Fast implementations in genus 2

Craig Costello TU/e

Ei/Ψ seminar series

Joint work with Joppe Bos, Huseyin Hisil and Kristin Lauter

September 21, 2012

Genus 2: why bother?

• Everything is so much more complicated in genus 2

• Group law, point counting, underlying theory...

Genus 2: the reason to bother

Elliptic: $E: y^2 = x^3 + \dots$ Hyperelliptic: $C: y^2 = x^5 + \dots$

• #E and #C are close over same size field $\mathbb{F}_q \dots BUT$

• Elliptic group size $\approx \#E$, whilst hyperelliptic group size $\approx \#C^2$

Genus 2 uses smaller fields

• **g=1**: Bernstein's curve25519:
$$E/\mathbb{F}_p: y^2 = x^3 + ...$$
 over $p = 2^{255} - 19 =$

57896044618658097711785492504343953926634992332820282019728792003956564819949

has group order $\#E = 2^3 \cdot$

7237005577332262213973186563042994240857116359379907606001950938285454250989 (253 bits)

• **g=2**: One curve we're using:
$$C/\mathbb{F}_p : y^2 = x^5 + ...$$
 over $p = 2^{128} - 173 =$

340282366920938463463374607431768211283

has group order #Jac(C) =

115792089237316195429342203801033554170931615651881657307308068079702089951781 (257 bits)

Group law complexity in general case

A fair fight

- The very best curves in genus 2 have not been available
- Bernstein ECC'06 (Elliptic vs. Hyperelliptic):

"Standardise genus 2 curves for cryptography? I think that's premature...let's wait for point counting to catch up, then standardize..."

- Good news: point counting has caught up! even in the most general case
- Thanks Gaudry-Schost'12 and many others!
- Elliptic vs. Hyperelliptic: it's time for a fair fight.

- The Kummer surface: Gaudry's analogue of Montgomery ladder in genus 1
- GLV scalar decomposition: genus 2 gets twice as big (dimension) scalar decomposition than genus 1
- Combine the two?
- Many other options documented (taxonomy): classic Kummer surface formulas, generic curves, real hyperelliptic curves...

1. The Kummer surface

Montgomery ladder in genus 1

Who needs the y-coordinate?

- Don't use (Q_x, Q_y) and (R_x, R_y) to get (S_x, S_y)
- Instead, use $Q_x, R_x, (Q-R)_x$ to get $(Q+R)_x$
- Enough to define scalar multiplication: Montgomery ladder
- To compute [k]P, always keep Q = [n+1]P, R = [n]P, so we have Q R = P
- eBACS current leader (Bernstein's curve25519) uses this

The genus 2 analogue: the Kummer surface \mathcal{K}

- For $P = (x_P, y_P)$, Montgomery took $P \mapsto P_x$ (two-to-one)
- There is a map $\operatorname{Jac}(\mathcal{C}) \to \mathcal{K}$ that is two-to-one

$$\mathcal{K}: \qquad (x^4 + y^4 + z^4 + t^4) + 2Exyzt - F(x^2t^2 + y^2z^2) \\ - G(x^2z^2 + y^2t^2) - H(x^2y^2 + z^2t^2) = 0$$

• We lose information, but on the other hand can enjoy beautiful symmetries that exist on *K*...

The genus 2 analogue: the Kummer surface \mathcal{K}

• e.g. to get from
$$P = (x, y, z, t), Q = (\underline{x}, \underline{y}, \underline{z}, \underline{t}),$$

 $P - Q = (\overline{x}, \overline{y}, \overline{z}, \overline{t})$ to $P + Q = (X, Y, Z, T)$
 $x' = (x^2 + y^2 + z^2 + t^2) \cdot (\underline{x}^2 + \underline{y}^2 + \underline{z}^2 + \underline{t}^2)$
 $y' = (x^2 + y^2 - z^2 - t^2) \cdot (\underline{x}^2 + \underline{y}^2 - \underline{z}^2 - \underline{t}^2)$
 $z' = (x^2 - y^2 + z^2 - t^2) \cdot (\underline{x}^2 - \underline{y}^2 + \underline{z}^2 - \underline{t}^2)$
 $t' = (x^2 - y^2 - z^2 + t^2) \cdot (\underline{x}^2 - \underline{y}^2 - \underline{z}^2 + \underline{t}^2)$
 $X = (x'^2 + y'^2 - z'^2 + t'^2)/\overline{x}$
 $Y = (x'^2 + y'^2 - z'^2 - t'^2)/\overline{y}$
 $Z = (x'^2 - y'^2 + z'^2 - t'^2)/\overline{z}$
 $T = (x'^2 - y'^2 - z'^2 + t'^2)/\overline{t}$

- Thanks again to Gaudry! (and Chudnovsky brothers)...doubling even nicer!
- K not a group, but "pseudo-group" enough to define scalar multiplications via ladder (and do Diffie-Hellman)
- Total per bit (DBL+ADD) of scalar: 25 × 𝔽_p multiplications!!!

Things don't look so bad for g = 2 anymore

per bit: $\approx 10 \times 256$ -bit muls vs. $\approx 5025 \times 128$ -bit muls

Generic vs. Kummer: $p = 2^{127} - 1$

• generic1271: (CM method) #J = 254 bit prime

$$C/\mathbb{F}_{p}: y^{2} = x^{5} + f_{3}x^{3} + f_{2}x^{2} + f_{1}x + f_{0}$$

 $f_3 = 34744234758245218589390329770704207149,$ $f_1 = 90907655901711006083734360528442376758,$
$$\begin{split} f_2 &= 132713617209345335075125059444256188021, \\ f_0 &= 6667986622173728337823560857179992816. \end{split}$$

#J =28948022309329048848169239995659025138451177973091551374101475732892580332259 • kummer1271: (Gaudry-Schost'12) #J = $16 \cdot r$ (251-bit prime)

$$\mathcal{K}'/\mathbb{F}_p: E \cdot xyzt - ((x^2+y^2+z^2+t^2) - F(xt+yz) - G(xz+yt) - H(xy+zt))^2 = 0.$$

E = 34744234758245218589390329770704207149, G = 90907655901711006083734360528442376758,
$$\begin{split} F &= 132713617209345335075125059444256188021\,, \\ H &= 6667986622173728337823560857179992816\,. \end{split}$$

 $\#J = {}^{2^4} \cdot {}^{1809251394333065553571917326471206521441306174399683558571672623546356726339}$

- The (current!) speeds (\approx 128-bit sec) Intel core i7-3520M (2.90 GHz)
 - i. generic1271: 296,000 cycles (and $\downarrow)$
 - ii. kummer1271: 141,000 cycles (and \downarrow)

iii. . . .

2. GLV scalar decomposition

GLV: e.g. Buhler-Koblitz curves

- Let $p = 1 + 2^{64} 2^{66} + 2^{68} 2^{70} + 2^{72} + 2^{74} + 2^{76} 2^{79} + 2^{127}$
- Consider the prime order (254-bit) Buhler-Koblitz curve: $C/\mathbb{F}_p: y^2 = x^5 + 17$

• #J = 28948022309328876595115567994214488524823328209723866335483563634241778912751

- There is a map on ${\mathcal C}$, $\phi:(x,y)\mapsto (\xi_5x,y)$ where $\xi_5^5=1$
- It induces a map on $\operatorname{Jac}(C)$ (Mumford coordinates): $\phi: (u_1, u_0, v_1, v_0) \mapsto (\xi_5 u_1, \xi_5^2 u_0, \xi_5^4 v_1, v_0)$
- For $D \in \operatorname{Jac}(C)$, $\phi(D)$ is a scalar multiple $[\lambda]D$ of D
- Minimal polynomial $\phi^4 + \phi^3 + \phi^2 + \phi + 1$, so $\phi^2(D)$ and $\phi^3(D)$ will also be useful

GLV: e.g. Buhler-Koblitz curves

- Take a random $D = (u_1, u_0, v_1, v_0)$, assume we have to compute the scalar multiplication by k = 23477399837278936923599493713286470955314785798347519197199578120259089016680
- The endomorphism ϕ corresponds to multiplication by λ =7831546867685512705297615980651794586753229241310765320406147783708756285646
- So (essentially) for free we get

$$D, \qquad \phi(D) = [\lambda]D, \qquad \phi^2(D) = [\lambda^2]D, \qquad \phi^3(D) = [\lambda^3]D$$

 How best to combine the 4 scalar multiples?... find the minimum k₀, k₁, k₂, k₃ such that

$$[k]D = [k_0]D + [k_1]\phi(D) + [k_2]\phi^2(D) + [k_3]\phi^3(D)$$

- k = 23477399837278936923599493713286470955314785798347519197199578120259089016680
- Finding k_0 , k_1 , k_2 , k_3 s.t. $[k]D = [k_0]D + [k_1]\phi(D) + [k_2]\phi^2(D) + [k_3]\phi^3(D)$ involves solving a shortest-vector in a lattice problem
- We implement Park-Jeong-Lim (EuroCrypt'02) division in $\mathbb{Z}[\alpha]$ algorithm, so that (in $\approx 20 \times \mathbb{F}_p$ muls), we get

$$k_0 = -6344646642321980551$$
 (63 bits)

- $k_1 = -3170471730617986668$ (62 bits)
- $k_2 = -4387949940648063094$ (62 bits)

$$k_3 = 3721725683392112311$$
 (62 bits)

• How to proceed?...

GLV: e.g. Buhler-Koblitz curves

- $[k]D = [k_0]D + [k_1]\phi(D) + [k_2]\phi^2(D) + [k_3]\phi^3(D)$
- Stack the binary sequences on top of each other
- Precompute $[[b_0]D, [b_1]D_1, [b_2]D_2, [b_3]D_3]$ for $b_i \in \{0, 1\}$

- Instead of 254 doublings and approx. 127 additions, we have 63 doublings and 80 additions
- (GLS): If window size is bigger than dimension of decomposition (e.g. w > 4), windowing is faster nice!

- The (current!) speeds (\approx 128-bit sec) Intel core i7-3520M (2.90 GHz)
 - i. generic1271: 296,000 cycles (and $\downarrow)$
 - ii. kummer1271: 141,000 cycles (and \downarrow)
 - iii. GLV4-127eps: 171,000 cycles (and \downarrow)

iv. . . .

3. GLV on the Kummer surface (the Holy Grail in genus 2?)

- Using the **Kummer surface** improved cycles from 296,000 to 141,000
- Exploiting **endomorphisms** improved cycles from 296,000 to 171,000
- Natural question: what if there were **endomorphisms** we could exploit on the **Kummer surface**?

- Again, Gaudry to the rescue: he noticed an endomorphism that can possibly exist
- Consider the doubling [2](x, y, z, t) = (X, Y, Z, T) on \mathcal{K}

$$\begin{aligned} x' &= (x^2 + y^2 + z^2 + t^2) \\ y' &= y_0'(x^2 + y^2 - z^2 - t^2) \\ z' &= z_0'(x^2 - y^2 + z^2 - t^2) \\ t' &= t_0'(x^2 - y^2 - z^2 + t^2) \\ X &= (x'^2 + y'^2 + z'^2 + t'^2) \\ Y &= y_0(x'^2 + y'^2 - z'^2 - t'^2) \\ Z &= z_0(x'^2 - y'^2 + z'^2 - t'^2) \\ T &= t_0(x'^2 - y'^2 - z'^2 + t'^2) \end{aligned}$$

where $y'_0, z'_0, t'_0, y_0, z_0, t_0$ are all constants that depend on the Kummer surface.

- What if we can find a Kummer with $y'_0 = y_0$, $t'_0 = t_0$, $z'_0 = z_0$?
- Then doubling is the same operation on top of itself

- Again, Gaudry to the rescue: he saw an endomorphism that could possibly exist
- Consider the doubling [2](x, y, z, t) = (X, Y, Z, T) on \mathcal{K}

$$x' = (x^2 + y^2 + z^2 + t^2)$$

$$y' = y_0(x^2 + y^2 - z^2 - t^2)$$

$$z' = z_0(x^2 - y^2 + z^2 - t^2)$$

$$t' = t_0(x^2 - y^2 - z^2 + t^2)$$

pause

$$X = (x'^2 + y'^2 + z'^2 + t'^2)$$

$$Y = y_0(x'^2 + y'^2 - z'^2 - t'^2)$$

$$Z = z_0(x'^2 - y'^2 + z'^2 - t'^2)$$

$$T = t_0(x'^2 - y'^2 - z'^2 + t'^2)$$

where $y'_0, z'_0, t'_0, y_0, z_0, t_0$ are all constants that depend on the Kummer surface.

- What if we can find a Kummer with $y'_0 = y_0$, $t'_0 = t_0$, $z'_0 = z_0$?
- Then doubling is the same operation on top of itself
- i.e. $\phi(\phi(P)) = [2]P$, so we must have $\phi = [\sqrt{2}]$ endo.

What curves can have this nice property?

- If these parameter choices on ${\cal K}$ imply $[\sqrt{2}]$ endomorphism on ${\cal K},$ then \ldots
- . . . perhaps families whose Jacobians have RM by $\sqrt{2}$ can find ${\cal K}$'s with this endomorphism
- TRUE! many such "families"
- e.g. Van-Wamelen family with quartic CM field $\mathbb{Q}(\sqrt{-2+\sqrt{2}})$

$$C_{VW}: y^2 = -x^5 + 3x^4 + 2x^3 - 6x^2 - 3x + 1.$$

gives \mathcal{K} with $y'_0 = y_0$, $t'_0 = t_0$, $z'_0 = z_0$ and therefore $\phi = [\sqrt{2}]$ endomorphism on \mathcal{K}

• To compute [k]P on \mathcal{K} , compute $Q = \phi(P) = [\sqrt{2}]P$ decompose as

$$[k]P = [k_0]P + [k_1]Q,$$

where k_0, k_1 are both half the size of k.

- Beware: can't compute regular additions on \mathcal{K} , must use 2-dimensional differential addition chain to compute $[k_0]P + [k_1]Q$
- Many fewer operations than [k]P... this is the hope
- Such a chain needs as input P (got it), Q (got it) and Q P (need it)
- My current headache: what is Q P... we can't subtract on \mathcal{K}
- rephrase: how does $(\phi 1)$ act on \mathcal{K} ?

Summary: Diffie-Hellman over prime fields

- Fastest eBACS benchmark...
 Dan's curve25519 (genus 1): 180,000 cycles
- Fastest published... Longa-Sica Dim2GLV (genus 1): 145,000 cycles
- Our current (genus 2) Kummer (GS curve): 141,000 cycles ↓
- All of these are much faster than NIST standards
- ... time to suggest genus 2 standards???

- Current Kummer parameterisation insists that 16 | #Jac ... can we loosen this restriction using analytic theory?
- Are there well known families which are especially Kummer-friendly?
- What about side-channel resistance?
- Classical Kummer surface: the maps Jac(C) ↔ K_{classic} so much nicer (formulas slower though)
- Generic (real and imaginary) hyper elliptic curvets improved computations in both cases