348962631501393112240468038251361145485591996962517)) · w+
(2095760324718272519234982374519336043146898698412090865684809945855004557738 · u+

10991749562144480578133596744105999544930359103290000221828602811069330922292) · v2+
(563526440913857199739302175501170867491400605855901007410492904987821568516 · u+
12175465566401923735806619064706225201231722038674162959277121785143969709483) · v+
5977392629488041467394421854470109162392545860735885669496575455742917555185 · u+
16414735455238441715243107544357668247548687753217062857281803216595664241398

Remarkably, this can actually be done in less than a millisecond on
your PC!!! - find out how on Tuesday!

67 / 69

Summary

1 Motivation
ECDLP much harder to solve than DLP → ECC has shorter
keys and is faster than standard groups

2 Elliptic curves are groups
The group operation: chord-and-tangent rule
Projective space and the point at infinity
Group axioms

3 Elliptic curves as cryptographic groups
Setting up ECDLP instances
Best (secure) curves have close to prime order
Point counting, division polynomials, the endomorphism ring

4 Divisors
Divisors of functions and functions of divisors
Divisor class group
Higher genus examples
Weil reciprocity

5 A very brief look at pairings
A bilinear map that’s very useful, but requires huge function to
be computed . . . much more on Tuesday . . .

68 / 69

Questions?

Thanks for your attention

69 / 69

