Fast crypto in genus 2

Craig Costello

Microsoft Research
Joint work with Joppe Bos, Huseyin Hisil and Kristin Lauter

September 14, 2012

Genus 2: why bother?

- Everything is so much more complicated in genus 2

- Point counting, group law, underlying theory...

Genus 2: the reason to bother

Elliptic: $E: y^{2}=x^{3}+\ldots$

Hyperelliptic: $C: y^{2}=x^{5}+\ldots$

- \#E and \#C are close over same size field $\mathbb{F}_{q} \ldots$. BUT
- Elliptic group size $\approx \# E$, whilst hyperelliptic group size $\approx \# C^{2}$

Genus 2 uses smaller fields

- $\mathbf{g}=1$: Bernstein's curve25519: $E / \mathbb{F}_{p}: y^{2}=x^{3}+\ldots$ over

$$
p=2^{255}-19=
$$

57896044618658097711785492504343953926634992332820282019728792003956564819949
has group order $\# E=2^{3}$.
7237005577332262113973186563042994240857116359379907606001950938285454250989 (253 bits)

- $\mathbf{g}=$ 2: One curve we're using: $C / \mathbb{F}_{p}: y^{2}=x^{5}+\ldots$ over

$$
p=2^{128}-173=
$$

340282366920938463463374607431768211283
has group order $\# \operatorname{Jac}(C)=$
115792089237316195429342203801033554170931615651881657307308068079702089951781 (257 bits)

50×128-bit muls

- unfortunately: 256 -bit mul $\ll 4 \times 128$-bit mul
- BUT genus 1 estimate uses all the known tricks (genus 2's doesn't)

A fair fight

- The very best curves in genus 2 have not been available
- Bernstein ECC'06:
"Standardise genus 2 curves for cryptography? I think that's premature. . . let's wait for point counting to catch up, then standardize..."
- Good news: point counting has caught up! even in the most general case
- Thanks Gaudry-Schost'12 - and many others!
- Elliptic vs. Hyperelliptic: it's time for a fair fight.
(1) The Kummer surface: Gaudry's analogue of Montgomery ladder in genus 1
(2) GLV scalar decomposition: genus 2 gets twice as big (dimension) scalar decomposition than genus 1
(3) Combine the two?
(9) Many other options documented (taxonomy): classic Kummer surface formulas, generic curves, real hyperelliptic curves. . .

1. The Kummer surface

Who needs the y-coordinate?

- Don't use $\left(Q_{x}, Q_{y}\right)$ and $\left(R_{x}, R_{y}\right)$ to get $\left(S_{x}, S_{y}\right)$
- Instead, use $Q_{x}, R_{x},(Q-R)_{x}$ to get $(Q+R)_{x}$
- Enough to define scalar multiplication: Montgomery ladder
- To compute $[k] P$, always keep $Q=[n+1] P, R=[n] P$, so we have $Q-R=P$

The genus 2 analogue: the Kummer surface \mathcal{K}

- For $P=\left(x_{P}, y_{P}\right)$, Montgomery took $P \mapsto P_{x}$ (two-to-one)
- There is a map $\operatorname{Jac}(C) \rightarrow \mathcal{K}$ that is two-to-one
$\mathcal{K}: \quad\left(x^{4}+y^{4}+z^{4}+t^{4}\right)+2 E x y z t-F\left(x^{2} t^{2}+y^{2} z^{2}\right)$ $-G\left(x^{2} z^{2}+y^{2} t^{2}\right)-H\left(x^{2} y^{2}+z^{2} t^{2}\right)=0$
- We lose information, but on the other hand can enjoy beautiful symmetries that exist on \mathcal{K}...

The genus 2 analogue: the Kummer surface \mathcal{K}

- e.g. to get from $P=(x, y, z, t), Q=(\underline{x}, \underline{y}, \underline{z}, \underline{t})$,

$$
\begin{aligned}
P-Q=(\bar{x}, \bar{y} & , \bar{z}, \bar{t}) \text { to } P+Q=(X, Y, Z, T) \\
x^{\prime} & =\left(x^{2}+y^{2}+z^{2}+t^{2}\right) \cdot\left(\underline{x}^{2}+\mathrm{y}^{2}+\underline{z}^{2}+\underline{\mathrm{t}}^{2}\right) \\
y^{\prime} & =\left(x^{2}+y^{2}-z^{2}-t^{2}\right) \cdot\left(\underline{x}^{2}+\mathrm{y}^{2}-\underline{\mathrm{z}}^{2}-\underline{\mathrm{t}}^{2}\right) \\
z^{\prime} & =\left(x^{2}-y^{2}+z^{2}-t^{2}\right) \cdot\left(\underline{\mathrm{x}}^{2}-\mathrm{y}^{2}+\underline{\mathrm{z}}^{2}-\underline{\mathrm{t}}^{2}\right) \\
t^{\prime} & =\left(x^{2}-y^{2}-z^{2}+t^{2}\right) \cdot\left(\underline{\mathrm{x}}^{2}-\underline{\mathrm{y}}^{2}-\underline{\mathrm{z}}^{2}+\underline{\mathrm{t}}^{2}\right) \\
X & =\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}+t^{\prime 2}\right) / \bar{x} \\
Y & =\left(x^{\prime 2}+y^{\prime 2}-z^{\prime 2}-t^{\prime 2}\right) / \bar{y} \\
Z & =\left(x^{\prime 2}-y^{\prime 2}+z^{\prime 2}-t^{\prime 2}\right) / \bar{z} \\
T & =\left(x^{\prime 2}-y^{\prime 2}-z^{\prime 2}+t^{\prime 2}\right) / \bar{t}
\end{aligned}
$$

- Thanks again to Gaudry! (and Chudnovsky brothers, and theta functions)... doubling even nicer!
- \mathcal{K} not a group, but "pseudo-group" - enough to define scalar multiplications via ladder (and do Diffie-Hellman)
- Total per bit (DBL+ADD) of scalar: $25 \times \mathbb{F}_{p}$ multiplications!!!

Things don't look so bad for $g=2$ anymore

per bit: $\approx 10 \times 256$-bit muls vs. $\approx 5025 \times 128$-bit muls

Generic vs. Kummer: $p=2^{127}-1$

- generic1271: (CM method) $\# \mathrm{~J}=254$ bit prime

$$
\begin{gathered}
C / \mathbb{F}_{p}: y^{2}=x^{5}+f_{3} x^{3}+f_{2} x^{2}+f_{1} x+f_{0} \\
f_{3}=34744234758245218589390329770704207149, \quad f_{2}=132713617209345335075125059444256188021, \\
f_{1}=9090765590171100608373436052842376758, \quad f_{0}=6667986621737283782356085717999816 . \\
\# \mathrm{~J}=28948022309329048848169239995659025138451177973091551374101475732892580332259
\end{gathered}
$$

- kummer1271: (Gaudry-Schost'12) \#J $=16 \cdot r$ (251-bit prime)

$$
\begin{aligned}
& \mathcal{K}^{\prime} / \mathbb{F}_{p}: E \cdot x y z t-\left(\left(x^{2}+y^{2}+z^{2}+t^{2}\right)-F(x t+y z)\right. \\
&-G(x z+y t)-H(x y+z t))^{2}=0 .
\end{aligned}
$$

$$
\begin{array}{ll}
E=34744234758245218589390329770704207149, & F=132713617209345335075125059444256188021 \\
G=90907655901711006083734360528442376758, & H=6667986622173728337823560857179992816
\end{array}
$$

$\# \mathrm{~J}=2^{4} \cdot 1809251394333065553571917326471206521441306174399683558571672623546356726339$

Generic vs. Kummer: $p=2^{127}-1$

- Microsoft's genus 2 library (≈ 128-bit sec) - Intel core i7-3520M (2.90 GHz)
i. generic1271: 352,000 cycles (and \downarrow)
ii. kummer1271: 150,000 cycles (and \downarrow) iii. ...

2. GLV scalar decomposition

GLV: e.g. Buhler-Koblitz curves

- Let $p=1+2^{64}-2^{66}+2^{68}-2^{70}+2^{72}+2^{74}+2^{76}-2^{79}+2^{127}$
- Consider the prime order (254-bit) Buhler-Koblitz curve:

$$
C / \mathbb{F}_{p}: y^{2}=x^{5}+17
$$

- $\# J={ }^{28948022309328876595115567944214885248233282097238663548356363424178912751}$
- There is a map on $C, \phi:(x, y) \mapsto\left(\xi_{5} x, y\right)$ where $\xi_{5}^{5}=1$
- It induces a map on $\operatorname{Jac}(C)$ (Mumford coordinates):

$$
\phi:\left(u_{1}, u_{0}, v_{1}, v_{0}\right) \mapsto\left(\xi_{5} u_{1}, \xi_{5}^{2} u_{0}, \xi_{5}^{4} v_{1}, v_{0}\right)
$$

- For $D \in \operatorname{Jac}(C), \phi(D)$ is a scalar multiple $[\lambda] D$ of D
- Minimal polynomial $\phi^{4}+\phi^{3}+\phi^{2}+\phi+1$, so $\phi^{2}(D)$ and $\phi^{3}(D)$ will also be useful

GLV: e.g. Buhler-Koblitz curves

- Take a random $D=\left(u_{1}, u_{0}, v_{1}, v_{0}\right)$, assume we have to compute the scalar multiplication by
$k=2347739833727893693599493713286470955314785798347519197199578120259089016680$
- The endomorphism ϕ corresponds to multiplication by
$\lambda=7831546867685512705297615980651794586753229241310765320406147783708756285646$
- So (essentially) for free we get
$D, \quad \phi(D)=[\lambda] D, \quad \phi^{2}(D)=\left[\lambda^{2}\right] D, \quad \phi^{3}(D)=\left[\lambda^{3}\right] D$
- How best to combine the 4 scalar multiples?... find the minimum $k_{0}, k_{1}, k_{2}, k_{3}$ such that

$$
[k] D=\left[k_{0}\right] D+\left[k_{1}\right] \phi(D)+\left[k_{2}\right] \phi^{2}(D)+\left[k_{3}\right] \phi^{3}(D)
$$

GLV: e.g. Buhler-Koblitz curves

- $k=23477399837278936923599493713286470955314785798347519197199578120259089016680$
- Finding $k_{0}, k_{1}, k_{2}, k_{3}$ s.t.
$[k] D=\left[k_{0}\right] D+\left[k_{1}\right] \phi(D)+\left[k_{2}\right] \phi^{2}(D)+\left[k_{3}\right] \phi^{3}(D)$ involves solving a shortest-vector in a lattice problem
- We implement Park-Jeong-Lim (EuroCrypt'02) division in $\mathbb{Z}[\alpha]$ algorithm, so that (in $\approx 20 \times \mathbb{F}_{p}$ muls), we get

$$
\begin{array}{ll}
k_{0}=-6344646642321980551 & (63 \mathrm{bits}) \\
k_{1}=-3170471730617986668 & (62 \mathrm{bits}) \\
k_{2}=-4387949940648063094 & (62 \mathrm{bits}) \\
k_{3}=3721725683392112311 & (62 \mathrm{bits})
\end{array}
$$

- How to proceed?...

GLV: e.g. Buhler-Koblitz curves

- $[k] D=\left[k_{0}\right] D+\left[k_{1}\right] \phi(D)+\left[k_{2}\right] \phi^{2}(D)+\left[k_{3}\right] \phi^{3}(D)$
- Stack the binary sequences on top of each other
- Precompute $\left[\left[b_{0}\right] D,\left[b_{1}\right] D_{1},\left[b_{2}\right] D_{2},\left[b_{3}\right] D_{3}\right]$ for $b_{i} \in\{0,1\}$

$$
\begin{array}{ll}
k_{0}=[1,0,1,1,0,0,0,0,0,0,0,1, & \ldots(63 \text { bits }) \\
k_{1}=[0,1,0,1,0,1,1,1,1,1,1,1, & \ldots(63 \text { bits }) \\
k_{2}=[0,1,1,1,1,0,0,1,1,1,0,0, & \ldots(63 \text { bits }) \\
k_{3}=[0,1,1,0,0,1,1,1,0,1,0,0, & \ldots(63 \text { bits })
\end{array}
$$

- Instead of 254 doublings and approx. 127 additions, we have 63 doublings and 80 additions
- Thanks to Patrick for point out: if window size is bigger than dimension of decomposition (e.g. $w>4$), windowing is faster nice!

Generic vs. Kummer vs. GLV

- Microsoft's genus 2 library (≈ 128-bit sec) - Intel core i7-3520M (2.90 GHz)
i. generic1271: 352,000 cycles (and \downarrow)
ii. kummer 1271: 150,000 cycles (and \downarrow)
iii. GLV4-127eps: 180,000 cycles (and \downarrow)
iv. ...

3. GLV on the Kummer surface (the Holy Grail in genus 2?)

Endomorphisms on the Kummer surface

- Using the Kummer surface improved cycles from 352,000 to 150,000
- Exploiting endomorphisms improved cycles from 352,000 to 180,000
- Natural question: what if there were endomorphisms we could exploit on the Kummer surface?
- Again, Gaudry to the rescue: he saw an endomorphism that could possibly exist
- Consider the doubling [2] $(x, y, z, t)=(X, Y, Z, T)$ on \mathcal{K}

$$
\begin{aligned}
& x^{\prime}=\left(x^{2}+y^{2}+z^{2}+t^{2}\right) \\
& y^{\prime}=y_{0}^{\prime}\left(x^{2}+y^{2}-z^{2}-t^{2}\right) \\
& z^{\prime}=z_{0}^{\prime}\left(x^{2}-y^{2}+z^{2}-t^{2}\right) \\
& t^{\prime}=t_{0}^{\prime}\left(x^{2}-y^{2}-z^{2}+t^{2}\right) \\
& X=\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}+t^{\prime 2}\right) \\
& Y=y_{0}\left(x^{\prime 2}+y^{\prime 2}-z^{\prime 2}-t^{\prime 2}\right) \\
& Z=z_{0}\left(x^{\prime 2}-y^{\prime 2}+z^{\prime 2}-t^{\prime 2}\right) \\
& T=t_{0}\left(x^{\prime 2}-y^{\prime 2}-z^{\prime 2}+t^{\prime 2}\right)
\end{aligned}
$$

where $y_{0}^{\prime}, z_{0}^{\prime}, t_{0}^{\prime}, y_{0}, z_{0}, t_{0}$ are all constants that depend on the Kummer surface.

- What if we can find a Kummer with $y_{0}^{\prime}=y_{0}, t_{0}^{\prime}=t_{0}, z_{0}^{\prime}=z_{0}$?
- Then doubling is the same operation on top of itself
- Again, Gaudry to the rescue: he saw an endomorphism that could possibly exist
- Consider the doubling [2] $(x, y, z, t)=(X, Y, Z, T)$ on \mathcal{K}

$$
\begin{aligned}
x^{\prime} & =\left(x^{2}+y^{2}+z^{2}+t^{2}\right) \\
y^{\prime} & =y_{0}\left(x^{2}+y^{2}-z^{2}-t^{2}\right) \\
z^{\prime} & =z_{0}\left(x^{2}-y^{2}+z^{2}-t^{2}\right) \\
t^{\prime} & =t_{0}\left(x^{2}-y^{2}-z^{2}+t^{2}\right) \\
\text { pause } & \\
X & =\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}+t^{\prime 2}\right) \\
Y & =y_{0}\left(x^{\prime 2}+y^{\prime 2}-z^{\prime 2}-t^{\prime 2}\right) \\
Z & =z_{0}\left(x^{\prime 2}-y^{\prime 2}+z^{\prime 2}-t^{\prime 2}\right) \\
T & =t_{0}\left(x^{\prime 2}-y^{\prime 2}-z^{\prime 2}+t^{\prime 2}\right)
\end{aligned}
$$

where $y_{0}^{\prime}, z_{0}^{\prime}, t_{0}^{\prime}, y_{0}, z_{0}, t_{0}$ are all constants that depend on the Kummer surface.

- What if we can find a Kummer with $y_{0}^{\prime}=y_{0}, t_{0}^{\prime}=t_{0}, z_{0}^{\prime}=z_{0}$?
- Then doubling is the same operation on top of itself
- i.e. $\phi(\phi(P))=[2] P$, so we must have $\phi=[\sqrt{2}]$ endo.

What curves can have this nice property?

- If these parameter choices on \mathcal{K} imply $[\sqrt{2}]$ endomorphism on \mathcal{K}, then ...
- ... perhaps all families whose Jacobians have RM by $\sqrt{2}$ can find \mathcal{K} 's with this endomorphism
- TRUE! many such "families"
- e.g. Van-Wamelen family with quartic CM field $\mathbb{Q}(\sqrt{-2+\sqrt{2}})$

$$
C_{V W}: y^{2}=-x^{5}+3 x^{4}+2 x^{3}-6 x^{2}-3 x+1
$$

gives \mathcal{K} with $y_{0}^{\prime}=y_{0}, t_{0}^{\prime}=t_{0}, z_{0}^{\prime}=z_{0}$ and therefore $\phi=[\sqrt{2}]$ endomorphism on \mathcal{K}

- To compute $[k] P$ on \mathcal{K}, compute $Q=\phi(P)=[\sqrt{2}] P$ decompose as

$$
[k] P=\left[k_{0}\right] P+\left[k_{1}\right] Q,
$$

where k_{0}, k_{1} are both half the size of k.

- Beware: can't compute regular additions on \mathcal{K}, must use 2-dimensional differential addition chain to compute $\left[k_{0}\right] P+\left[k_{1}\right] Q$
- Many fewer operations than $[k] P$... this is the hope
- Such a chain needs as input P (got it), Q (got it) and $Q-P$ (need it)
- My main Summer headache: what is Q - P (rephrase: how does $(\phi-1)$ act on \mathcal{K})

What I said I'd do...

- Weeks 1-3: Point counting!
- Implement genus 2 CM method that crawls (Igusa class polynomial) databases: Kohel's Echidna database
- Special (fast) point counting algorithms for Buhler-Koblitz $\left(y^{2}=x^{5}+a\right)$ and FKT $\left(y^{2}=x^{5}+a x\right)$ curves
- Find optimal curves to match Joppe/Huseyin's favorite primes!
- Weeks 4: Implement GLV algorithms
- Write algorithm for decomposition $k \mapsto k_{0}, k_{1}, k_{2}, k_{3}$ etc
- Implement 4 dimension GLV on BK $y^{2}=x^{5}+a$
- Implement 2 and 4 dimension GLV on BK $y^{2}=x^{5}+a x$
- Week 5-8: Kummer ...-Kummer-Kummer-Kummer-Kummer-chameleonnnn
- Optimized implementation on curve we found (standard)
- Same, but with squares-only and Gaudry-Schost curve
- Investigate hybrid GLV/Kummer
- Week 9-12: Write up
- Target Eurocrypt submission (\approx one month)

What I actually did. . .

- Weeks 1-3: Point counting!
- Implement genus 2 CM method that crawls (Igusa class polynomial) databases: Kohel's Echidna database
- Special (fast) point counting algorithms for Buhler-Koblitz $\left(y^{2}=x^{5}+a\right)$ and FKT $\left(y^{2}=x^{5}+a x\right)$ curves
- Find optimal curves to match Joppe/Huseyin's favorite primes!
- Weeks 4: Implement GLV algorithms
- Write algorithm for decomposition $k \mapsto k_{0}, k_{1}, k_{2}, k_{3}$ etc
- Implement 4 dimension GLV on BK $y^{2}=x^{5}+a$
- Implement 2 and 4 dimension GLV on BK $y^{2}=x^{5}+a x$
- Week 5-8: Kummer ...-Kummer-Kummer-Kummer-Kummer-chameleonnnn
- Optimized implementation on curve we found (standard)
- Same, but with squares-only and Gaudry-Schost curve
- Investigate hybrid GLV/Kummer
- Week 9-12: Investigate hybrid GLV/Kummer
- Become increasingly angry that I can't find $(\phi-1)$ map
- Crash Maple trying to solve 4 equations in 4 unknowns (not what it sounds like)
- Crash Magma trying to solve 4 equations in 4 unknowns
- Weeks $13 \rightarrow$ deadline (and beyond):
- Write the paper! (subtext: find the map)
- Other things we did (see the paper):
- Analytic theory: discovered new ways to define Kummer surface directly from period matrix (possibly avoids cofactor 16 imposed by Gaudry / Rosenhain invariants) also finds nice surfaces
- Classical Kummer surface: maps $\operatorname{Jac}(C) \leftrightarrow \mathcal{K}_{\text {classic }}$ so much nicer (formulas slower though)
- Real and imaginary generic curves (improved formulas)
- Microsoft's genus 2 library fastest in world
- Also beats all benchmarks (over all curves) on eBACS (Bernstein's curve25519:180,000+ cycles, etc)
- Final frontier: can we push Kummer (150,000 cycles) past Longa/Sica-4GLV $(145,000)$ to have fastest over prime fields?
- ...suggest standards???

