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Balanced security in PBC

Pairing-based crypto is different to other number-theoretic
crypto settings: three groups!

G1 ×G2 → GT

G1 = E (Fq)[r ] and G2 ⊂ E (Fqk )[r ] are elliptic curve groups

GT = µr ⊂ Fqk is a subgroup of a finite (extension) field

G1 and G2 must resist exponential attacks

GT must resist subexponential attacks

How do we optimally balance this resistance?

The embedding degree k does exactly this
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The embedding degree k

G1 and G2 GT

80-bit security

k = 6, ρ = 1 MNT curve: E/Fq : y 2 = x3 − 3x + b

q = 801819385093403524905014779542892948310645897957
(160 bits)
r = 801819385093403524905015674986573529844218487823
(160 bits)
Fq6 ≈ 960 bits
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The embedding degree k

G1 and G2 GT

128-bit security
k = 12, ρ = 1 BN curve: E/Fq : y 2 = x3 + b
q = 115792089237314936872688561244471742058375878

355761205198700409522629664518163 (256 bits)

r = 1157920892373149368726885612444717420580355959
88840268584488757999429535617037 (256 bits)

Fq12 ≈ 3072 bits
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The embedding degree k

G1 and G2 GT

192-bit security
k = 18, ρ = 1.33 KSS curve: E/Fq : y 2 = x3 + b
q = 14393716587195480076776054606384699141386720239321086
400954442586645513454841861541604421810699660539630555654
07692343301090652336074915081562182907540863517 (519 bits)

r = 37583745740549219845280578393415895486585013666199128
5051316579437242382166541269210380876991298454959817550410
54721 (384 bits)
Fq18 ≈ 9192 bits
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Pairing-friendly curves are rare!

Balasubramanian and Koblitz: G1 and G2 defined over Fqk(
E [r ] ⊂ E (Fqk )

)
if and only if r | qk − 1

k is smallest i with r | qi − 1

Consequence: k ≈ r (huge!) in general

k needs to be small enough (k < 50) so that we can work in
Fqk

Consequence: pairing-friendly curves are very rare, and
sometimes very hard to find
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BLS curves

2002: Barreto, Lynn and Scott (BLS) described several
constructions for families of pairing friendly curves

One of which (for k = 24) remains a stand-out candidate for
high-security (256-bit) pairings
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BLS curves for k = 24

A nice choice for 256-bit secure pairings

q(x) = (x − 1)2(x8 − x4 + 1)/3 + x

n(x) = (x − 1)2(x8 − x4 + 1)/3

r(x) = x8 − x4 + 1

t(x) = x + 1

Find any x ≡ 1 mod 3 with q prime and r (almost) prime, and
you have a pairing-friendly BLS curve with k = 24

Curve always of the form y 2 = x3 + b
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BLS curves for k = 24: a baby example

q(x) = (x − 1)2(x8 − x4 + 1)/3 + x

n(x) = (x − 1)2(x8 − x4 + 1)/3

r(x) = x8 − x4 + 1

t(x) = x + 1

x = x0 = 10

q = 2699730037 (32bits)

r = 99990001 (27bits)

k = 24 r | p24 − 1
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BLS curves for k = 24: a real-world example

q(x) = (x − 1)2(x8 − x4 + 1)/3 + x

n(x) = (x − 1)2(x8 − x4 + 1)/3

r(x) = x8 − x4 + 1

t(x) = x + 1

x = x0 = 18338657682652688728 (64bits)

q = 1434016616962548944783218664270924317907608905231220493360

13276613031997160987543759739601608948422587714687094839576

6001176835975792058849921228650147683237429431766511865973945

755928704738611 (640bits)

r = 127920559671626028057396884935462017770402380684848527390635

93539798936512980234110386994537047645853631663167768148907862

694574574525262760554539905249281 (512bits)

k = 24 r | p24 − 1

ρ = 1.25 (log p/ log r = 1.25)
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Guaranteed (high-level) properties of k = 24 BLS curves

Best ρ value for k = 24: ρ = 1.25

Snug fit for 256-bit security: q = 640 bits gives r = 512
and Fp24 = 15360 bits - perfect for 256-bit security

Highest degree twist (d = 6) applicable: points in
G2 ⊂ E (Fq24)[r ] are isomorphic to points on twist
G′2 = E ′(Fq4)[r ]

ate pairing is optimal: pairing loop length lower bound
r/φ(k) is achieved with ate pairing (simple)

nice final exponentiation: addition chain trivial

... but some family members are more attractive
(implementation-friendly) than others
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Not-always-guaranteed properties of k = 24 BLS curves

What about representing the field Fq24? Can we guarantee a
highly-efficient construction?

What about the curve E/Fq : y 2 = x3 + b? Do we have to
test for the correct b? Is it always small?

What about the twisted curve E/Fq4 : y 2 = x3 + b′? Do we
have to test (count points) for the correct b′? Are the
twisting/untwisting isomorphisms nice?

Can we achieve a low hamming-weight (NAF) value of
x = x0?

If we search with x ≡ 1 mod 3, we can’t always guarantee
all of the above for each curve found!

This work: determines subfamilies of BLS curves that
(provably) guarantee the above properties
simultaneously... Craig Costello Attractive BLS Subfamilies



Splitting up the BLS family

Instead of searching with x ≡ 1 mod 3, search with any of
x ≡ 7, 16, 31, 64 mod 72, and all of the previous properties are
guaranteed

For the other 20 congruency classes x 6≡ 7, 16, 31, 64 mod 72,
we argue that all of the above properties can’t be satisfied
simultaneously

x0 q(x0) n(x0) efficient E E ′

(mod 72) (mod 72) (mod 72) tower
Prop. 2 Prop. 3 Prop. 4

7 19 12 3 y2 = x3 + 1 y2 = x3 ± 1/v
16 19 3 3 y2 = x3 + 4 y2 = x3 ± 4v
31 43 12 3 y2 = x3 + 1 y2 = x3 ± v
64 19 27 3 y2 = x3 − 2 y2 = x3 ± 2/v

A large bulk of the paper is dedicated to proving the
above claims.
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Highly efficient towering options

2005: For k = 2i3j , Koblitz-Menezes suggest using irreducible
binomials to represent Fqk as a tower of quadratic/cubic extensions
from Fq

2010: Benger-Scott further generalize and give useful theorems for
testing if Fqk is towering-friendly

Nice towers facilitate efficient Fqk arithmetic, but nicest options not
always available... but in our four cases....
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Highly efficient towering options

Tricks in cubic and quadratic extension fields facilitate much
faster multiplications (squarings) than the naive schoolbook
method
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Miller’s algorithm for ate pairing fQ(P)(qk−1)/r

x ′0 = (xl−1, . . . , x1, x0)2

initialize: U = Q, f = 1
for i = l − 2 to 0 do

a. i. Compute fDBL(U) in the doubling of U
ii. U ← [2]U //(DBL)

iii. f ← f 2 · fDBL(U)(P)

b. if xi = 1 then

i. Compute fADD(U,Q) in the addition of U + Q
ii. U ← U + Q //(ADD)

iii. f ← f · fADD(U,Q)(P)

c. Exponentiation f to power (qk − 1)/r
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Fast operations and to twist or to untwist?

2004- Chatterjee, Sarkar and Barua: optimize point operations
and line computations simultaneously (encapsulated
doubling/addition in Miller’s algorithm)

C-Lange-Naehrig PKC2010: optimized formulas in all practical
contexts and observation that everything can be done on the
twisted curve

fT ,ψ(Q′)(P)(q24−1)/r vs. fT ,Q′(P ′)(q24−1)/r

For k = 24 BLS, twisting isomorphism ψ−1 can be much nicer than
untwisting isomorphism ψ (see §4 of the paper)
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Recipe: How to use this paper

x0 q(x0) n(x0) efficient E E ′

(mod 72) (mod 72) (mod 72) tower
Prop. 2 Prop. 3 Prop. 4

7 19 12 3 y2 = x3 + 1 y2 = x3 ± 1/v

16 19 3 3 y2 = x3 + 4 y2 = x3 ± 4v

31 43 12 3 y2 = x3 + 1 y2 = x3 ± v

64 19 27 3 y2 = x3 − 2 y2 = x3 ± 2/v

Search for BLS curves with any of x0 ≡ 7, 16, 31, 64 mod 72 instead of

x0 ≡ 1 mod 3
i Primality test p(x0) and r(x0) only!
ii Compact: all parameters deteremined entirely by x0

iii No point counting or further testing
iv Highly efficient tower guaranteed
v Nice twist or untwist isomorphism guaranteed

OR use one that we prepared earlier...

security x0 ≡ 16 (mod 72) weight p words r words security
level (bits) for p (bits) for r (bits)

224 256 − 253 − 231 − 29 4 557 9× 64 447 7× 64 223

−256 + 240 − 226 − 26 4 559 448 224

256 + 240 − 220 3 559 449 15× 32 224

257 + 225 + 218 + 211 4 569 457 228

257 + 254 + 251 + 239 4 571 458 229

Table: an example chunk from one of our tables
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Recipe: How to use this paper (cont.)

x0 q(x0) n(x0) efficient E E ′

(mod 72) (mod 72) (mod 72) tower
Prop. 2 Prop. 3 Prop. 4

7 19 12 3 y2 = x3 + 1 y2 = x3 ± 1/v

16 19 3 3 y2 = x3 + 4 y2 = x3 ± 4v

31 43 12 3 y2 = x3 + 1 y2 = x3 ± v

64 19 27 3 y2 = x3 − 2 y2 = x3 ± 2/v

Elliptic curve E and (correct) twisted curve E ′ are
automatically defined

Use the tower in Proposition 2

Use encapsulated doubling/addition formulas from
C-Lange-Naehrig PKC2010 (see also Aranha et al. Eurocrypt
2011)

Refer to Table 2 to see whether to twist or untwist

Use final exponentiation routine in Table 3

Enjoy highly efficient, implementation-friendly,
high-security pairings
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Further benefits...

Pereira, Simpĺıcio, Naehrig and Barreto: recently found
attractive subfamilies of k=12 BN curves (128-bit security)

Pereira et al.: “Avoids expensive tests during curve generation”

Pereira et al.: “Certain attacks can be prevented by checking that
the purported curve contained in a given digital certificate does
indeed exhibit the expected properties before using that certificate”

Pereira et al.: “e.g. a lightweight certificate server would only need
plain integer arithmetic up to primality checking (and no elliptic
curve arithmetic support) to attest the well-formedness of the
curves”
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Related (upcomming) work...

BN and BLS curves now have implementation-friendly
subfamilies

What about all the other families (KSS, BLS k 6= 24,
Brezing-Weng, MNT... ) - see Freeman-Scott-Teske “A
taxonomy of pairing-friendly elliptic curves”

Perhaps “a taxonomy of implementation-friendly
subfamilies”... maybe even in time for submission to
Pairing2012?
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THANKS!
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