Attractive Subfamilies of BLS Curves for Implementing High-Security Pairings

Craig Costello

craig.costello@qut.edu.au Queensland University of Technology

> IndoCrypt 2011 Chennai, India

Joint work with Kristin Lauter (Microsoft) and Michael Naehrig (Eindhoven)

Balanced security in PBC

• Pairing-based crypto is different to other number-theoretic crypto settings: three groups!

$\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_{\mathcal{T}}$

- $\mathbb{G}_1 = E(\mathbb{F}_q)[r]$ and $\mathbb{G}_2 \subset E(\mathbb{F}_{q^k})[r]$ are elliptic curve groups
- $\mathbb{G}_{\mathcal{T}} = \mu_r \subset \mathbb{F}_{q^k}$ is a subgroup of a finite (extension) field
- $\bullet~\mathbb{G}_1$ and \mathbb{G}_2 must resist exponential attacks
- $\mathbb{G}_{\mathcal{T}}$ must resist subexponential attacks
- How do we optimally balance this resistance?
- The embedding degree k does exactly this

The embedding degree k

 $\mathbb{G}_1 \text{ and } \mathbb{G}_2 \qquad \mathbb{G}_T$

Security level	Subgroup size	Extension field size	Embedding degree k	
(in bits $)$	r (in bits)	q^k (in bits)	$\rho \approx 1$	ho pprox 2
80	160	960 - 1280	6 - 8	$2^*,3-4$
112	224	2200 - 3600	10 - 16	5-8
128	256	3000 - 5000	12 - 20	6 - 10
192	384	8000 - 10000	20 - 26	10 - 13
256	512	14000 - 18000	28 - 36	14 - 18

• 80-bit security

• k = 6, $\rho = 1$ MNT curve: $E/\mathbb{F}_q : y^2 = x^3 - 3x + b$

$$\begin{split} q &= 801819385093403524905014779542892948310645897957 \\ \textbf{(160 bits)} \\ r &= 801819385093403524905015674986573529844218487823 \\ \textbf{(160 bits)} \\ \mathbb{F}_{d^6} &\approx 960 \text{ bits} \end{split}$$

The embedding degree k

 $\mathbb{G}_1 \text{ and } \mathbb{G}_2 \qquad \mathbb{G}_T$

Security level	Subgroup size	oup size Extension field size		ing degree k
(in bits)	r (in bits)	q^k (in bits)	$\rho \approx 1$	ho pprox 2
80	160	960 - 1280	6 - 8	$2^*,3-4$
112	224	2200 - 3600	10 - 16	5-8
128	256	3000 - 5000	12 - 20	6 - 10
192	384	8000 - 10000	20 - 26	10 - 13
256	512	14000 - 18000	28 - 36	14 - 18

- 128-bit security
- k = 12, $\rho = 1$ BN curve: $E/\mathbb{F}_q : y^2 = x^3 + b$
 - $\label{eq:q} q = 115792089237314936872688561244471742058375878\\ 355761205198700409522629664518163 \ \mbox{(256 bits)} \\$
 - $\label{eq:r} \begin{array}{l} r = 1157920892373149368726885612444717420580355959\\ 88840268584488757999429535617037 \quad \mbox{(256 bits)}\\ \mathbb{F}_{a^{12}} \approx 3072 \mbox{ bits} \end{array}$

The embedding degree k

\mathbb{G}_1	and	\mathbb{G}_2	$\mathbb{G}_{\mathcal{T}}$
~ 1		~ 2	<i>U</i>

Security level	Subgroup size	Extension field size	Embedding degree k	
(in bits)	r (in bits)	q^k (in bits)	ho pprox 1	$\rho \approx 2$
80	160	960 - 1280	6 – 8	$2^*,3-4$
112	224	2200 - 3600	10 - 16	5-8
128	256	3000 - 5000	12 - 20	6 - 10
192	384	8000 - 10000	20 - 26	10 - 13
256	512	14000 - 18000	28 - 36	14 - 18

• 192-bit security

• k = 18, $\rho = 1.33$ KSS curve: $E/\mathbb{F}_q : y^2 = x^3 + b$

$$\begin{split} q &= 14393716587195480076776054606384699141386720239321086 \\ 400954442586645513454841861541604421810699660539630555654 \\ 07692343301090652336074915081562182907540863517 \ (519 \ bits) \\ r &= 37583745740549219845280578393415895486585013666199128 \\ 5051316579437242382166541269210380876991298454959817550410 \\ 54721 \ \ (384 \ bits) \\ \mathbb{F}_{a^{18}} \approx 9192 \ bits \end{split}$$

Pairing-friendly curves are rare!

- Balasubramanian and Koblitz: \mathbb{G}_1 and \mathbb{G}_2 defined over \mathbb{F}_{q^k} $(E[r] \subset E(\mathbb{F}_{q^k}))$ if and only if $r \mid q^k - 1$
- k is smallest i with $r \mid q^i 1$
- Consequence: $k \approx r$ (huge!) in general
- k needs to be small enough (k < 50) so that we can work in \mathbb{F}_{q^k}
- Consequence: pairing-friendly curves are very rare, and sometimes very hard to find

• 2002: **Barreto, Lynn and Scott** (BLS) described several constructions for families of pairing friendly curves

• One of which (for k = 24) remains a stand-out candidate for high-security (256-bit) pairings

• A nice choice for 256-bit secure pairings

$$q(x) = (x - 1)^{2}(x^{8} - x^{4} + 1)/3 + x$$
$$n(x) = (x - 1)^{2}(x^{8} - x^{4} + 1)/3$$
$$r(x) = x^{8} - x^{4} + 1$$
$$t(x) = x + 1$$

- Find any x ≡ 1 mod 3 with q prime and r (almost) prime, and you have a pairing-friendly BLS curve with k = 24
- Curve always of the form $y^2 = x^3 + b$

BLS curves for k = 24: a baby example

$$q(x) = (x - 1)^{2}(x^{8} - x^{4} + 1)/3 + x$$
$$n(x) = (x - 1)^{2}(x^{8} - x^{4} + 1)/3$$
$$r(x) = x^{8} - x^{4} + 1$$
$$t(x) = x + 1$$

$$x = x_0 = 10$$

$$q = 2699730037 \quad (32bits)$$

$$r = 99990001 \quad (27bits)$$

$$k = 24 \quad r \mid p^{24} - 1$$

BLS curves for k = 24: a real-world example

$$q(x) = (x - 1)^{2}(x^{8} - x^{4} + 1)/3 + x$$
$$n(x) = (x - 1)^{2}(x^{8} - x^{4} + 1)/3$$
$$r(x) = x^{8} - x^{4} + 1$$
$$t(x) = x + 1$$

 $x = x_0 = 18338657682652688728$ (64*bits*)

- q = 143401661696254894478321866427092431790760890523122049336013276613031997160987543759739601608948422587714687094839576 6001176835975792058849921228650147683237429431766511865973945 755928704738611 (640*bits*)
- r = 12792055967162602805739688493546201777040238068484852739063593539798936512980234110386994537047645853631663167768148907862 694574574525262760554539905249281 (512*bits*)

$$k = 24 \quad r \mid p^{24} - 1$$

$$\rho = 1.25$$
 (log $p / \log r = 1.25$)

Guaranteed (high-level) properties of k = 24 BLS curves

- Best ρ value for k = 24: $\rho = 1.25$
- Snug fit for 256-bit security: q = 640 bits gives r = 512 and F_{p²⁴} = 15360 bits - perfect for 256-bit security
- Highest degree twist (d = 6) applicable: points in $\mathbb{G}_2 \subset E(\mathbb{F}_{q^{24}})[r]$ are isomorphic to points on twist $\mathbb{G}'_2 = E'(\mathbb{F}_{q^4})[r]$
- ate pairing is optimal: pairing loop length lower bound $r/\phi(k)$ is achieved with ate pairing (simple)
- nice final exponentiation: addition chain trivial
- ... but some family members are more attractive (implementation-friendly) than others

Not-always-guaranteed properties of k = 24 BLS curves

- What about representing the field $\mathbb{F}_{q^{24}}$? Can we guarantee a highly-efficient construction?
- What about the curve E/F_q: y² = x³ + b? Do we have to test for the correct b? Is it always small?
- What about the twisted curve E/F_{q⁴} : y² = x³ + b'? Do we have to test (count points) for the correct b'? Are the twisting/untwisting isomorphisms nice?
- Can we achieve a low hamming-weight (NAF) value of $x = x_0$?
- If we search with $x \equiv 1 \mod 3$, we can't always guarantee all of the above for each curve found!
- This work: determines subfamilies of BLS curves that (provably) guarantee the above properties

Splitting up the BLS family

- Instead of searching with $x \equiv 1 \mod 3$, search with any of $x \equiv 7, 16, 31, 64 \mod 72$, and all of the previous properties are guaranteed
- For the other 20 congruency classes x ≠ 7, 16, 31, 64 mod 72, we argue that all of the above properties can't be satisfied simultaneously

x ₀	$q(x_0)$	$n(x_0)$	efficient	E	Ε'
(mod 72)	(mod 72)	(mod 72)	tower		
			Prop. 2	Prop. 3	Prop. 4
7	19	12	1	$y^2 = x^3 + 1$	$y^2 = x^3 \pm 1/v$
16	19	3	1	$y^2 = x^3 + 4$	$y^2 = x^3 \pm 4v$
31	43	12	1	$y^2 = x^3 + 1$	$y^2 = x^3 \pm v$
64	19	27	1	$y^2 = x^3 - 2$	$y^2 = x^3 \pm 2/v$

• A large bulk of the paper is dedicated to proving the above claims.

Highly efficient towering options

2005: For k = 2ⁱ3^j, Koblitz-Menezes suggest using irreducible binomials to represent F_{qk} as a tower of quadratic/cubic extensions from F_q

 2010: Benger-Scott further generalize and give useful theorems for testing if 𝑘_{g^k} is towering-friendly

 Nice towers facilitate efficient F_{qk} arithmetic, but nicest options not always available... but in our four cases....

Highly efficient towering options

Proposition 2. Let $x_0 \in \mathbb{Z}$ be any of $x_0 \equiv 7, 16, 31, 64 \pmod{72}$. If $p = p(x_0)$ given by the polynomial in (1) is prime, then the extension field $\mathbb{F}_{p^{24}}$ can be constructed using any of the following towering options T_1, T_2, T_3 :

 Tricks in cubic and quadratic extension fields facilitate much faster multiplications (squarings) than the naive schoolbook method

Miller's algorithm for ate pairing $f_Q(P)^{(q^k-1)/r}$

$$\begin{aligned} \mathbf{x}_{0}^{\prime} &= (\mathbf{x}_{l-1}, \dots, \mathbf{x}_{1}, \mathbf{x}_{0})_{2} \\ \text{initialize: } & U = Q, \ f = 1 \\ \text{for } i = l - 2 \text{ to 0 do} \\ \text{a. i. Compute } f_{\text{DBL}(U)} \text{ in the doubling of } U \\ \text{ ii. } & U \leftarrow [2] U \\ \text{ iii. } f \leftarrow f^{2} \cdot f_{\text{DBL}(U)}(P) \end{aligned}$$

b. if $\mathbf{x}_{i} = 1 \text{ then} \\ \text{ i. Compute } f_{\text{ADD}(U,Q)} \text{ in the addition of } U + Q \\ \text{ ii. } & U \leftarrow U + Q \\ \text{ iii. } f \leftarrow f \cdot f_{\text{ADD}(U,Q)}(P) \end{aligned}$
c. Exponentiation f to power $(q^{k} - 1)/r$

Miller's algorithm for ate pairing $f_Q(P)^{(q^k-1)/r}$

a. i. Compute $f_{\text{DBL}(U)}$ in the doubling of Uii. $U \leftarrow [2]U$ iii. $f \leftarrow f^2 \cdot f_{\text{DBL}(U)}(P)$

//(DBL)

//(ADD)

- b. if $x_i = 1$ then
 - i. Compute $f_{ADD(U,Q)}$ in the addition of U + Qii. $U \leftarrow U + Q$
 - iii. $f \leftarrow f \cdot f_{ADD(U,Q)}(P)$
- c. Exponentiation f to power $(q^k 1)/r$

Fast operations and to twist or to untwist?

- 2004- Chatterjee, Sarkar and Barua: optimize point operations and line computations simultaneously (*encapsulated* doubling/addition in Miller's algorithm)
- C-Lange-Naehrig PKC2010: optimized formulas in all practical contexts and observation that everything can be done on the twisted curve

$$f_{T,\psi(Q')}(P)^{(q^{24}-1)/r}$$
 vs. $f_{T,Q'}(P')^{(q^{24}-1)/r}$

• For k = 24 BLS, twisting isomorphism ψ^{-1} can be much nicer than untwisting isomorphism ψ (see §4 of the paper)

Recipe: How to use this paper

x ₀	$q(x_0)$	$n(x_0)$	efficient	E	E'
(mod 72)	(mod 72)	(mod 72)	tower		
			Prop. 2	Prop. 3	Prop. 4
7	19	12	1	$y^2 = x^3 + 1$	$y^2 = x^3 \pm 1/v$
16	19	3	1	$y^2 = x^3 + 4$	$y^2 = x^3 \pm 4v$
31	43	12	1	$y^2 = x^3 + 1$	$y^2 = x^3 \pm v$
64	19	27	1	$y^2 = x^3 - 2$	$y^2 = x^3 \pm 2/v$

• Search for BLS curves with any of $x_0 \equiv 7, 16, 31, 64 \mod{72}$ instead of

 $x_0 \equiv 1 \mod 3$

- i Primality test $p(x_0)$ and $r(x_0)$ only!
- ii Compact: all parameters determined entirely by x_0
- iii No point counting or further testing
- iv Highly efficient tower guaranteed
- v Nice twist or untwist isomorphism guaranteed

• OR use one that we prepared earlier...

security	$x_0 \equiv 16 \pmod{72}$	weight	р	words	r	words	security
level			(bits)	for p	(bits)	for r	(bits)
224	$2^{56} - 2^{53} - 2^{31} - 2^{9}$	4	557	9 imes 64	447	7 imes 64	223
	$-2^{56} + 2^{40} - 2^{26} - 2^{6}$	4	559		448		224
	$2^{56} + 2^{40} - 2^{20}$	3	559		449	15 imes 32	224
	$2^{57} + 2^{25} + 2^{18} + 2^{11}$	4	569		457		228
	$2^{57} + 2^{54} + 2^{51} + 2^{39}$	4	571		458		229

Table: an example chunk from one of our tables

Craig Costello Attractive BLS Subfamil	Craig Costello	Attractive BLS Subfamili
--	----------------	--------------------------

s

Recipe: How to use this paper (cont.)

x ₀	$q(x_0)$	$n(x_0)$	efficient	E	E'
(mod 72)	(mod 72)	(mod 72)	tower		
			Prop. 2	Prop. 3	Prop. 4
7	19	12	1	$y^2 = x^3 + 1$	$y^2 = x^3 \pm 1/v$
16	19	3	1	$y^2 = x^3 + 4$	$y^2 = x^3 \pm 4v$
31	43	12	1	$y^2 = x^3 + 1$	$y^2 = x^3 \pm v$
64	19	27	1	$y^2 = x^3 - 2$	$y^2 = x^3 \pm 2/v$

- Elliptic curve *E* and (correct) twisted curve *E'* are automatically defined
- Use the tower in Proposition 2
- Use encapsulated doubling/addition formulas from C-Lange-Naehrig PKC2010 (see also Aranha *et al.* Eurocrypt 2011)
- Refer to Table 2 to see whether to twist or untwist
- Use final exponentiation routine in Table 3
- Enjoy highly efficient, implementation-friendly, high-security pairings

Further benefits...

- Pereira, Simplício, Naehrig and Barreto: recently found attractive subfamilies of k=12 BN curves (128-bit security)
- Pereira et al.: "Avoids expensive tests during curve generation"
- Pereira et al.: "Certain attacks can be prevented by checking that the purported curve contained in a given digital certificate does indeed exhibit the expected properties before using that certificate"
- Pereira et al.: "e.g. a lightweight certificate server would only need plain integer arithmetic up to primality checking (and no elliptic curve arithmetic support) to attest the well-formedness of the curves"

- BN and BLS curves now have implementation-friendly subfamilies
- What about all the other families (KSS, BLS k ≠ 24, Brezing-Weng, MNT...) - see Freeman-Scott-Teske "A taxonomy of pairing-friendly elliptic curves"
- Perhaps "a taxonomy of implementation-friendly subfamilies" ... maybe even in time for submission to Pairing2012?

THANKS!