An Introduction to Elliptic Curves and the
Computation of Cryptographic Pairings

Craig Costello

Technische Universiteit Eindhoven

October 28, 2012

ECC2012 - Querétaro, Mexico

1/60

Why ECC is awesome. . .

@ Why ECC (elliptic curve cryptography) is awesome. ..
o It's faster, more compact and more elegant than other
public-key crypto. settings
@ It brings algebraic/arithmetic geometry and number theory to
life - these things have real-world importance!
e It’s more interesting & fun than other crypto. settings

@ Why ECC (this conference) is awesome. . .
@ It brings some of ECC's biggest experts to you!
@ The co-inventors of ECC are both here!
e It’s more interesting & fun than other crypto.
conferences

2/69

This lecture is

© ...for students & newcomers

© ...slow moving: | will assume you have not seen ECC
before: therefore this talk will be elementary and
(intentionally) slow-moving

© ...example driven: what | lack in formality and
completeness, | make up for by referring you to Ben Smith’s
excellent “Useful stuff’ intro from ECC2011:
http://ecc2011l.loria.fr/slides/summerschool-smith.pdf

© ...accompanied by pictures: what | lack in Spanish, | will
make up for in pictures

© ...accompanied by Magma: | will be working alongside
examples in Magma (all examples/code hyperlinked from my
thesis)

3/69

http://ecc2011.loria.fr/slides/summerschool-smith.pdf

Overview

© Motivation

@ Elliptic curves are groups

© Elliptic curves as cryptographic groups
Q Divisors

© A very brief look at pairings

4/69

1. Motivation

5/69

Private-key vs. Public-key cryptography

BC - WWII:

Caesar Mary, Queen of Scots Enigma Code

must communicate beforehand

Diffie-Hellman-Merkle Rivest-Shamir-Adleman (RSA) Ellis-Cocks-Williamson

BREAKTHROUGH: no need for prior communication!!!

6/69

Diffie-Hellman (Merkle): a toy example

Public values:
g = 10000000000000061 (prime), g = 832022676086941 (generator of Z).

Secret values:
Credit Card %
e)

(@

CREDIT CARD

4275,.3156 837245193

0B825322,0015 0813

B

MR NAME SURNAME

Alice's secret: a=4275315603725493 Bob's secret: b=1083333300180813

Alice computes (public key): Bob computes (public key):
g7 mod g = 9213047582249495 gb mod g = 9893308140872135
Bob can compute: Alice can compute:

98933081408721357 = 8817060794020263 = 9213047582249495°
— gab

Secret keys safe as long as discrete log problem (DLP) is hard

Joint secret safe as long as Diffie-Hellman problem is hard

7/69

Modulus (k izes: and now

1970’s:

q = 1606938044258990275541962092341162602522202993782792835301301.
(200-bit prime)

NOW:

q=
1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084773224075360211
2011387987139335765878976881441662249284743063947412437776789342486548527630221960124609411945308295208

5005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137111.
(1024-bit prime)

8/69

Elliptic curves cryptography (ECC)

mid 1980'’s:

dal

Neal Koblitz Victor Miller

Use elliptic curve (more abstract) groups instead!
y2=x3+ax+b

Subexponential attacks on standard groups don’t apply anymore!!!

q=

1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084773224075360211

2011387987139335765878976881441662249284743063947412437776789342486548527630221960124609411945308295208

5005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137111.
(1024-bit prime)

VS.
q = 1461501637330902918203684832716283019655932542929
(160-bit prime)

9/69

2. Elliptic curves are groups

10 /69

Abelian groups

Recall the definition of an abelian group:

Group (definition)

A group G is a set with an operation + that combines any two
elements to form a third element, satisfying four axioms:

@ 1. Closure - a,b € G impliesa+be G
@ 2. Associativity - (a+ b)+c=a+(b+c) for a,b,c € G
o 3. Identity - unique e € G such thata+e=e+a=a

@ 4. Inverses - for every a € G, there exists a unique element b
such thata+ b=b+a=e

If, in addition, ¢ + d = d + ¢ (always), then G is said to be
abelian.

11/69

Cubic equations

@ Two roots of a cubic polynomial imply the third root

o If o, B are roots of a3x3 + apx? + a1x + ag = 0, then the third
root is . ..

12/69

Cubic equations

@ Two roots of a cubic polynomial imply the third root

o If o, B are roots of a3x3 + apx? + a1x + ag = 0, then the third
root is ...~y = ap/(aza/3), since az(x —a)(x — B)(x —y) =0

@ Roughly speaking: elliptic curves are groups that make use of
this. .. more formally. ..

Bezout's theorem
Two curves with degrees m and n intersect mn times.

13 /69

Cubic equations

@ Two roots of a cubic polynomial imply the third root

o If o, B are roots of a3x3 + apx? + a1x + ag = 0, then the third
root is ...~y = ap/(aza/3), since az(x —a)(x — B)(x —y) =0

@ Roughly speaking: elliptic curves are groups that make use of
this. .. more formally. ..

Bezout's theorem (special case - all we need)

Two curves with degrees 3 and 1 intersect 3 times.

14 /69

Cubic equations

@ Two roots of a cubic polynomial imply the third root

o If a, B are roots of a3x3 + apx? + a1x + ag = 0, then the third
root is ...~y = ap/(aza3), since az(x —a)(x — B)(x —y) =0

@ Roughly speaking: elliptic curves are groups that make use of
this. .. more formally. ..

Bezout's theorem (special case - all we need)

Two curves with degrees 3 and 1 intersect 3 times.

Given P = (xp,yp) and Q = (xq, yq) on a cubic curve,
the line between them intersects the curve once more
This is what we use!

15 /69

Cubic equation — short Weierstrass equation

@ General cubic curve (defined over field K)

C/K: a9x> + agx®y + arxy? + agy” + asx’
+ agxy + a3y2 4+ axx+aiy+a =0

... after some manipulation (left as an exercise) assuming
Char(K) # 2,3 ...

@ Short Weierstrass equation (for elliptic curve over K)

E/K: y>=x>+ax+b

@ Defined over K if a,b € K
@ Points on E can be (x,y) € K x K

16 /69

Elliptic curves: singular vs. smooth

o In E/K :y? =x3+ ax+ b, we need 4a% +27b% # 0 in K, or
else things don't go “smoothly”

(<< ¢

Singular curve Singular curve Smooth curve Smooth curve
y2:X3—3X—|—2 y2:X3 y2:X3+X+1 y2:X3—X

over R. over R. over R. over R.

17/69

Group law example: addition on E/R : y? = x3 — 2x

0,0)
(-1,-1

E/R:y?=x3—-2x:

18 /69

Group law example: addition on E/R : y? = x3 — 2x

E/R: y? = x3 — 2x: addition.

19/69

Group law example: addition on E/R :

E/R: y? = x3 — 2x: addition.

20 /69

Group law example: doubling on E/R : y? = x> — 2x

(O

(_17 _1)

E/R:y? = x3 —2: doubling.

21/69

Group law example: doubling on E/R : y? = x> — 2x

E/R:y? = x3 —2: doubling.

22/69

Elliptic curve group law: addition and doubling

@ Note: an elliptic curve is a group that is defined over a field

@ Points form a group, but coordinates come from underlying
field

o Computing group operation requires field arithmetic . ..

23 /69

Elliptic curve group law: addition and doubling

o Addition: y = Ax+v, A=222 = yp— Axp,

XQ—xp'
xp =M —xp —xq, Yr=—(Mxgr+vV)
3X,%+a
2yp

@ Doubling: same with A = and xp = xq

24 /60

Example E/Q : y? = x3 — 2

Of the first 10 multiples of Of the first 100 multiples of
P =(3,5) in E(Q), 7 had x < 6. P =(3,5) in E(Q), 64 had x < 6.

Of the first 1000 multiples of

_ E:y?=x3—-2overR.
P =(3,5) in E(Q), 635 had x < 6.

25 /69

1+ °
1

| | |
I I I
0123456738910
E/F11: y? = x3 — 2x: the points (excluding O) on E(Fyy).

26 /69

Recall: group law axioms

@ Closure:
if P,Q € E(K)
— cubic equation has coefficients in K
— third root in K
— P+ Qe¢e E(K)
— closed.

@ What about associativity?
@ What about the identity?
@ What about inverses?

@ |s it abelian?

27 /69

Associativity: “proof” by picture

(PeQ)®R

(PeQ)@R. P®(Q®R).

(real proof left as exercise)
28/69

Inverse and Identity: O in affine space?

—R

R

@ Besides all of the rational points (x,y) € A?(K), we need an
additional point O, the point at infinity

@ Helpful in affine drawing to picture it as infinitely high/low, but
formal definition requires projective space - another coordinate...

29 /69

Homogeneous projective coordinates for E

@ Substitute x = X/Z andy = Y/Zinto E: y?> = x>+ ax + b

@ Projective equation is £ : Y2Z = X3 4 aXZ? + bZ3,
coordinates written as (X: Y: Z)

@ Notice all (x,y) € E correspond to (AX: AY: A\Z) € Eyyo; for
reK

@ But there is a point on E;,.; that can’t be scaled back to
E??7?

30/69

Homogeneous projective coordinates for E

@ Substitute x = X/Z andy = Y/Zinto E: y?> = x>+ ax + b

@ Projective equation is £ : Y2Z = X3 4 aXZ? + bZ3,
coordinates written as (X: Y: Z)

@ Notice all (x,y) € E correspond to (AX: AY: A\Z) € Eyyo; for
reK

@ But there is a point on E;,.; that can’t be scaled back to
E??7?

e This point is O = (0: X: 0) - the point at infinity

31/69

Projective space: points in A%(K) are lines in P?(K)

Three points in A%(K).

Z

Three lines in P?(K).

Three lines in P2(K).

Z

Z = —

o= 10 Y

Three lines in]P2(K). 6

Group law axioms

@ Closure:
if P,Q € E(K)
— cubic equation has coefficients in K
— third root in K
— P4+ Q¢ E(K)
— closed.

@ Associativity - yes, “proof by picture”, but see textbooks or
try for yourself

@ ldentity - the point at infinity O
@ Inverses - inverse of (x,y) is (x,—y)

@ Abelian - yes, line through P and @ is line through Q and P

33/69

Group law axioms

@ Closure:
if P,Q € E(K)
— cubic equation has coefficients in K
— third root in K
— P4+ Q¢ E(K)
— closed.

@ Associativity - yes, “proof by picture”, but see textbooks or
try for yourself

@ ldentity - the point at infinity O

@ Inverses - inverse of (x,y) is (x, —y)

@ Abelian - yes, line through P and @ is line through Q and P
Elliptic curves are groups!

34 /69

3. Elliptic curves as
cryptographic groups

Setting up ECDLP instances

@ To set up discrete logarithm instances, we need to compute
[MP=P+P+---+P (m times)

@ m will be huge, so we need to double-and-add to compute
[m]P in O(log, m) steps

e.g. m = 104143711012733238876513676535587592720823664060901595554869421344539731012577

(1,1,1,00110001,11,1110100000001100110011100000,0,1,

41,1,01,0100001000000011101100000001,10,01,0,10,1,1,1,1,
01110000111100001,000100001100000001010000,1,0,1,
,011011101100000101011000111101,00110111010,0,1,
$1,011110010010101111101,00100101,1101110100100,

1,110000011010011010111010101111100001)

Double-and-add takes 255 doublings and 123 additions

36 /69

Interlude: Why ECC is awesome (cont.)

@ Compare traditional groups to ECC at 128-bit security

37/69

Interlude: Why ECC is awesome (cont.)

@ Compare traditional groups to ECC at 128-bit security

@ ECDLP over 256-bit p

= 115792089210356248762697446949407573530086143415290314195533631308867097853951

38/69

Interlude: Why ECC is awesome (cont.)

@ Compare traditional groups to ECC at 128-bit security

@ ECDLP over 256-bit p

= 115792089210356248762697446949407573530086143415290314195533631308867097853951

@ Comparable to standard DLP over g = p'?

= 5809605979138106448096366229894164925191029060964736088043830102874701260870776
6482173033611664754318259437411636363721864991002021782371074490715059944181840
0342787085568400070101868479077691777913820328875711553963993872359271410692118
2842047937244197120686781367972159048261418604511611344078747035121694997713540
2837492929213422600429025184602648562538880748083950512261873985381670986780770
3289556673190854870391629285162566732999470768100097360667042569028375009057813
2879917770402824470487308666594740986238656937509695173630104358360328020157275
7031519995321613484296864529039945826777471856903687985607353073750418292349157
7048399629016421118853172422732137921315256777383769924837799393651892520114015
5310447529182432257109321985968734700568576388269448211861140030742321384794381
4986670503424178211639598575042459804527837974825281240063036698943378230288199
84622457165830536184233243850824347514038491736860262401

39/69

Secure vs. insecure curves: the importance of #E

. NIST-p256 curve (128-bit security)
Let E/F,:y? =x3—3x+b

p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
b = 41058363725152142129326129780047268409114441015993725554835256314039467401291
#E = 115792089210356248762697446949407573529996955224135760342422259061068512044369

#E = 256— bit prime (=~ 128-bit security)

e.g. b =4 instead

Let E/Fq:y?>=x3—3x+b

q = 115792089210356248762697446949407573530086143415290314195533631308867097853951
b=4
#E = 115792089210356248762697446949407573530301458765764575276748425375978192226668
#E = 2% .13 .19 - 179 - 13003 - 1307093479 - 218034068577407083
- 16884307952548170257 - 10464321644447000442097

#E's biggest prime factor is 74-bits (37-bit seeurity)

30 / 69

How many points on E(F,)?

@ Hasse's bound for #E, namely

q+1-2\/q<#E<qg+1+2/q
@ e.g. take g from NISTp256

q+1— [2y/q] = 115792089210356248762697446949407573529405578681527665431107311373540212604928
#E(good) = 115792089210356248762697446949407573529996955224135760342422259061068512044369
q = 115792089210356248762697446949407573530086143415290314195533631308867097853951

#E(bad) = 115792089210356248762697446949407573530301458765764575276748425375978192226668

q+ 1+ [24/q] = 115792089210356248762697446949407573530766708149052962959959951244193983102976

@ This offset of #£E from g + 1 is called t - the trace of
Frobenius, i.e. #E =q+1—1t, [t|<2,/q

41/69

Schoof’s algorithm to find #E =qg+1—t

Y st

Computing #E means computing the trace of Frobenius t

Schoof’s alg. computes t mod 3, t mod 5, t mod 7, ...,
t mod £ such that 3-5-7----£>4,/q

... (skipping details for now) ...

Computes #E in O((log q)8) (polynomial time)

Makes ECC practical (also timely, invented in ‘85)

42/69

Torsion

@ A point P is said to be in the r-torsion E[r] of E, if it is killed
by r, i.e. if [r]P =0

eg. Let E/Fi01: y2 = x>+ x+1, #E =105 = |[(P)|,

P = (47,12)

o Lagrange's theorem: points in (P) will have order in
{1,3,5,7,15,21,35,105}.

o [3]P = (27,7) € E[35]
o [7]P = (83,3) € E[15]
o [21]P = (46,76) € E[5], also (46,76) € E[15] and (46,76) € E[35]

@ For P € EJr], division by 0 occurs in addition of P and
[r — 1]P = —P (same x coordinate)

@ Can we know r-torsion in advance...?

43/69

Division polynomials of E : y?> = x>+ ax + b

@ Can we guess points of order r in advance (i.e. without testing
multiplication by r)?

@ Compute [r](x,y) (leave indeterminate) and look at which (x, y)
values make denominators vanish

@ More formally, division polynomials (defined recursively depending
on E) do this ...

Division polynomials on E

The roots of the r-th division polynomial v, (x, y) correspond to r-torsion
points of E

® Yomi1 € Z[x, a, b] and o, € 2yZ[x, a, b]

e.g. recall E/F1o1 : y? = x>+ x+ 1 with #E =105 =3-5-7

@ tp(x) = 4x3 + 4x + 4 - irreducible in F,[x], so no 2-torsion over F,

° 1p3() = 3x* 4+ 6x% + 12x + 100 = (x + 73)(x + 84)(x* + 45x + 36),
= 17 and x = 28 will give 3-torsion points (over F, or [F3) b /60

Endomorphisms on E/K

@ Endomorphisms ¢ are homomorphisms from E to itself, i.e.
¢: E— E.

@ We have already seen them several times: e.g. the doubling
map is an endomorphism on E, i.e. [2] : E — E

@ In fact, the multiplication-by-m map [m] : E — E is an
endomorphism for all m € Z

djm—lwm-i-l w2m
vr T2

@ There can be others depending on E, eg. E:y?> =x3>+b
then ¢ : (x,y) — (£3x,y) is a map

m]) (-

45 /69

End(E) - the endomorphism ring of E

@ Endomorphisms on E form a ring End(E),
@ addition in End(E) is as usual - (¢1 + ¢2)(P) = ¢1(P) + ¢2(P)
o multiplication is composition - (¢1$2)(P) = ¢1(é2(P))

@ Since each m € Z induces an endomorphism [m] on E,
End(E) is as least as big as Z

@ If there is any additional, e.g. ¢ : (x,y) — (&3x,y) on
E : y2 = x3 + b, then we saw E has complex multiplication

(CM)

@ Over finite fields IF;, we always have an additional
endomorphism regardless of E ...

46 /69

The Frobenius endomorphism 7

The g-power Frobenius endomorphism

For an elliptic curve E/F,, the g-power Frobenius endomorphism
m: E — E is defined by 7 : (x,y) — (x9,y9)

eg q=67, E/Fq:y*> =x>+4x+3, F2 =F,(i) where i? = —1

o Py =(15,50) € E(F,), so
7(Py) = (159,509) = (15,50) = P;

o P, =(16+2i,39 + 30i) € E(Fg), SO
m(P2) = ((16 + 21)9,(39 + 30/)9) = (16 + 65/,39 + 37/)
(“complex conjugation™)

@ 7 maps any point in E(F) to another point in E(F)...
@ the set of points fixed by 7 is exactly E(Fy)

47 /69

Schoof using 7's characteristic poly.

@ In End(E), 7 satisfies
m? —[tlom +[q] =0,
meaning that for any point on E(K), we have
(<7 y) = [1(x% y) + [al(x,y) = O
@ Recall Schoof wanted t mod ¢ for many primes £ — work on

above equation modulo ¢ to find it!

@ We don't know where/what ¢-torsion points are (since we
don't know #E), so we treat them as (x,y) € Fq[x, y]

@ How to work “modulo 7’ on E = work modulo division
polynomials ¢(x, y)

@ This is what keeps computations feasible, allows us to
compute #E in polynomial time
48 /69

Summary so far. ..

@ What we have seen

]

o

How to compute the group law (double and add) on E, so we
can compute [m]P efficiently (and therefore do
(EC)DLP-based protocols)

How to count points efficiently, so we can also make sure the
curves we work on are secure (large prime subgroup)

@ What we haven’t seen

o

There have been many advances to making ECC even more
efficient

e.g. different curve models (not y? = x3 + ax + b) that allow
faster arithmetic (Edwards, Hessian, Jacobi-Quartic)

e.g. using endomorphisms to speed up [m]P computation
(GLV/GLS scalar decomposition)

e.g. extensions of double-and-add, i.e. windowing,
double-base, NAF etc

Hyperelliptic curves. . .

o Attacks and cryptanalysis!!!
o Much more ...

49 /69

4. Divisors

50 /69

The language of divisors

@ The language of divisors is very natural and convenient

@ A divisor D on E is a nice way to write a multi-set of points
on E, written as the formal sum

D=) np(P)

PEE(K)
where all but finitely many np are zero.

o (Defn:) The support supp(D) of D is the set of P where
np ?é 0

o (Defn:) The degree deg(D) of D is the sum of all the np

@ Divisors form a group Div(E), where addition is natural

51/69

An example

D1 =2(P)—3(Q) and D, =3(Q) — (R) — (S) for P,Q,R,S € E

@ D; € Div(E) and D, € Div(E)

e supp(D1) = {P, @} and supp(D;) = {Q, R, S}
o deg(D;) = —1 and deg(D,) = 1

o Dy + D> = 2(P) — (R) — (S)

@ deg(D; + D) =0

52/69

Divisors of functions

@ Divisors are most useful because the simplify everything we need to
know about a function f on the curve

® When studying f € Fq(E), we only care about where f
intersects/coincides with E

@ The divisor of a function f, written as (f), writes down the zeros
and poles (with multiplicities) of f on E

()= Y ordp(f)(P),

PEE(F)

° (fg) = (f) +(g) and (f/g) = (f) — (g), etc
o if D = (f), then D determines f up to constant

Thm: Divisors of functions have degree 0.

Proof: Galbraith's new book (Th 7.7.1)

53/69

Examples (we've already seen)

—(P+Q)
-[2P

©) = (P)+(Q) + (—(P+ @) — 3(0). (&) = 2(P) + (—[2]P) — 3(0).

@ If you have a function and you know all the zeros on E, just
subtract the appropriate multiple of O

54 /69

The divisor class group

@ Divisors of functions are called principal divisors, denoted
Prin(E)

@ Divisors of functions have degree 0, but the converse is not
always true, i.e.

Prin(E) C Div®(E) C Div(E)

The divisor class group
The divisor class group, or Picard group, of E is the quotient group

Pic?(E) = Div%(E)/Prin(E).

@ So, we work only with degree zero divisors, and all divisors
which are (f) for any f's are zero

55 /69

The group law in terms of divisors

R=Po
o (£) =(P)+(Q)+(=R)—3(0) and (v) = (R) +(=R) - 2(0)

@ So ({/v)=(P)+(Q)—(R) — (0), but (¢/v) ~0in
Pic®(E). ..

(P) = (0) +(Q) = (0) = (R) - (0)
@ TcEto(T)—(0)ePic’(E) is a group homomorphism

56 /69

Reduced divisors

o Adivisor 3 _pcg(g) np(P) is called effective if np >0
@ Take the "“effective part” to be the part with all np > 0

A consequence of the Riemann-Roch theorem

On a curve of genus g, every divisor class has a representative
divisor with effective part of degree at most g

7

v
|
[

Reduce (P1) 4 (P2) + (P3) — 3(O) to (R) — (O) in Pic’(E) (genus 1).

57/69

The genus 2 group law

@ Elliptic curves are genus 1 - their higher genus analogues are called
hyperelliptic curves

@ e.g. addition on a genus 2 curve: y? = x> + agx* 4+ .-+ ap

58 /69

The genus 3 group law

@ A genus 3 hyperelliptic curve y?2 = x” 4 --- + a9

£ [avh
Q3 Ry
2
NY
3 W B \
R
A \
The first stage of reduction. The second stage of reduction.

59 /69

Functions of divisors

@ Let f be a function on E, and D = 3, gz np(P), then
f(oy="11 P~

PEE(K)

eg. E/Fie3:y° =x3—x—2 P =(43,154), Q = (46,38), R = (12,35),

S = (5,66)

@ functions lp o =y +93x 485, lp p = y + 127x + 90 and
lo.gq=y+13x+ 16

@ divisors D; = 2(R) + (S), D> = 3(R) — 3(S) and
Ds = (R) +(5) — 2(0)
@ eg. lpo(D1) = (yr + 93xr + 85)%(ys + 93xs + 85) = 122
® eg. lpp(D2) = (yr + 127xg + 90)3/(ys + 127xs + 90)® = 53

@ e.g. can't evaluate any functions at Ds, since O € supp(Ds3) and O
also in supports of (¢p,q). (¢p,p) and (£q,q)

60 / 69

Weil reciprocity

Weil reciprocity on elliptic curves (but general)

Let f, g on E have disjoint support, then ((g)) = g((f))

61/69

5. Pairings on elliptic curves

62 /69

Pairings are bilinear maps

@ The most general definition of an elliptic curve pairing e

e: G x Gy — Gr
e: E/Fq[r] x E/Fqr] — u €F,
e: P X @ — e(P, Q)

@ Bilinear means

e(P+ P, Q) =¢(P,Q)- e(Pl, Q),
e(Pv Q+ Ql) = e(P’ Q) : e(Pv Ql)’

from which it follows that, for scalars a, b € Z, we have
e([a]P, [b]Q) = (P, [b]Q)° = e([a]P, Q)" = e(P, Q)" = e([b] P, [a] Q).

63 /69

The power of bilinearity (some famous examples)

Joux

One-ride tripartite DH

Gentry-Silverberg
Heirarchical ID-based encryption (HIBE)

Boneh-Franklin

Identity-based encryption (IBE)

Sahai- Waters

Attribute-based encryption (ABE)

64 /69

The Weil and Tate pairings

A e
André Weil John Tate

Let f, p be the (unique up to constant) function with divisor

(fr.p) = r(P) = r(O)

Weil pairing (in crypto): e(P,Q) = ';:vg((g;;
Tate pairing (in crypto): e(P, Q) = f, p(Q)@ -1/,

The function £, p(Q) is huuuuuge!

65/69

The size of f, p(Q): 128-bit security

)

The pairing function f, p(Q) is of degree r, where

— 16798108731015832284940804142231733909759579603404752749028378864165570215949

The coefficients in f, p(Q) depend on P's coordinates, so are all of
the size

F)X = 15283023184232661393336451140837190640382743162584629974443682653991135323854

This huge function is impossible to store with all the computing
power in the world. Somehow we need to evaluate it at @, whose x
coordinate is

(;)X — ((15550921060303536733405227206218421303411153835059642979852113370177068459559 - wu-+
3600690644796987290442135137031285206249789514588827679002920807555440045456) 2y
(54752648471700577615139689279726237667940305260920711 939256498415 - u+
16045231392378269041781500461472571507692250280489500368315808811462293278705) - v+
(13578969743206791049626159973437892548805434308942546900125761281664803554809 - wu-
8414705805435201691796063348962631501393112240468038251361145485591996962517)) - w+
(20957603247182725192349823745193360431. 1209(004557738 - u-+
10991749562144480578133596744105999544930359103290000221828602811069330922292) V24
(563526440913857199739302175501170867491400605855901007410492904987821568516 - u-
12175465566401923735806619064706225201231722038674162959277121785143969709483) - v+

5977392629488041467394421854470109162392545860735885669496575455742917555185 - u+
16414735455238441715243107544357668247548687753217062857281803216595664241398

66 / 69

The size of f, p(Q): 128-bit security

@ The pairing function f, p(Q) is of degree r, where

— 16798108731015832284940804142231733909759579603404752749028378864165570215949

@ The coefficients in f, p(Q) depend on P's coordinates, so are all of
the size

F)X = 15283023184232661393336451140837190640382743162584629974443682653991135323854

@ This huge function is impossible to store with all the computing
power in the world. Somehow we need to evaluate it at @, whose x
coordinate is

(;)X — ((15550921060303536733405227206218421303411153835059642979852113370177068459559 - wu-+
3600690644796987290442135137031285206249789514588827679002920807555440045456) 2y
(54752648471700577615139689279726237667940305260920711 939256498415 - u+
16045231392378269041781500461472571507692250280489500368315808811462293278705) - v+
(13578969743206791049626159973437892548805434308942546900125761281664803554809 - wu-
8414705805435201691796063348962631501393112240468038251361145485591996962517)) - w+
(20957603247182725192349823745193360431. 1209(004557738 - u-+
10991749562144480578133596744105999544930359103290000221828602811069330922292) V24
(563526440913857199739302175501170867491400605855901007410492904987821568516 - u-
12175465566401923735806619064706225201231722038674162959277121785143969709483) - v+

5977392629488041467394421854470109162392545860735885669496575455742917555185 - u+
16414735455238441715243107544357668247548687753217062857281803216595664241398

Remarkably, this can actually be done in less than a millisecond on

your PCH! - find out how on Tuesday!
67 /69

© Motivation
@ ECDLP much harder to solve than DLP — ECC has shorter
keys and is faster than standard groups
@ Elliptic curves are groups
@ The group operation: chord-and-tangent rule
@ Projective space and the point at infinity
@ Group axioms
© Elliptic curves as cryptographic groups
o Setting up ECDLP instances
o Best (secure) curves have close to prime order
@ Point counting, division polynomials, the endomorphism ring
© Divisors
@ Divisors of functions and functions of divisors
o Divisor class group
o Higher genus examples
o Weil reciprocity
© A very brief look at pairings
@ A bilinear map that’s very useful, but requires huge function to

be computed ... much more on Tuesday ... 6 /60

Thanks for your attention

69 /69

