Fast Formulas for Computing Cryptographic Pairings

Craig Costello
craig.costello@qut.edu.au
Queensland University of Technology

May 28, 2012

Thanks: supervisors and co-authors

Prof. Colin Boyd

Dr. Juanma Gonzalez Nieto

Dr. Kenneth Koon-Ho Wong

Prof. Alice Silverberg (UC-Irvine)

Dr. Douglas Stebila (QUT)

Prof. Tanja Lange
(T.U. Eindhoven)

Dr. Michael Naehrig

Thanks: funding and institutes

Microsoft ${ }^{-}$
Research

Associated Publications

- ${ }^{* *}$ C. Costello, H. Hisil, C. Boyd, J. M. Gonzlez Nieto, and K. K. Wong. Faster pairings on special Weierstrass curves. Pairing 2009-Stanford, USA.
- - , T. Lange, and M. Naehrig. Faster pairing computations on curves with high-degree twists. Public Key Cryptography 2010 - Paris, France.
- ——, C. Boyd, J. M. Gonzlez Nieto, and K. K. Wong. Avoiding full extension field arithmetic in pairing computations. AFRICACRYPT 2010 Stellenbosch, South Africa.
- ——,
C. Boyd, J. M. Gonzlez Nieto, and K. K. Wong. Delaying mismatched field multiplications in pairing computations. WAIFI 2010-Istanbul, Turkey.
- **_, and D. Stebila. Fixed argument pairings. LATINCRYPT 2010Puebla, Mexico.
- ——, K. Lauter and M. Naehrig. Attractive subfamilies of BLS curves for implementing high-security pairings. INDOCRYPT 2011 - Chennai, India.
- ——, and K. Lauter. Group law computations on Jacobians of hyperelliptic curves. Selected Areas in Cryptography 2011 - Ontario, Canada.
- —_. Particularly friendly members of family trees. In submission.
** significant improvements in thesis
(1) Motivation
(2) Pairings
(3) Our work
- Fast explicit formulas
- Avoiding $\mathbb{F}_{q^{k}}$ arithmetic and fixed argument pairings
- Attractive subfamilies of pairing-friendly curves
(4) Summary

Private-key vs. Public-key cryptography

BC - WWII:

Caesar

Mary, Queen of Scots

German Enigma Code
must communicate beforehand

1970's:

Diffie-Hellman-Merkle

Rivest-Shamir-Adleman (RSA)

Cocks

HUGE BREAKTHROUGH: no need for prior communication!!!

Diffie-Hellman (Merkle): a toy example

Public values:

$q=10000000000000061$ (prime), $\quad g=832022676086941$ (generator of \mathbb{Z}_{q}).
Secret values:

Alice's secret: $a=4275315603725493$ Alice computes (public key):

$$
g^{a} \bmod q=9213047582249495
$$

Bob can compute:

Bob's secret: $b=1083333300180813$
Bob computes (public key):
$g^{b} \bmod q=9893308140872135$
Alice can compute: $9893308140872135^{a}=8817060794020263=9213047582249495^{b}$

$$
=g^{a b}
$$

Secret keys safe as long as discrete log problem (DLP) is hard Joint secret safe as long as Diffie-Hellman problem is hard

Motivation Pairings Our work Summary

Modulus (key) sizes: then and now

1970's:

$q=1606938044258990275541962092341162602522202993782792835301301$.
(200-bit prime)

NOW:

$q=$
1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084773224075360211 2011387987139335765878976881441662249284743063947412437776789342486548527630221960124609411945308295208 5005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137111. (1024-bit prime)

Elliptic curves cryptography (ECC)

mid 1980's:

Neal Koblitz

Victor Miller

Use elliptic curve (more abstract) groups instead!
 $$
y^{2}=x^{3}+a x+b
$$

Subexponential attacks on standard groups don't apply.
$q=$
1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084773224075360211 2011387987139335765878976881441662249284743063947412437776789342486548527630221960124609411945308295208 5005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137111. (1024-bit prime)

VS.
$q=1461501637330902918203684832716283019655932542929$
(160-bit prime)

The elliptic curve group law \oplus : chord-and-tangent rule

$$
\operatorname{sub} \ell: y=\lambda x+\nu \text { into } y^{2}=x^{3}+a x+b
$$

(Affine addition)

$$
\lambda=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}} ; \quad \quad \nu=y_{P}-\lambda x_{P} ;
$$

$$
\left(x_{P}, y_{P}\right) \oplus\left(x_{Q}, y_{Q}\right)=\left(\lambda^{2}-x_{P}-x_{Q},-\left(\lambda x_{R}+\nu\right)\right) .
$$

(Affine doubling)

$$
\lambda=\frac{3 x_{P}^{2}+a}{2 y_{P}} ; \quad \nu=y_{P}-\lambda x_{P} ;
$$

$$
[2]\left(x_{P}, y_{P}\right)=\left(x_{P}, y_{P}\right) \oplus\left(x_{P}, y_{P}\right)=\left(\lambda^{2}-2 x_{P},-\left(\lambda x_{R}+\nu\right)\right) .
$$

The pairing explosion

- Pairings are an extremely powerful primitive that exist on elliptic curves (more generally abelian varieties)

Boneh - Franklin

- They have been used in the past decade to construct many new protocols / solve many cryptographic problems:
- Identity-based encryption (IBE), predicate/attribute-based encryption (ABE), hierarchical encryption (HIBE)
- group/short/ring signatures
- (partially) homomorphic encryption
- many many more...
- First implementation [Menezes 1993]: a few minutes
hundreds of papers on faster pairing computation
- Current record-holding implementation [Aranha et al. 2010]: less than a millisecond

Pairings...

What's a pairing

A pairing is a bilinear map

$$
\begin{aligned}
e: \mathbb{G}_{1} \times \mathbb{G}_{2} & \rightarrow \mathbb{G}_{T} \\
P \times Q & \mapsto e(P, Q)
\end{aligned}
$$

- Bilinear: $\mathbf{e}([\mathbf{a}] \mathbf{P},[\mathbf{b}] \mathbf{Q})=\mathbf{e}(\mathbf{P}, \mathbf{Q})^{\mathbf{a b}}=\mathbf{e}([\mathbf{b}] \mathbf{P},[\mathbf{a}] \mathbf{Q})$
- \mathbb{G}_{1} and \mathbb{G}_{2} are (prime) order r groups on an elliptic curve E / \mathbb{F}_{q} - also linearly independent
- \mathbb{G}_{T} is the order r multiplicative group of the extension field $\mathbb{F}_{q^{k}}$
- All three discrete log problems need to be intractable
- r large, q^{k} much larger again
- The embedding degree $k \in \mathbb{Z}$ plays a vital role in pairing-based cryptography

Pairing-friendly curves

Definition: E is a pairing-friendly curve if...

- k is small (less than 50)
- the prime r dividing $\# E$ has $\rho=\frac{\log _{2} q}{\log _{2} r} \leq 2$
- Balasubramanian-Koblitz '98: $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} defined over $\mathbb{F}_{q^{k}}$ iff

$$
r \mid q^{k}-1
$$

- r huge prime, q huge prime $\rightarrow k$ huge in general
- k being small enough is extremely unlikely in general
- Moral of the story: pairing-friendly curves are very rare

Balancing security requires varied k

Example - a Barreto-Naehrig $k=12(\rho=1, \# E=r)$ curve:
$E / \mathbb{F}_{q}: y^{2}=x^{3}+2$
$\mathrm{q}=2875788016482373728402120498006552346737721998351309856542751926351376964733335173$
$r=2875788016482373728402120498006553346737668371977047909896314898406560560716472109$
Perfect for the 128 -bit security level: $r \approx 256$-bits, $q^{12} \approx 3072$-bits.

The r-torsion: defining \mathbb{G}_{1} and \mathbb{G}_{2}

- The entire r-torsion $E[r]$ is defined over $\mathbb{F}_{q^{k}}: E[r] \cong \mathbb{Z}_{r} \times \mathbb{Z}_{r}$
- $r+1$ cyclic subgroups of order r, e.g.
$r=2875788016482373728402120498006552346737668371977047909896314898406560560716472109$

- Different types of pairings depending on available isomorphisms
- Most useful/common/applicable/efficient is Type 3
- Type 3: $\mathbb{G}_{1}=E[r] \cap \operatorname{ker}(\pi-[1])$ and $\mathbb{G}_{2}=E[r] \cap \operatorname{ker}(\pi-[q])$

What do P, Q and $e(P, Q)$ look like?

- P comes from the "base field subgroup" $\mathbb{G}_{1}=E[r] \cap \operatorname{ker}(\pi-[1]) \in E\left(\mathbb{F}_{q}\right)$, e.g.
$P=(1745887308916193783695853478992570918900044933903060935686246526852538155858841119$,
$2444244693111337696007103313755478548273342873814694142226734613453281886385639873)$
- The pairing $e(P, Q)$ lies in $\mathbb{F}_{q^{k}}$, e.g.
$1122570285626574733625914701807031010448154349202286639883584631206978153811383773 x^{11}+$ $42387502394339599167149354647151210124915424848512820757847892955020186072019929 x^{10}+$ $286601013202733291444670878682121722574348990232710810595789083924924431503727550 x^{9}+$ $2826121779985733015532370468530527995448049975853993544853180851808025552470037363 x^{8}+$ $585939910502867212944423777285594337086983959149312944620644794736285077093447546 x^{7}+$ $159381999072136149349950704927154057284178981074836889250017858223514987453664121 x^{6}+$ $2162793654287391719830538560652021631287992137685407930166074984258729738616236955 x^{5}+$ $1649455209892658948773609428850436697294892690168397487540630721684294395713680516 x^{4}+$ $1412127150537720237052963479704313079517515741147521064181848925885801017302189791 x^{3}+$ $1349010674299277690355298420667754315800686480025643148688438493412221809804707905 x^{2}+$ $1769157390330880090254682143693135914705058362971636849346962038147236233875719007 x+$ 2866082165939409165611602780404700532164525424945966135019824432074973528752245094
- Q comes from the "trace zero subgroup" $\mathbb{G}_{2}=E[r] \cap \operatorname{ker}(\pi-[q]) \in E\left(\mathbb{F}_{q^{k}}\right)$ - e.g. two coordinates of the above size

Using the twisted curve to represent \mathbb{G}_{2}

- Original curve is $E\left(\mathbb{F}_{q}\right): y^{2}=x^{3}+a x+b$
- Fortunately, we can employ the use of the twisted curve $E^{\prime}\left(\mathbb{F}_{q^{k / d}}\right): y^{2}=x^{3}+a x \omega^{4}+b \omega^{6}$ of $E\left(\mathbb{F}_{q}\right)$
- Isomorphism $\Psi: E^{\prime} \rightarrow E ; \quad\left(x^{\prime}, y^{\prime}\right) \mapsto\left(x^{\prime} / \omega^{2}, y^{\prime} / \omega^{3}\right)$

$$
\Psi^{-1}: E \rightarrow E^{\prime} ; \quad(x, y) \mapsto\left(x \omega^{2}, y \omega^{3}\right)
$$

- Instead of working with $Q \in \mathbb{G}_{2}=E\left(\mathbb{F}_{q^{k}}\right)$, we can work with $Q^{\prime} \in \mathbb{G}_{2}^{\prime}=E^{\prime}\left(\mathbb{F}_{q^{k / d}}\right)$
- Possible degrees of twists $d=\{2,3,4,6\}$ (the bigger the better)
- e.g. instead of working over $\mathbb{F}_{q^{12}}$, we can work over $\mathbb{F}_{q^{2}}$ using a $d=6$ sextic twist.

Summary so far

To compute the pairing $e(P, Q)$ of P and Q

- P is a point on E with coordinates in base field
- Q is a point on E with coordinates in extension field $\mathbb{F}_{q^{k}}$ (but use $\left.Q^{\prime} \in E^{\prime}\left(\mathbb{F}_{q^{k / d}}\right)\right)$.
- $e(P, Q)$ is a value in $\mathbb{F}_{q^{k}}$

Now, how do we actually compute the pairing?

The Weil and Tate pairings

André Weil

John Tate

Weil pairing (in crypto):

$$
e(P, Q)=\frac{f_{r}, P(Q)}{f_{r, Q}(P)}
$$

Tate pairing (in crypto):

$$
e(P, Q)=f_{r, P}(Q)^{\left(q^{k}-1\right) / r}
$$

where $f_{r, P}$ is a (unique) degree r function: coefficients dependent on P, evaluated at $Q \ldots$
e.g. $r=2875788016482373728402120498006552346737668371977047909896314898406560560716472109$ impossible to compute/store explicitly for cryptographically useful instances!

Miller's algorithm

- Miller 1986: build the function $f_{r, P}$ by successively squaring (and multiply), but evaluate as you build...

Miller's algorithm for the Tate pairing $f_{r, p}(Q)^{\left(q^{k}-1\right) / r}$

$r=\left(r_{I-1}, \ldots, r_{1}, r_{0}\right)_{2}$ initialize: $R=P, f=1$
(1) for $i=I-2$ to 0 do
//(Miller loop)
a. i. Compute $\ell_{\text {DBL }}$ in the doubling of R
ii. $R \leftarrow[2] R$
//(DBL)
iii. $f \leftarrow f^{2} \cdot \ell_{\mathrm{DBL}}(Q)$
b. if $m_{i}=1$ then
i. Compute $\ell_{\text {ADD }}$ in the addition of $R+P$
ii. $R \leftarrow R+P$
//(ADD)
iii. $f \leftarrow f \cdot \ell_{\mathrm{ADD}}(Q)$
(2) $f \leftarrow f\left(q^{k}-1\right) / r$.
//(Final exponentiation)

Miller's algorithm for the Tate pairing $f_{r, p}(Q)^{\left(q^{k}-1\right) / r}$

$r=\left(r_{l-1}, \ldots, r_{1}, r_{0}\right)_{2}$ initialize: $R=P, f=1$
(1) for $i=I-2$ to 0 do
//(Miller loop)
a. i. Compute $\ell_{\text {DBL }}$ in the doubling of R ii. $R \leftarrow[2] R$
iii. $f \leftarrow f^{2} \cdot \ell_{\text {DBL }}(Q)$
b. if $m_{i}=1$ then
i. Compute $\ell_{\text {ADD }}$ in the addition of $R+P$
ii. $R \leftarrow R+P$
//(ADD)
iii. $f \leftarrow f \cdot \ell_{\mathrm{ADD}}(Q)$
(2) $f \leftarrow f\left(q^{k}-1\right) / r$.
//(Final exponentiation)
$r=2875788016482373728402120498006552346737668371977047909896314898406560560716472109$
$r=1,1,0,0,0,0,1,0,0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,1$, $0,1,1,0,1,1,1,1,1,0,0,1,1,1,1,0,0,1$, $1,1,1,0,1,1,0,1,0,0,0,0,1,0,1,1,0,1,0,1,0,1$, $1,1,0,0,0,0,1,0,1,0,1,0,0,1,0,0,0,1,1,1,1,1,0,1,0,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,0,1,1,1,1$,

Miller's algorithm for the optimal ate pairing: $\pi(Q)=[q] Q$

$m=\left(m_{l-1}, \ldots, m_{1}, m_{0}\right)_{2}$ initialize: $R=Q, f=1$
(1) for $i=1-2$ to 0 do
//(Miller loop)
a. i. Compute $\ell_{\text {DBL }}$ in the doubling of R
ii. $R \leftarrow[2] R$
//(DBL)
iii. $f \leftarrow f^{2} \cdot \ell_{\text {DBL }}(P)$
b. if $m_{i}=1$ then
i. Compute $\ell_{\text {ADD }}$ in the addition of $R+Q$
ii. $R \leftarrow R+Q$
//(ADD)
iii. $f \leftarrow f \cdot \ell_{\mathrm{ADD}}(P)$
(2) $f \leftarrow f\left(q^{k}-1\right) / r$.
//(Final exponentiation)
$m=27886288892678111236$, i.e. $m=(1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$, $0,1,0,0)$

Hess

Smart

Vercauteren

Our work

Unify and optimise curve operations in Miller loop

a. i. Compute $\ell_{\text {DBL }}$ in the doubling of R
ii. $R \leftarrow[2] R$
//(DBL)
iii. $f \leftarrow f^{2} \cdot \ell_{\text {DBL }}(P)$
b. if $m_{i}=1$ then
i. Compute ℓ_{ADD} in the addition of $R+Q$
ii. $R \leftarrow R+Q$
iii. $f \leftarrow f \cdot \ell_{\mathrm{ADD}}(P)$

Do everything on the twisted curve

- ate pairing computation involves moving back between E and E^{\prime} (different curves)
- problematic for deriving unified formulas for all steps

Theorem (C-Lange-Naehrig-2010)

Let $E / \mathbb{F}_{q}: y^{2}=x^{3}+a x+b$ and let $E^{\prime} / \mathbb{F}_{q^{k / d}}: y^{2}=x^{3}+a \omega^{4} x+b \omega^{6}$, a degree-d twist of E. Let Ψ be the associated twist isomorphism
$\Psi: E^{\prime} \rightarrow E:\left(x^{\prime}, y^{\prime}\right) \rightarrow\left(x^{\prime} / \omega^{2}, y^{\prime} / \omega^{3}\right)$. Let $P \in G_{1}, Q \in G_{2}$, and let $Q^{\prime}=\Psi^{-1}(Q)$ and $P^{\prime}=\Psi^{-1}(P)$. Let $a_{T}(Q, P)$ be the ate pairing of Q and P. Then

$$
\mathbf{a}_{\mathrm{T}}(\mathbf{Q}, \mathbf{P})^{\operatorname{gcd}(\mathbf{d}, 6)}=\mathbf{a}_{\mathrm{T}}\left(\mathbf{Q}^{\prime}, \mathbf{P}^{\prime}\right)^{\operatorname{gcd}(\mathbf{d}, 6)}
$$

where $\operatorname{ar}_{T}\left(Q^{\prime}, P^{\prime}\right)=f_{T, Q^{\prime}}\left(P^{\prime}\right)^{\left(q^{k}-1\right) / r}$ uses the same loop parameter as $a_{T}(Q, P)$ on E, but takes the two twisted points Q^{\prime} and P^{\prime} as inputs, instead of Q and P.

Corollary

If $a_{T}(Q, P)$ is bilinear and non-degenerate, then so is $a_{T}\left(Q^{\prime}, P^{\prime}\right)$.

Weierstrass curves for fast pairings

- We found Weierstrass curves $y^{2}=x^{3}+a x+b$ to perform fastest for pairings (geometric 'chord-and-tangent' description so simple)
- Focussed on tailor-made formulas for curves with high-degree twists
- Different projective spaces perform fastest for different curves

Three points in $\mathbb{A}^{2}(K)$.

Three lines in $\mathbb{P}^{2}(K)$.

- Z coordinate sweeps the denominators and avoids inversions

Example: $y^{2}=x^{3}+b$

- Homogeneous projective coordinates are best: substitute $x=X / Z$ and $y=Y / Z$ to work on $Y^{2} Z=X^{3}+b Z^{3}$
- Compute $\left(X_{3}: Y_{3}: Z_{3}\right)=[2]\left(X_{1}: Y_{1}: Z_{1}\right)$ as

$$
\begin{aligned}
& X_{3}=2 X_{1} Y_{1}\left(Y_{1}^{2}-9 b Z_{1}^{2}\right) \\
& Y_{3}=Y_{1}^{4}+18 b Y_{1}^{2} Z_{1}^{2}-27 b^{2} Z_{1}^{4} \\
& Z_{3}=8 Y_{1}^{3} Z_{1}
\end{aligned}
$$

- Compute the line function as

$$
\ell=3 X_{1}^{2} \cdot x_{P^{\prime}}-2 Y_{1} Z_{1} \cdot y_{P^{\prime}}+3 b Z_{1}^{2}-Y_{1}^{2}
$$

- A lot of "magic" goes into the above simplification (Gröbner basis reductions, etc)
- Exploit overlaps - altogether costs: $2 \mathbf{m}+7 \mathrm{~s}$

Comparisons with previous best formulas

Curve Curve order Twist deg.	Record	DBL ADD mADD	Prev. Record	DBL ADD mADD
$y^{2}=x^{3}+a x$	C-Lange-	$2 \mathbf{m}+8 \mathbf{s}$	Ionica-Joux	$1 \mathbf{m}+11 \mathbf{s}$
-	Naehrig'10	$12 \mathbf{m}+7 \mathbf{s}$	Arene et al.	$10 \mathbf{m}+6 \mathbf{s}$
$d=2,4$	\mathcal{W} (1,2)	$9 \mathbf{m}+5 \mathbf{s}$	\mathcal{J}	$7 \mathbf{m}+6 \mathbf{s}$
$y^{2}=x^{3}+c^{2}$	C-Hisil-Boyd-	$3 \mathbf{m}+5 \mathbf{s}$	Arene et al.	$3 \mathbf{m}+8 \mathbf{s}$
$3 \mid \# E$	Gonzalez Nieto-Wong'09	$14 \mathbf{m}+2 \mathbf{s}$	\mathcal{P}	$10 \mathbf{m}+6 \mathbf{s}$
$d=2,6$	\mathcal{P}	$10 \mathbf{m}+2 \mathbf{s}$		$7 \mathbf{m}+6 \mathbf{s}$
$y^{2}=x^{3}+b$	C-Lange-	$2 \mathbf{m}+7 \mathbf{s}$	Arene et al.	$3 \mathbf{m}+8 \mathbf{s}$
$3 \nmid \# E$	Naehrig'10	$14 \mathbf{m}+2 \mathbf{s}$	\mathcal{J}	$10 \mathbf{m}+6 \mathbf{s}$
$d=2,6$	\mathcal{P}	$10 \mathbf{m}+2 \mathbf{s}$		$7 \mathbf{m}+6 \mathbf{s}$
$y^{2}=x^{3}+b$	C-Lange-	$6 \mathbf{m}+7 \mathbf{s}$	El Mrabet et al.	$8 \mathbf{m}+9 \mathbf{s}$
-	Naehrig'10	$16 \mathbf{m}+3 \mathbf{s}$	\mathcal{P}	ADD/mADD
$d=3$	\mathcal{P}	$13 \mathbf{m}+3 \mathbf{s}$		not reported

Avoiding extension field arithmetic

a. i. Compute $\ell_{\text {DBL }}$ in the doubling of R
ii. $R \leftarrow[2] R$
iii. $f \leftarrow f^{2} \cdot \ell_{\text {DBL }}(Q)$
b. if $m_{i}=1$ then
i. Compute $\ell_{\text {ADD }}$ in the addition of $R+P$
ii. $R \leftarrow R+P$
//(ADD)
iii. $f \leftarrow f \cdot \ell_{\mathrm{ADD}}(Q)$

- $\mathbb{F}_{q^{k}}$ operations most costly in the Miller loop
- Our prior work saved operations that occur in $\mathbb{F}_{q^{k / d}} \subset \mathbb{F}_{q^{k}}$
- C-Boyd-Gonzalez Nieto-Wong (two papers) looked at avoiding the arithmetic that hurts most...
- Return to Tate setting (for now): $P \in \mathbb{F}_{q}$ is first argument

Avoiding extension field arithmetic

iterate through...
i.

$$
f \leftarrow f^{2} \cdot \ell_{\mathrm{DBL}}(Q)
$$

ii. if $m_{i}=1$ then $f \leftarrow f \cdot \ell_{\mathrm{ADD}}(Q)$

- The "updates" look like $\ell: \ell_{x} \cdot x_{Q}+\ell_{y} \cdot y_{Q}+\ell_{0}$
- The $\ell_{x}, \ell_{y}, \ell_{0} \in \mathbb{F}_{q}$, whilst $x_{Q}, y_{Q} \in \mathbb{F}_{q^{k}}$
- Consider leaving ℓ unevaluated, and operating on it before touching Q (a lot more operations in \mathbb{F}_{q}, but saves operations in $\mathbb{F}_{q^{k}}$)
- e.g. $k=12, \mathbb{F}_{q^{k}}$ mul costs $54 \mathbb{F}_{q}$ muls
- e.g. merging two consecutive doublings:

$$
\begin{aligned}
& \left(\ell_{x} \cdot x_{Q}+\ell_{y} \cdot y_{Q}+\ell_{0}\right)^{2} \cdot\left(\begin{array}{l}
\left.\ell_{x}^{\prime} \cdot x_{Q}+\hat{\ell_{y}^{\prime}} \cdot y_{Q}+\hat{\ell_{0}^{\prime}}\right) \\
=\hat{\ell_{3,0}} \cdot x_{Q}^{3}+\hat{\ell_{2,0} x_{Q}^{2}}+\hat{\ell_{1,0} x_{Q}}+\hat{\ell_{2,1}} x_{Q}^{2} y_{Q}+\hat{\ell_{1,2}} x_{Q} y_{Q}^{2} \\
\\
\quad+\hat{\ell_{1,1}} x_{Q} y_{Q}+\hat{\ell_{0,3} x_{Q}^{3}}+\hat{\ell_{0,2} x_{Q}^{2}}+\hat{\ell_{0,1} x_{Q}}+\hat{\ell_{0,0}}
\end{array}\right.
\end{aligned}
$$

- actually turns out so much better

$$
\ell_{2,0} x_{Q}^{2}+\ell_{1,1} x_{Q} y_{Q}+\ell_{1,0} x_{Q}+\ell_{0,1} y_{Q}+\ell_{0,0}
$$

Quadruple-and-add on $y^{2}=x^{3}+b$

- Compute $\left(X_{3}: Y_{3}: Z_{3}\right)=[4]\left(X_{1}: Y_{1}: Z_{1}\right)$ on $Y^{2} Z=X^{3}+b Z^{3}$ and the update function is...

$$
\begin{aligned}
& \quad \ell_{2,0} x_{Q}^{2}+\ell_{1,1} x_{Q} y_{Q}+\ell_{1,0} x_{Q}+\ell_{0,1} y_{Q}+\ell_{0,0} \\
& \ell_{2,0}=-6 X_{1}^{2} Z_{1}\left(5 Y_{1}^{4}+54 b Y_{1}^{2} Z_{1}^{2}-27 b^{2} Z_{1}^{4}\right) ; \\
& \ell_{0,1}=8 X_{1} Y_{1} Z_{1}\left(5 Y_{1}^{4}+27 b^{2} Z_{1}^{4}\right) ; \\
& \ell_{1,1}=8 Y_{1} Z_{1}^{2}\left(Y_{1}^{4}+18 b Y_{1}^{2} Z_{1}^{2}-27 b^{2} Z_{1}^{4}\right) ; \\
& \ell_{0,0}=2 X_{1}\left(Y_{1}^{6}-75 b Y_{1}^{4} Z_{1}^{2}+27 b^{2} Y_{1}^{2} Z_{1}^{4}-81 b^{3} Z_{1}^{6}\right) ; \\
& \ell_{1,0}=-4 Z_{1}\left(5 Y_{1}^{6}-75 b Z_{1}^{2} Y_{1}^{4}+135 Y_{1}^{2} b^{2} Z_{1}^{4}-81 b^{3} Z_{1}^{6}\right) .
\end{aligned}
$$

- Quadrupling cost $14 \mathbf{m}+16 \mathbf{s}$ in \mathbb{F}_{q} (vs. two doublings: $4 \mathbf{m}+14 \mathbf{s}$ in \mathbb{F}_{q})
- We suffer an extra $10 \mathbf{m}+2 \mathbf{s}$ in \mathbb{F}_{q}, but we save a much more costly $\mathbb{F}_{q^{k}}$ multiplication
- Speed ups for Tate, doesn't work for ate... however...

Fixed argument pairings

- Very common scenario: in the pairing $e(P, Q)$, one of the arguments is fixed as a long term secret key (or constant public param, etc)
- We can exploit this and perform precomputations
- C-Stebila'10-merging iterations in this scenario is much more powerful (thanks to "anonymous" reviewer of previous work)

	128-bit optimal pairing $k=12 \mathrm{BN}$ curve $\mathbb{F}_{q}=254$ bits		256-bit optimal pairing $k=24$ BLS curve $\mathbb{F}_{q}=639$ bits	
precomp method	$\begin{gathered} \text { Miller loop } \\ \text { cost } \end{gathered} \text { r }$	$\begin{gathered} \approx \text { storage } \\ \text { required (bits) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Miller loop } \\ \text { cost } \end{array}$	\approx storage required (bits)
ne	$6469 \mathrm{~m}_{1}$		$19069 \mathrm{~m}_{1}$	
Scott '	$5017 \mathrm{~m}_{1}$	70,000	$14794 \mathrm{~m}_{1}$	340,000
quadrupling	$4446 \mathrm{~m}_{1}$	75,000	$12898 \mathrm{~m}_{1}$	368,000
octupling	$4053 \mathrm{~m}_{1}$	100,000	11673	510,00

Fixed argument pairings - applications

	\# pairings	fixed arguments		fixed arguments
Public key encryption	0 Encryption		Decryption	
Boyen-Mei-Waters '05			1	$2^{\text {nd }}$
ID-based encryption	Encryption		Decryption	
Boneh-Franklin '03	1	$2^{\text {nd }}$	1	$1^{\text {st }}$
Boneh-Boyen '03	0		1	$2^{\text {nd }}$
Waters '05	0		2	both in $2^{\text {nd }}$
Attribute-based encr.	Encryption		Decryption	
GPSW '06	0		\leq \#attr.	all in $1^{\text {st }}$
LOSTW '10	0		$\leq 2 \cdot$ \#attr.	all in $2^{\text {nd }}$
ID-based signatures	Signing		Verification	
Waters '05	0		2	1 in $2^{\text {nd }}$
ID-based key exchange	Initiator		Responder	
Smart-1 '02	2	1 in $1^{\text {st }}, 1$ in $2^{\text {nd }}$	2	1 in $1^{\text {st }}, 1$ in $2^{\text {nd }}$
Chen-Kudla '03	1	$1^{\text {st }}$	1	$2^{\text {nd }}$
McCullagh-Barreto '05	1	$2^{\text {nd }}$	1	$2^{\text {nd }}$

Table: A few of the protocols that can employ/enjoy our precomputation technique.

Towered extension field arithmetic

- Koblitz-Menezes'05: for $k=2^{i} 3^{j}$, build extension field as a sequence of quadratic and cubic subextensions (preferably binomials)
- Karatsuba-like tricks make arithmetic much faster
- easier to implement
- twisted subfields constructed inherently
- e.g. a $k=12$ tower

$$
\mathbb{F}_{q} \xrightarrow{\beta^{2}-\alpha} \mathbb{F}_{q^{2}} \xrightarrow{\gamma^{3}-\beta} \mathbb{F}_{q^{6}} \xrightarrow{\delta^{2}-\gamma} \mathbb{F}_{q^{12}} .
$$

- Instead of $\mathbb{F}_{q^{12}}$ multiplications costing $144 \mathbb{F}_{q}$ multiplications, they cost $3 \cdot 3 \cdot 6=54 \mathbb{F}_{q}$ multiplications
- Finding a nice tower is not always possible

Parameterised families of pairing-friendly curves

- All of the best constructions of pairing-friendly curves come from parameterised families
- Implementors now able to gather suitable curves in bulk

- e.g. Barreto-Lynn-Scott (among many other contributions) gave curves with $k=24$:

$$
\begin{aligned}
& q(x)=(x-1)^{2}\left(x^{8}-x^{4}+1\right) / 3+x \\
& n(x)=(x-1)^{2}\left(x^{8}-x^{4}+1\right) / 3 \\
& r(x)=x^{8}-x^{4}+1
\end{aligned}
$$

- when $q=q(x), r=r(x)$ are prime, guaranteed a curve $E / \mathbb{F}_{q}: y^{2}=x^{3}+b$ with $r \mid n=\# E$.

Example: searching for BLS curves

$$
q(x)=(x-1)^{2}\left(x^{8}-x^{4}+1\right) / 3+x ; \quad r(x)=x^{8}-x^{4}+1 .
$$

- Kick-start with $x=2^{64}=18446744073709551616$ (targeting 256-bit security): $x \equiv 1 \bmod 3, x \leftarrow x+3$
- soon enough $x=18446744073709563373$
$q=$
15208135392074080989272706652458494633978103633021895928177230523400110387220520735520035558505
43059610293588875674461210160589181740516396182213025676897921852432341904308046467786796909960221
- soon after $x=18446744073709568134$
$q=$
152081353920741202406074204344187845907416165206148514542547681060676871445712171751406826067585
8946726622675208621738650395266513452695828995492519266950330867144614888025492087559518474496777
- moral: thousands/millions/billions... of possible curves to choose from...

Attractive subfamilies of BLS curves for high-security

Theorem (C-Lauter-Naehrig'11)

```
Instead of x \equiv 1 mod 3, take
```

x_{0} $\bmod 72$	$p\left(x_{0}\right)$ mod 72	$n\left(x_{0}\right)$ mod 72	efficient tower	Curve E	correct twist E^{\prime}
$\mathbf{7}$	19	12	\checkmark	$y^{2}=x^{3}+1$	$y^{2}=x^{3} \pm 1 / v$
$\mathbf{1 6}$	19	3	\checkmark	$y^{2}=x^{3}+4$	$y^{2}=x^{3} \pm 4 v$
31	43	12	\checkmark	$y^{2}=x^{3}+1$	$y^{2}=x^{3} \pm v$
$\mathbf{6 4}$	19	27	\checkmark	$y^{2}=x^{3}-2$	$y^{2}=x^{3} \pm 2 / v$

Particularly friendly members of family trees

- Most recent work took this "subfamilies" idea further
- Thoroughly explored the other 8 families of interest: BW $k=8$, BLS $k=12$, KSS $k=16$, KSS $k=18$, BLS $k=27$, KSS $k=32$, KSS $k=36$, BLS $k=48$
- Two (quartic/sextic) twist types: type M and type D (type D previously preferred - untwisting isomorphism)... but CLN'10 Theorem remedies this!: there is no preference
- Also give compact generators for many of the favoured subfamilies

Figure: Example: The $k=16$ KSS family tree.

Picking fruits from the trees

rating	equiv. class for x^{\prime} $\left(x^{\prime}=x / 5\right)$	tower	a	$\begin{array}{\|l\|} \hline \text { twist } \\ \text { type } \end{array}$	$\begin{aligned} & \mathbb{G}_{1} \text { gen. } \\ & {[h](\cdot, \cdot)} \end{aligned}$	$\begin{aligned} & \mathbb{G}_{2}^{\prime} \text { gen. } \\ & {\left[h^{\prime}\right](\cdot, \cdot)} \\ & \hline \end{aligned}$	\%
	61, $93 \bmod 112$	T_{1}	1	M	-	$\left(v-1, \sqrt{(v-1)^{3}+v(v-1)}\right)$	12.2
	5, 37 mod 112	T_{1}	1	D		$\left(-v, \sqrt{-v^{3}-1}\right)$	12.7
$\star \star \star \star \star$	$47,79 \bmod 112$	T_{1}	2	D	-	$\left(2 / v, \sqrt{\frac{8}{v^{3}}+\frac{4}{v^{2}}}\right)$	12.1
	23, 103 mod 112	T_{1}	-2	M	$(1, \sqrt{-1})$		13.1
$\star \star \star \star$	$\{19, \ldots, 1531\}_{16} \bmod 1680$	T_{2}	3	M	$(1,2)$	$\left(3 / v, \sqrt{\frac{27}{v^{3}}+\frac{9}{v^{2}}}\right)$	7.9
$\star \star \star$	$1153,1633 \bmod 1680$	T_{2}	5	D	$(2,2 \sqrt{3})$	-	0.9

Table: Our favourite picks from the $k=16 \mathrm{KSS}$ tree.

- Implementors can use our trees to tailor-make searches that target specific parameter combinations/preferences
- ... or choose from our extensive list (low hamming-weight examples)
- e.g. $x=-\left(1+2^{2}+2^{4}+2^{16}+2^{26}+2^{50}\right)$ corresponds to 47 mod 112, gives $q(x)$ and $r(x)$ as prime, so KSS curve is $y^{2}=x^{3}+x$, tower is T_{1}, correct twist is type D.

Summary

Summary

- Chapter 3: C-Hisil-Boyd-Gonzalez Nieto-Wong'09 and C-Lange-Naehrig'10: fastest explicit formulas for pairing arithmetic across all elliptic curve models
- Chapter 4: C-Boyd-Gonzalez Nieto-Wong'10 (parts I and II): merging Miller iterations to give faster Tate pairing in some scenarios, particularly larger embedding degrees
- Chapter 5: C-Stebila'10: applies merging technique to fixed argument scenario for significant improvement in the Miller loop for state-of-the-art pairings
- Chapter 6: C-Lauter-Naehrig'11: attractive subfamilies of BLS curves for high-security pairings
- Chapter 7: C'12: attractive subfamilies for all other families covering all possible security levels
- Chapter 8: C-Lauter'11: new algorithm for arbitrary genus hyperelliptic curve arithmetic, records for genus 2 hyperelliptic curves.

Future work

- Next 3-4 months: still fast pairing-based cryptography
- fixed arguments on hyperelliptic curves
- fixed argument Weil pairing
- faster non-pairing operations
- attacking pairings
- Next few years: lattice-based cryptography?
- efficient fully homomorphic encryption: the holy grail
- Rest of life: curves/abelian varieties/arithmetic geometry/computational number theory

Questions?

- Recommended questions include
- "what's the cost of a pairing compared to [insert related operation]"
- "tell us about your [insert kind adjective] work on arbitrary genus arithmetic"
- "tell us more about the magic involved in deriving the faster formulas in Chapters 3 and 4"
- "why didn't your high-security pairings timings break the software speed record at the 256 -bit level?"
- "show us a pairing in Magma"
- ...

