An Introduction to Elliptic Curves and the Computation of Cryptographic Pairings

Craig Costello

Technische Universiteit Eindhoven

October 28, 2012

ECC2012 - Querétaro, Mexico

Why ECC is awesome. . .

- Why ECC (elliptic curve cryptography) is awesome...
- It's faster, more compact and more elegant than other public-key crypto. settings
- It brings algebraic/arithmetic geometry and number theory to life - these things have real-world importance!
- It's more interesting \& fun than other crypto. settings
- Why ECC (this conference) is awesome...
- It brings some of ECC's biggest experts to you!
- The co-inventors of ECC are both here!
- It's more interesting \& fun than other crypto. conferences

This lecture is

(1) ... for students \& newcomers
(2) ...slow moving: I will assume you have not seen ECC before: therefore this talk will be elementary and (intentionally) slow-moving
(3) ... example driven: what I lack in formality and completeness, I make up for by referring you to Ben Smith's excellent "Useful stuff" intro from ECC2011: http://ecc2011.loria.fr/slides/summerschool-smith.pdf
(9)accompanied by pictures: what I lack in Spanish, I will make up for in pictures
(3) ... accompanied by Magma: I will be working alongside examples in Magma (all examples/code hyperlinked from my thesis)

Overview

(1) Motivation
(2) Elliptic curves are groups
(3) Elliptic curves as cryptographic groups
© Divisors
(0) A very brief look at pairings

1. Motivation

Private-key vs. Public-key cryptography

BC - WWII:

Caesar

Mary, Queen of Scots

Enigma Code
must communicate beforehand

Diffie-Hellman-Merkle

Rivest-Shamir-Adleman (RSA)

Ellis-Cocks-Williamson

BREAKTHROUGH: no need for prior communication!!!

Diffie－Hellman（Merkle）：a toy example

Public values：

$q=10000000000000061$（prime），$\quad g=832022676086941$（generator of \mathbb{Z}_{q} ）．

Secret values：

Alice＇s secret：$a=4275315603725493$
Alice computes（public key）：

$$
g^{a} \bmod q=9213047582249495
$$

Bob can compute：
$9893308140872135^{a}=8817060794020263=9213047582249495^{b}$

$$
=g^{a b}
$$

Secret keys safe as long as discrete log problem（DLP）is hard Joint secret safe as long as Diffie－Hellman problem is hard

Modulus (key) sizes: then and now

1970's:

$q=1606938044258990275541962092341162602522202993782792835301301$.
(200-bit prime)

NOW:

$q=$
1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084773224075360211 2011387987139335765878976881441662249284743063947412437776789342486548527630221960124609411945308295208 5005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137111. (1024-bit prime)

Elliptic curves cryptography (ECC)

mid 1980's:

Neal Koblitz

Victor Miller

Use elliptic curve (more abstract) groups instead!

$$
y^{2}=x^{3}+a x+b
$$

Subexponential attacks on standard groups don't apply anymore!!!
$q=$
1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084773224075360211 2011387987139335765878976881441662249284743063947412437776789342486548527630221960124609411945308295208 5005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137111.
(1024-bit prime)
VS.
$q=1461501637330902918203684832716283019655932542929$
(160-bit prime)
2. Elliptic curves are groups

Abelian groups

Recall the definition of an abelian group:

Group (definition)

A group G is a set with an operation + that combines any two elements to form a third element, satisfying four axioms:

- 1. Closure $-a, b \in G$ implies $a+b \in G$
- 2. Associativity $-(a+b)+c=a+(b+c)$ for $a, b, c \in G$
- 3. Identity - unique $e \in G$ such that $a+e=e+a=a$
- 4. Inverses - for every $a \in G$, there exists a unique element b such that $a+b=b+a=e$

If, in addition, $c+d=d+c$ (always), then G is said to be abelian.

Cubic equations

- Two roots of a cubic polynomial imply the third root
- If α, β are roots of $a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0$, then the third root is ...

Cubic equations

- Two roots of a cubic polynomial imply the third root
- If α, β are roots of $a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0$, then the third root is $\ldots \gamma=a_{0} /\left(a_{3} \alpha \beta\right)$, since $a_{3}(x-\alpha)(x-\beta)(x-\gamma)=0$
- Roughly speaking: elliptic curves are groups that make use of this. . . more formally...

Bezout's theorem

Two curves with degrees m and n intersect $m n$ times.

Cubic equations

- Two roots of a cubic polynomial imply the third root
- If α, β are roots of $a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0$, then the third root is $\ldots \gamma=a_{0} /\left(a_{3} \alpha \beta\right)$, since $a_{3}(x-\alpha)(x-\beta)(x-\gamma)=0$
- Roughly speaking: elliptic curves are groups that make use of this. . . more formally. . .

Bezout's theorem (special case - all we need)

Two curves with degrees 3 and 1 intersect 3 times.

Cubic equations

- Two roots of a cubic polynomial imply the third root
- If α, β are roots of $a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0$, then the third root is $\ldots \gamma=a_{0} /\left(a_{3} \alpha \beta\right)$, since $a_{3}(x-\alpha)(x-\beta)(x-\gamma)=0$
- Roughly speaking: elliptic curves are groups that make use of this. . . more formally...

Bezout's theorem (special case - all we need)
Two curves with degrees 3 and 1 intersect 3 times.

Given $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ on a cubic curve, the line between them intersects the curve once more This is what we use!

Cubic equation \rightarrow short Weierstrass equation

- General cubic curve (defined over field K)

$$
\begin{aligned}
C / K: \quad a_{9} x^{3} & +a_{8} x^{2} y+a_{7} x y^{2}+a_{6} y^{3}+a_{5} x^{2} \\
& +a_{4} x y+a_{3} y^{2}+a_{2} x+a_{1} y+a_{0}=0
\end{aligned}
$$

... after some manipulation (left as an exercise) assuming $\operatorname{Char}(K) \neq 2,3 \ldots$

- Short Weierstrass equation (for elliptic curve over K)

$$
E / K: y^{2}=x^{3}+a x+b
$$

- Defined over K if $a, b \in K$
- Points on E can be $(x, y) \in \bar{K} \times \bar{K}$

Elliptic curves: singular vs. smooth

- In $E / K: y^{2}=x^{3}+a x+b$, we need $4 a^{3}+27 b^{2} \neq 0$ in K, or else things don't go "smoothly"

Singular curve $y^{2}=x^{3}-3 x+2$ over \mathbb{R}.

Singular curve $y^{2}=x^{3}$ over \mathbb{R}.

Smooth curve
$y^{2}=x^{3}+x+1$ over \mathbb{R}.

Smooth curve $y^{2}=x^{3}-x$ over \mathbb{R}.

Group law example: addition on $E / \mathbb{R}: y^{2}=x^{3}-2 x$

$E / \mathbb{R}: y^{2}=x^{3}-2 x:$

Group law example: addition on $E / \mathbb{R}: y^{2}=x^{3}-2 x$

$E / \mathbb{R}: y^{2}=x^{3}-2 x:$ addition.

Group law example: addition on $E / \mathbb{R}: y^{2}=x^{3}-2 x$

$E / \mathbb{R}: y^{2}=x^{3}-2 x:$ addition.

Group law example: doubling on $E / \mathbb{R}: y^{2}=x^{3}-2 x$

$E / \mathbb{R}: y^{2}=x^{3}-2$: doubling.

Group law example: doubling on $E / \mathbb{R}: y^{2}=x^{3}-2 x$

$E / \mathbb{R}: y^{2}=x^{3}-2$: doubling.

Elliptic curve group law: addition and doubling

- Note: an elliptic curve is a group that is defined over a field
- Points form a group, but coordinates come from underlying field
- Computing group operation requires field arithmetic ...

Elliptic curve group law: addition and doubling

- Addition: $y=\lambda x+\nu, \quad \lambda=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}, \quad \nu=y_{P}-\lambda x_{P}$,

$$
x_{R}=\lambda^{2}-x_{P}-x_{Q}, \quad y_{R}=-\left(\lambda x_{R}+\nu\right)
$$

- Doubling: same with $\lambda=\frac{3 x_{P}^{2}+a}{2 y_{P}}$ and $x_{P}=x_{Q}$

Example $E / \mathbb{Q}: y^{2}=x^{3}-2$

Of the first 10 multiples of
$P=(3,5)$ in $E(\mathbb{Q}), 7$ had $x<6$.

Of the first 100 multiples of $P=(3,5)$ in $E(\mathbb{Q}), 64$ had $x<6$.

Of the first 1000 multiples of $P=(3,5)$ in $E(\mathbb{Q}), 635$ had $x<6$.
$E: y^{2}=x^{3}-2$ over \mathbb{R}.

$E / \mathbb{F}_{1} 1: y^{2}=x^{3}-2 x$: the points (excluding $\left.\mathcal{O}\right)$ on $E\left(\mathbb{F}_{11}\right)$.

Recall: group law axioms

- Closure:
if $P, Q \in E(K)$
\rightarrow cubic equation has coefficients in K
\rightarrow third root in K
$\rightarrow P+Q \in E(K)$
\rightarrow closed.
- What about associativity?
- What about the identity?
- What about inverses?
- Is it abelian?

Associativity: "proof" by picture

(real proof left as exercise)

Inverse and Identity: \mathcal{O} in affine space?

- Besides all of the rational points $(x, y) \in \mathbb{A}^{2}(K)$, we need an additional point \mathcal{O}, the point at infinity
- Helpful in affine drawing to picture it as infinitely high/low, but formal definition requires projective space - another coordinate...

Homogeneous projective coordinates for E

- Substitute $x=X / Z$ and $y=Y / Z$ into $E: y^{2}=x^{3}+a x+b$
- Projective equation is $E_{\text {proj }}: Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}$, coordinates written as $(X: Y: Z)$
- Notice all $(x, y) \in E$ correspond to $(\lambda X: \lambda Y: \lambda Z) \in E_{\text {proj }}$ for $\lambda \in \bar{K}$
- But there is a point on $E_{\text {proj }}$ that can't be scaled back to E???

Homogeneous projective coordinates for E

- Substitute $x=X / Z$ and $y=Y / Z$ into $E: y^{2}=x^{3}+a x+b$
- Projective equation is $E_{\text {proj }}: Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}$, coordinates written as $(X: Y: Z)$
- Notice all $(x, y) \in E$ correspond to $(\lambda X: \lambda Y: \lambda Z) \in E_{\text {proj }}$ for $\lambda \in \bar{K}$
- But there is a point on $E_{\text {proj }}$ that can't be scaled back to E???
- This point is $\mathcal{O}=(0: \lambda: 0)$ - the point at infinity

Projective space: points in $\mathbb{A}^{2}(K)$ are lines in $\mathbb{P}^{2}(K)$

Three points in $\mathbb{A}^{2}(K)$.

Three lines in $\mathbb{P}^{2}(K)$.

Three lines in $\mathbb{P}^{2}(K)$.

Three lines in $\mathbb{P}^{2}(K)$.

Group law axioms

- Closure:
if $P, Q \in E(K)$
\rightarrow cubic equation has coefficients in K
\rightarrow third root in K
$\rightarrow P+Q \in E(K)$
\rightarrow closed.
- Associativity - yes, "proof by picture", but see textbooks or try for yourself
- Identity - the point at infinity \mathcal{O}
- Inverses - inverse of (x, y) is $(x,-y)$
- Abelian - yes, line through P and Q is line through Q and P

Group law axioms

- Closure:
if $P, Q \in E(K)$
\rightarrow cubic equation has coefficients in K
\rightarrow third root in K
$\rightarrow P+Q \in E(K)$
\rightarrow closed.
- Associativity - yes, "proof by picture", but see textbooks or try for yourself
- Identity - the point at infinity \mathcal{O}
- Inverses - inverse of (x, y) is $(x,-y)$
- Abelian - yes, line through P and Q is line through Q and P
Elliptic curves are groups!

3. Elliptic curves as cryptographic groups

Setting up ECDLP instances

- To set up discrete logarithm instances, we need to compute

$$
[m] P=P+P+\cdots+P \quad(m \text { times })
$$

- m will be huge, so we need to double-and-add to compute $[m] P$ in $O\left(\log _{2} m\right)$ steps

e.g. $m=104143711012733238876513676535587592720823664060901595554869421344539731012577$

$(1,1,1,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0,0,0,0,1$,
$1,1,1,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,1,1,0,0,0,0,0,0,0,1,1,0,0,1,0,1,0,1,1,1,1$,
$0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,1$,
$1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1,0,0,1$,
$1,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,1,1,1,0,1,0,0,1,0,0,1,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0$,
$1,1,1,0,0,0,0,0,1,1,0,1,0,0,1,1,0,1,0,1,1,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,1)$
Double-and-add takes 255 doublings and 123 additions

Interlude: Why ECC is awesome (cont.)

- Compare traditional groups to ECC at 128-bit security

Interlude: Why ECC is awesome (cont.)

- Compare traditional groups to ECC at 128-bit security
- ECDLP over 256-bit p
$=115792089210356248762697446949407573530086143415290314195533631308867097853951$

Interlude: Why ECC is awesome (cont.)

- Compare traditional groups to ECC at 128-bit security

- ECDLP over 256-bit p

$=115792089210356248762697446949407573530086143415290314195533631308867097853951$

- Comparable to standard DLP over $q=p^{12}$
$=5809605979138106448096366229894164925191029060964736088043830102874701260870776$ 6482173033611664754318259437411636363721864991002021782371074490715059944181840 0342787085568400070101868479077691777913820328875711553963993872359271410692118 2842047937244197120686781367972159048261418604511611344078747035121694997713540 2837492929213422600429025184602648562538880748083950512261873985381670986780770 3289556673190854870391629285162566732999470768100097360667042569028375009057813 2879917770402824470487308666594740986238656937509695173630104358360328020157275 7031519995321613484296864529039945826777471856903687985607353073750418292349157 7048399629016421118853172422732137921315256777383769924837799393651892520114015 5310447529182432257109321985968734700568576388269448211861140030742321384794381 4986670503424178211639598575042459804527837974825281240063036698943378230288199 84622457165830536184233243850824347514038491736860262401

Secure vs. insecure curves: the importance of \#E

```
e.g. NIST-p256 curve (128-bit security)
Let }E/\mp@subsup{\mathbb{F}}{p}{}:\mp@subsup{y}{}{2}=\mp@subsup{x}{}{3}-3x+
    p=115792089210356248762697446949407573530086143415290314195533631308867097853951
    b=41058363725152142129326129780047268409114441015993725554835256314039467401291
#E=115792089210356248762697446949407573529996955224135760342422259061068512044369
#E=256- bit prime ( }\approx128\mathrm{ -bit security)
```

e.g. $b=4$ instead
Let $E / \mathbb{F}_{q}: y^{2}=x^{3}-3 x+b$
$q=115792089210356248762697446949407573530086143415290314195533631308867097853951$
$b=4$
$\# E=115792089210356248762697446949407573530301458765764575276748425375978192226668$
$\# E=2^{2} \cdot 13 \cdot 19 \cdot 179 \cdot 13003 \cdot 1307093479 \cdot 218034068577407083$
- 16884307952548170257 • 10464321644447000442097
\#E's biggest prime factor is 74-bits (37-bit security)

How many points on $E\left(\mathbb{F}_{q}\right)$?

- Hasse's bound for \#E, namely

$$
q+1-2 \sqrt{q} \leq \# E \leq q+1+2 \sqrt{q}
$$

- e.g. take q from NISTp256
$q+1-\lfloor 2 \sqrt{q}\rfloor=115792089210356248762697446949407573529405578681527665431107311373540212604928$
$\# E($ good $)=115792089210356248762697446949407573529996955224135760342422259061068512044369$
$q=115792089210356248762697446949407573530086143415290314195533631308867097853951$
$\# E(\mathrm{bad})=115792089210356248762697446949407573530301458765764575276748425375978192226668$
$q+1+\lfloor 2 \sqrt{q}\rfloor=115792089210356248762697446949407573530766708149052962959959951244193983102976$
- This offset of $\# E$ from $q+1$ is called t - the trace of Frobenius, i.e. $\# E=q+1-t,|t| \leq 2 \sqrt{q}$

Schoof's algorithm to find $\# E=q+1-t$

- Computing $\# E$ means computing the trace of Frobenius t
- Schoof's alg. computes $t \bmod 3, t \bmod 5, t \bmod 7, \ldots$, $t \bmod \ell$ such that $3 \cdot 5 \cdot 7 \cdots \ell>4 \sqrt{q}$
- ... (skipping details for now) ...
- Computes $\# E$ in $O\left((\log q)^{8}\right)$ (polynomial time)
- Makes ECC practical (also timely, invented in '85)

Torsion

- A point P is said to be in the r-torsion $E[r]$ of E, if it is killed by r, i.e. if $[r] P=\mathcal{O}$

$$
\begin{aligned}
& \text { e.g. Let } E / \mathbb{F}_{101}: y^{2}=x^{3}+x+1, \# E=105=|\langle P\rangle| \text {, } \\
& P=(47,12)
\end{aligned}
$$

- Lagrange's theorem: points in $\langle P\rangle$ will have order in $\{1,3,5,7,15,21,35,105\}$.
- $[3] P=(27,7) \in E[35]$
- $[7] P=(83,3) \in E[15]$
- $[21] P=(46,76) \in E[5]$, also $(46,76) \in E[15]$ and $(46,76) \in E[35]$
- For $P \in E[r]$, division by 0 occurs in addition of P and $[r-1] P=-P$ (same x coordinate)
- Can we know r-torsion in advance... ?

Division polynomials of $E: y^{2}=x^{3}+a x+b$

- Can we guess points of order r in advance (i.e. without testing multiplication by r)?
- Compute $[r](x, y)$ (leave indeterminate) and look at which (x, y) values make denominators vanish
- More formally, division polynomials (defined recursively depending on E) do this ...

Division polynomials on E

The roots of the r-th division polynomial $\psi_{r}(x, y)$ correspond to r-torsion points of E

- $\psi_{2 m+1} \in \mathbb{Z}[x, a, b]$ and $\psi_{2 m} \in 2 y \mathbb{Z}[x, a, b]$
e.g. recall $E / \mathbb{F}_{101}: y^{2}=x^{3}+x+1$ with $\# E=105=3 \cdot 5 \cdot 7$
- $\psi_{2}(x)=4 x^{3}+4 x+4$ - irreducible in $\mathbb{F}_{p}[x]$, so no 2-torsion over \mathbb{F}_{p}
- $\psi_{3}(x)=3 x^{4}+6 x^{2}+12 x+100=(x+73)(x+84)\left(x^{2}+45 x+36\right)$, $x=17$ and $x=28$ will give 3 -torsion points (over \mathbb{F}_{p} or \mathbb{F}_{p}^{2})

Endomorphisms on E / K

- Endomorphisms ϕ are homomorphisms from E to itself, i.e. $\phi: E \rightarrow E$.
- We have already seen them several times: e.g. the doubling map is an endomorphism on E, i.e. [2] : $E \rightarrow E$
- In fact, the multiplication-by-m map [m]: $E \rightarrow E$ is an endomorphism for all $m \in \mathbb{Z}$

$$
[m]:(x, y) \mapsto\left(x-\frac{\psi_{m-1} \psi_{m+1}}{\psi_{n}^{2}}, \frac{\psi_{2 m}}{2 \psi_{m}^{4}}\right)
$$

- There can be others depending on E, e.g. $E: y^{2}=x^{3}+b$ then $\phi:(x, y) \mapsto\left(\xi_{3} x, y\right)$ is a map

$\operatorname{End}(E)$ - the endomorphism ring of E

- Endomorphisms on E form a ring $\operatorname{End}(E)$,
- addition in $\operatorname{End}(E)$ is as usual $-\left(\phi_{1}+\phi_{2}\right)(P)=\phi_{1}(P)+\phi_{2}(P)$
- multiplication is composition - $\left(\phi_{1} \phi_{2}\right)(P)=\phi_{1}\left(\phi_{2}(P)\right)$
- Since each $m \in \mathbb{Z}$ induces an endomorphism [m] on E, $\operatorname{End}(E)$ is as least as big as \mathbb{Z}
- If there is any additional, e.g. $\phi:(x, y) \mapsto\left(\xi_{3} x, y\right)$ on $E: y^{2}=x^{3}+b$, then we saw E has complex multiplication (CM)
- Over finite fields \mathbb{F}_{q}, we always have an additional endomorphism regardless of $E \ldots$

The Frobenius endomorphism π

The q-power Frobenius endomorphism

For an elliptic curve E / \mathbb{F}_{q}, the q-power Frobenius endomorphism $\pi: E \rightarrow E$ is defined by $\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)$

$$
\begin{aligned}
& \text { e.g. } q=67, E / \mathbb{F}_{q}: y^{2}=x^{3}+4 x+3, \mathbb{F}_{q}^{2}=\mathbb{F}_{q}(i) \text { where } i^{2}=-1 \\
& \text { - } P_{1}=(15,50) \in E\left(\mathbb{F}_{q}\right) \text {, so } \\
& \\
& \pi\left(P_{1}\right)=\left(15^{q}, 50^{q}\right)=(15,50)=P_{1} \\
& \text { - } P_{2}=(16+2 i, 39+30 i) \in E\left(\mathbb{F}_{q}^{2}\right) \text {, so } \\
& \\
& \pi\left(P_{2}\right)=\left((16+2 i)^{q},(39+30 i)^{q}\right)=(16+65 i, 39+37 i) \\
& \text { ("complex conjugation" })
\end{aligned}
$$

- π maps any point in $E\left(\bar{F}_{q}\right)$ to another point in $E\left(\bar{F}_{q}\right) \ldots$
- the set of points fixed by π is exactly $E\left(\mathbb{F}_{q}\right)$

Schoof using π 's characteristic poly.

- In $\operatorname{End}(E), \pi$ satisfies

$$
\pi^{2}-[t] \circ \pi+[q]=0
$$

meaning that for any point on $E(\bar{K})$, we have

$$
\left(x^{q^{2}}, y^{q^{2}}\right)-[t]\left(x^{q}, y^{q}\right)+[q](x, y)=\mathcal{O}
$$

- Recall Schoof wanted $t \bmod \ell$ for many primes $\ell \rightarrow$ work on above equation modulo ℓ to find it!
- We don't know where/what ℓ-torsion points are (since we don't know $\# E)$, so we treat them as $(x, y) \in \mathbb{F}_{q}[x, y]$
- How to work "modulo ℓ " on $E=$ work modulo division polynomials $\psi_{\ell}(x, y)$
- This is what keeps computations feasible, allows us to compute $\# E$ in polynomial time

Summary so far. . .

- What we have seen
- How to compute the group law (double and add) on E, so we can compute $[\mathrm{m}] P$ efficiently (and therefore do (EC)DLP-based protocols)
- How to count points efficiently, so we can also make sure the curves we work on are secure (large prime subgroup)
- What we haven't seen
- There have been many advances to making ECC even more efficient
- e.g. different curve models (not $y^{2}=x^{3}+a x+b$) that allow faster arithmetic (Edwards, Hessian, Jacobi-Quartic)
- e.g. using endomorphisms to speed up $[m] P$ computation (GLV/GLS scalar decomposition)
- e.g. extensions of double-and-add, i.e. windowing, double-base, NAF etc
- Hyperelliptic curves...
- Attacks and cryptanalysis!!!
- Much more...

4. Divisors

The language of divisors

- The language of divisors is very natural and convenient
- A divisor D on E is a nice way to write a multi-set of points on E, written as the formal sum

$$
D=\sum_{P \in E(K)} n_{P}(P)
$$

where all but finitely many n_{P} are zero.

- (Defn:) The support $\operatorname{supp}(D)$ of D is the set of P where $n_{P} \neq 0$
- (Defn:) The degree $\operatorname{deg}(D)$ of D is the sum of all the n_{P}
- Divisors form a group $\operatorname{Div}(E)$, where addition is natural

An example

$D_{1}=2(P)-3(Q)$ and $D_{2}=3(Q)-(R)-(S)$ for $P, Q, R, S \in E$

- $D_{1} \in \operatorname{Div}(E)$ and $D_{2} \in \operatorname{Div}(E)$
- $\operatorname{supp}\left(D_{1}\right)=\{P, Q\}$ and $\operatorname{supp}\left(D_{2}\right)=\{Q, R, S\}$
- $\operatorname{deg}\left(D_{1}\right)=-1$ and $\operatorname{deg}\left(D_{2}\right)=1$
- $D_{1}+D_{2}=2(P)-(R)-(S)$
- $\operatorname{deg}\left(D_{1}+D_{2}\right)=0$

Divisors of functions

- Divisors are most useful because the simplify everything we need to know about a function f on the curve
- When studying $f \in \mathbb{F}_{q}(E)$, we only care about where f intersects/coincides with E
- The divisor of a function f, written as (f), writes down the zeros and poles (with multiplicities) of f on E

$$
(f)=\sum_{P \in E\left(\bar{F}_{q}\right)} \operatorname{ord}_{P}(f)(P),
$$

- $(f g)=(f)+(g)$ and $(f / g)=(f)-(g)$, etc
- if $D=(f)$, then D determines f up to constant

Thm: Divisors of functions have degree $\mathbf{0}$.

Proof: Galbraith's new book (Th 7.7.1)

Examples (we've already seen)

$$
(\ell)=(P)+(Q)+(-(P+Q))-3(\mathcal{O}) .
$$

$$
(\ell)=2(P)+(-[2] P)-3(\mathcal{O})
$$

- If you have a function and you know all the zeros on E, just subtract the appropriate multiple of \mathcal{O}

The divisor class group

- Divisors of functions are called principal divisors, denoted Prin(E)
- Divisors of functions have degree 0 , but the converse is not always true, i.e.

$$
\operatorname{Prin}(E) \subset \operatorname{Div}^{0}(E) \subset \operatorname{Div}(E)
$$

The divisor class group

The divisor class group, or Picard group, of E is the quotient group

$$
\operatorname{Pic}^{0}(E)=\operatorname{Div}^{0}(E) / \operatorname{Prin}(E)
$$

- So, we work only with degree zero divisors, and all divisors which are (f) for any f 's are zero

The group law in terms of divisors

- $(\ell)=(P)+(Q)+(-R)-3(\mathcal{O})$ and $(v)=(R)+(-R)-2(\mathcal{O})$
- So $(\ell / v)=(P)+(Q)-(R)-(\mathcal{O})$, but $(\ell / v) \sim 0$ in $\operatorname{Pic}^{0}(E) \ldots$

$$
(P)-(\mathcal{O})+(Q)-(\mathcal{O})=(R)-(\mathcal{O})
$$

- $T \in E$ to $(T)-(\mathcal{O}) \in \operatorname{Pic}^{0}(E)$ is a group homomorphism

Reduced divisors

- A divisor $\sum_{P \in E(\bar{K})} n_{P}(P)$ is called effective if $n_{P} \geq 0$
- Take the "effective part" to be the part with all $n_{P} \geq 0$

A consequence of the Riemann-Roch theorem

On a curve of genus g, every divisor class has a representative divisor with effective part of degree at most g

Reduce $\left(\tilde{P}_{1}\right)+\left(\tilde{P}_{2}\right)+\left(\tilde{P}_{3}\right)-3(\mathcal{O})$ to $(R)-(\mathcal{O})$ in $\operatorname{Pic}^{0}(\mathrm{E})$ (genus 1).

The genus 2 group law

- Elliptic curves are genus 1 - their higher genus analogues are called hyperelliptic curves
- e.g. addition on a genus 2 curve: $y^{2}=x^{5}+a_{4} x^{4}+\cdots+a_{0}$

The genus 3 group law

- A genus 3 hyperelliptic curve $y^{2}=x^{7}+\cdots+a_{0}$

The first stage of reduction.

The second stage of reduction.

Functions of divisors

- Let f be a function on E, and $D=\sum_{P \in E(\bar{K})} n_{P}(P)$, then

$$
f(D)=\prod_{P \in E(\bar{K})} f(P)^{n_{P}}
$$

e.g. $E / \mathbb{F}_{163}: y^{2}=x^{3}-x-2 P=(43,154), Q=(46,38), R=(12,35)$,
$S=(5,66)$

- functions $\ell_{P, Q}=y+93 x+85, \ell_{P, P}=y+127 x+90$ and $\ell_{Q, Q}=y+13 x+16$
- divisors $D_{1}=2(R)+(S), D_{2}=3(R)-3(S)$ and $D_{3}=(R)+(S)-2(\mathcal{O})$
- e.g. $\ell_{P, Q}\left(D_{1}\right)=\left(y_{R}+93 x_{R}+85\right)^{2}\left(y_{S}+93 x_{S}+85\right)=122$
- e.g. $\ell_{P, P}\left(D_{2}\right)=\left(y_{R}+127 x_{R}+90\right)^{3} /\left(y_{S}+127 x_{S}+90\right)^{3}=53$
- e.g. can't evaluate any functions at D_{3}, since $\mathcal{O} \in \operatorname{supp}\left(D_{3}\right)$ and \mathcal{O} also in supports of $\left(\ell_{P, Q}\right),\left(\ell_{P, P}\right)$ and $\left(\ell_{Q, Q}\right)$

Weil reciprocity

Weil reciprocity on elliptic curves (but general)
Let f, g on E have disjoint support, then $f((g))=g((f))$

$$
\ell\left(\ell^{\prime}\right)=\ell^{\prime}(\ell) .
$$

5. Pairings on elliptic curves

Pairings are bilinear maps

- The most general definition of an elliptic curve pairing e

$$
\begin{array}{llllll}
e: & \mathbb{G}_{1} & \times & \mathbb{G}_{2} & \rightarrow & \mathbb{G}_{T} \\
e: & E / \mathbb{F}_{q}[r] & \times & E / \mathbb{F}_{q}[r] & \rightarrow & \mu_{r} \in \mathbb{F}_{q^{k}} \\
e: & P & \times & Q & \mapsto & e(P, Q)
\end{array}
$$

- Bilinear means

$$
\begin{aligned}
& e\left(P+P^{\prime}, Q\right)=e(P, Q) \cdot e\left(P^{\prime}, Q\right) \\
& e\left(P, Q+Q^{\prime}\right)=e(P, Q) \cdot e\left(P, Q^{\prime}\right)
\end{aligned}
$$

from which it follows that, for scalars $a, b \in \mathbb{Z}$, we have

$$
e([a] P,[b] Q)=e(P,[b] Q)^{a}=e([a] P, Q)^{b}=e(P, Q)^{a b}=e([b] P,[a] Q) .
$$

The power of bilinearity (some famous examples)

Joux
One-ride tripartite DH

Gentry-Silverberg
Heirarchical ID-based encryption (HIBE)

Boneh-Franklin
Identity-based encryption (IBE)

Attribute-based encryption (ABE)

The Weil and Tate pairings

André Weil

John Tate

Let $f_{r, P}$ be the (unique up to constant) function with divisor $\left(f_{r, P}\right)=r(P)-r(\mathcal{O})$

Weil pairing (in crypto): $\quad e(P, Q)=\frac{f_{r}, P(Q)}{f_{r, Q}(P)}$;
Tate pairing (in crypto): $e(P, Q)=f_{r, P}(Q)^{\left(q^{k}-1\right) / r}$,

The function $f_{r, P}(Q)$ is huuuuuge!

The size of $f_{r, P}(Q)$: 128-bit security

- The pairing function $f_{r, P}(Q)$ is of degree r, where
$r=16798108731015832284940804142231733909759579603404752749028378864165570215949$
- The coefficients in $f_{r, P}(Q)$ depend on P's coordinates, so are all of the size
$P_{x}={ }_{1528302318423266139336655114083719064038274316584629997443682655999115523354}$
- This huge function is impossible to store with all the computing power in the world. Somehow we need to evaluate it at Q, whose x coordinate is
$Q_{x}={ }_{(15550921006333556733405227206218421333411153835559642979852113370177068459559 \cdot u+}$ $3600690644796987290442135137031285206249789514588827679002920807555440045456) \cdot v^{2}+$ (5475264847170057761513968927972623766794030526092071182289628553939256498415 •u+ $16045231392378269041781500461472571507692250280489500368315808811462293278705) \cdot v+$ (13578969743206791049626159973437892548805434308942546900125761281664803554809 •u+ $8414705805435201691796063348962631501393112240468038251361145485591996962517)) \cdot w+$ (2095760324718272519234982374519336043146898698412090865684809945855004557738 • u+ $10991749562144480578133596744105999544930359103290000221828602811069330922292) \cdot v^{2}+$ (563526440913857199739302175501170867491400605855901007410492904987821568516 •u+ $12175465566401923735806619064706225201231722038674162959277121785143969709483) \cdot v+$ $5977392629488041467394421854470109162392545860735885669496575455742917555185 \cdot u+$ 16414735455238441715243107544357668247548687753217062857281803216595664241398

The size of $f_{r, P}(Q)$: 128-bit security

- The pairing function $f_{r, P}(Q)$ is of degree r, where
$r=16798108731015832284940804142231733909759579603404752749028378864165570215949$
- The coefficients in $f_{r, P}(Q)$ depend on P 's coordinates, so are all of the size
$P_{x}={ }_{158830231843266613933645110087110064038274316584629974443682653991155323554}$
- This huge function is impossible to store with all the computing power in the world. Somehow we need to evaluate it at Q, whose x coordinate is
$Q_{x}={ }_{(15550921006333556733405227206218421333411153835559642979852113370177068459559 \cdot u+}$ 3600690644799987290442135137031285206249789514588827679002920807555440045456) $\cdot v^{2}+$ (5475264847170057761513968927972623766794030526092071182289628553939256498415 • u+ $16045231392378269041781500461472571507692250280489500368315808811462293278705) \cdot v+$ (13578969743206791049626159973437892548805434308942546900125761281664803554809 •u+ $8414705805435201691796063348962631501393112240468038251361145485591996962517)) \cdot w+$ (2095760324718272519234982374519336043146898698412090865684809945855004557738 • u+ $10991749562144480578133596744105999544930359103290000221828602811069330922292) \cdot v^{2}+$ (563526440913857199739302175501170867491400605855901007410492904987821568516 •u+ $12175465566401923735806619064706225201231722038674162959277121785143969709483) \cdot v+$ $5977392629488041467394421854470109162392545860735885669496575455742917555185 \cdot u+$ 16414735455238441715243107544357668247548687753217062857281803216595664241398

Remarkably, this can actually be done in less than a millisecond on your PC!!! - find out how on Tuesday!

Summary

(1) Motivation

- ECDLP much harder to solve than DLP \rightarrow ECC has shorter keys and is faster than standard groups
(2) Elliptic curves are groups
- The group operation: chord-and-tangent rule
- Projective space and the point at infinity
- Group axioms
(3) Elliptic curves as cryptographic groups
- Setting up ECDLP instances
- Best (secure) curves have close to prime order
- Point counting, division polynomials, the endomorphism ring
(9) Divisors
- Divisors of functions and functions of divisors
- Divisor class group
- Higher genus examples
- Weil reciprocity
(3) A very brief look at pairings
- A bilinear map that's very useful, but requires huge function to be computed ... much more on Tuesday ...

Questions?

Thanks for your attention

