Computing Cryptographic Pairings: the State of the Art

Craig Costello

craig.costello@qut.edu.au QUT and UCI

Winter 2010 University of California, Irvine

• Then:

- 1993 Menezes' elliptic curve book (post MOV attack) : few minutes

...BIG GAP...

Now:

-2009Hankerson, Menezes, Scott: 4.01ms-April 2010Naehrig, Niederhagen, Schwabe: 1.80ms-June 2010Beuchat et al.: 0.94ms-October 2010Aranha et al.: 0.65ms

So what happened in the big gap?

- Heaps of exciting protocol stuff has happened... ID-based encryption (IBE), ID-based key agreement, short signatures, group signatures, ring signatures, certificateless encryption, hierarchical encryption, predicate-based encryption, attribute-based encryption, and many more!!!
- Heaps of cool pairing optimizations have 'followed'...
 - Tate pairing instead of Weil pairing
 - denominator elimination
 - group choices and twisted curves
 - endomorphism rings and loop shortening
 - low rho-valued curves
 - pairing and towering-friendly fields
 - quick explicit formulas
 - ... and many more!!!

A mapping $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$:

P ∈ G₁, Q ∈ G₂ and e(P, Q) ∈ G_T: (cyclic) groups are all of prime order r (usually)

• **Bilinear** :
$$e(aP, bQ) = e(P, Q)^{ab} = e(bP, aQ)$$

 \bullet Note: \mathbb{G}_1 and \mathbb{G}_2 must be linearly independent

•
$$e(P,Q) = f(x_P, y_P, x_Q, y_Q) \in \mathbb{F}_{q^k}$$

Groups involved: the r-torsion and Frobenius eigenspaces

• The points *P* and *Q* in the pairing come from the *r*-torsion $E(\overline{\mathbb{F}}_q)[r] = \mathbb{Z}_r \times \mathbb{Z}_r$.

• \mathbb{F}_q must be extended (\mathbb{F}_{q^k}) to contain the entire r torsion

•
$$P \in \mathbb{G}_1 = E(\mathbb{F}_q)[r]$$

Frobenius endomorphism

•
$$G_1 = E[r] \cap \operatorname{Ker}(\pi_q - [1])$$

Both eigenspaces are very (computationally) convenient

Computing Cryptographic Pairings: the State of the Art

 $G_2 = E[r] \cap \operatorname{Ker}(\pi_q - [q])$

 $\pi_q(x, y) \mapsto (x^q, y^q)$

 $Q \in \mathbb{G}_2 \subset E(\mathbb{F}_{q^k})[r]$

The embedding degree k and pairing-friendly curves

- $#E(\mathbb{F}_q) = q + 1 t \approx q$ and $#E(\mathbb{F}_q) = hr$ (*h* small, *r* big prime)
- To contain entire r-torsion (both G₁ and G₂), must extend F_q to F_{q^k}
- $k \in \mathbb{N}$ is smallest s.t. $r \mid q^k 1$
- In general, $k \approx r$ (Balasubramanian and Koblitz)
- Let's be modest: q = 160 bits, r = 160 bits $\rightarrow \mathbb{F}_{q^k} \approx \mathbb{F}_{2^{160(2^{160})}}$
- Need to find 'pairing-friendly' elliptic curves where k is small enough k < 50
- Finding pairing-friendly curves is an art in itself...

Pairing-friendly curves

- Attacker can target either discrete log problem: $E(\mathbb{F}_q)$ or \mathbb{F}_{q^k}
- We aim to balance their difficulty to optimize implementation
- Define $\rho = \log q / \log r$ (closer to 1 the better)

(AES) Security	Subgroup	Extension	Embedding degree <i>k</i>	
level (bits)	size r (bits)	field q^k (bits)	ho pprox 1	hopprox 2
80	160	960-1280	6-8	2-4
112	224	2200-3600	10-16	5-8
128	256	3000-5000	12-20	6-10
192	384	8000-10000	20-26	10-13
256	512	14000-18000	28-36	14-18

Table: I stole this table from the "taxonomy" paper (Freeman, Scott, Teske)

A good example: BN curves

- Barreto and Naehrig found a family of really nice curves for k = 12 $q(x) = 36x^4 - 36x^3 + 24x^2 - 6x + 1$ $\#E(\mathbb{F}_q)(x) = 36x^4 - 36x^3 + 18x^2 - 6x + 1$ $t(x) = 6x^2 + 1$
- Find x s.t. q(x) is prime and #E(x) is also prime and you have a BN curve y² = x³ + b
- In fact, almost all constructions (*r* prime) result in a curve $y^2 = x^3 + b$ or $y^2 = x^3 + ax$ (no CM needed)
- The "bible": Freeman-Scott-Teske "A taxonomy of pairing-friendly elliptic curves"

The elements of \mathbb{G}_2 are much bigger than the elements of \mathbb{G}_1 (e.g. k = 12)

$$\mathbb{F}_{q^{12}} = \mathbb{F}_{q^4}(\alpha) = \mathbb{F}_{q^2}(\gamma) = \mathbb{F}_q(\beta)$$

 $P \in \mathbb{G}_1$: [341746248540,710032105147] $Q \in \mathbb{G}_2$:

$$\begin{split} & [((502478767360 \cdot \beta + 1034075074191) \cdot \gamma + 342970860051 \cdot \beta + 225764301423) \cdot \alpha^2 + ((205398279920 \cdot \beta + 182600014119) \cdot \gamma + 860891557473 \cdot \beta + 435210764901) \cdot \alpha + (1043922075477 \cdot \beta + 566889113793) \cdot \gamma + 150949917087 \cdot \beta + 21392569319, \\ & ((654337640030 \cdot \beta + 744622505639) \cdot \gamma + 1092264803801 \cdot \beta + 895826335783) \cdot \alpha^2 + ((529466169391 \cdot \beta + 550511036767) \cdot \gamma + 985244799144 \cdot \beta + 554170865706) \cdot \alpha + (194564971321 \cdot \beta + 969736450831) \cdot \gamma + \end{split}$$

 $(579122687888 \cdot \beta + 581111086076)]$

The twisted curve

- Original curve is $E(\mathbb{F}_q): y^2 = x^3 + ax + b$
- Twisted curve is $E'(\mathbb{F}_{q^{k/d}})$: $y^2 = x^3 + a\omega^4 x + b\omega^6$, $\omega \in \mathbb{F}_{q^k}$
- Possible degrees of twists are d ∈ {2,3,4,6}: the bigger the better!
- Twist $\Psi: E' \to E: (x', y') \to (x'/\omega^2, y'/\omega^3)$ induces $\mathbb{G}'_2 = E'(\mathbb{F}_{q^{k/d}})[r]$ so that $\Psi: \mathbb{G}'_2 \to \mathbb{G}_2$
- Instead of working with $Q \in \mathbb{G}_2$, a lot of work can be done with $Q' \in \mathbb{G}'_2$ defined over subfield $\mathbb{F}_{q^e} = \mathbb{F}_{q^{k/d}}$

 $P \in \mathbb{G}_1$: (341746248540, 710032105147) $Q' \in \mathbb{G}_2' = \Psi^{-1}(\mathbb{G}_2)$:

 $((917087150949\beta + 25693192139) \cdot \omega^2, (878885791226\beta + 860765811110) \cdot \omega^3)$

Achieving a bilinear pairing

• On elliptic curves, group homomorphism from points to divisor classes

$$P\mapsto (P)-(\mathcal{O})=D_P$$

• Let D be the divisor $D = \sum_P n_P(P)$ on E and $f \in \mathbb{F}_{q^k}(E)$:

$$f(D) = \prod_{P} f(P)^{n_{P}}$$

- $f,g \in \mathbb{F}_{q^k}(E)$: Weil reciprocity: $f(\operatorname{div}(g)) = g(\operatorname{div}(f))$
- Achieve bilinearity (and other necessary properties) by finding a function f_P whose divisor is some (linear) multiple of $D_P = (P) - (\mathcal{O})...$

Achieving a bilinear pairing (cont.)

Let P ∈ E[r], (assume) we can construct the function f_{v,P} such that

$$\operatorname{div}(f_{v,P}) = v(P) - ([v]P) - (v-1)(\mathcal{O})$$

• When v = r, we have

$$div(f_{r,P}) = r(P) - ([r]P) - (r - 1)(\mathcal{O})$$
$$= r(P) - r(\mathcal{O})$$
$$= rD_P$$

• $f_P = f_{r,P}$ is a degree r function (has zero of degree r at P)...

• Remember r has to be large $> 2^{160}$ for ECDLP to be hard

Weil vs. Tate pairings

Weil pairing

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mu_r \in \mathbb{F}_{q^k}, \qquad (P, Q) \mapsto f_{r, P}(Q) / f_{r, Q}(P)$$

Tate(-Lichtenbaum) pairing

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mu_r \in \mathbb{F}_{q^k}, \qquad (P, Q) \mapsto f_{r, P}(Q)^{\frac{q^k - 1}{r}}.$$

- Weil pairing: compute two degree r functions
- Tate pairing: compute one degree *r* function and exponentiate (much faster)
- Exponentiation is somewhat standard, so how to compute $f_{r,P}(Q)$ efficiently
- 1986: Miller proposes efficient algorithm for $f_{r,P}(Q)$ ("The Weil pairing, and it's efficient calculation")

Miller's algorithm

Craig Costello Computing Cryptographic Pairings: the State of the Art

Miller's algorithm to compute $f_{r,P}(Q)$

$$r = (r_{l-1}, \dots, r_1, r_0)_2 \text{ initialize: } U = P, f = 1$$

for $i = l - 2$ to 0 do
a. i. Compute $f_{DBL(U)}$ in the doubling of U
ii. $U \leftarrow [2]U$ //(DBL)
iii. $f \leftarrow f^2 \cdot f_{DBL(U)}(Q)$
b. if $m_i = 1$ then
i. Compute $f_{ADD(U,P)}$ in the addition of $U + P$
ii. $U \leftarrow U + P$ //(ADD)
iii. $f \leftarrow f \cdot f_{ADD(U,P)}(S)$

Craig Costello Computing Cryptographic Pairings: the State of the Art

Optimization: force r(x) to have low Hamming-weight

$$r = (r_{l-1}, \dots, r_1, r_0)_2 \text{ initialize: } U = P, f = 1$$

for $i = l - 2$ to 0 do
a. i. Compute $f_{\text{DBL}(U)}$ in the doubling of U
ii. $U \leftarrow [2]U$ //(DBL)
iii. $f \leftarrow f^2 \cdot f_{\text{DBL}(U)}(Q)$
b. -if $m_l = 1$ then
i. -Compute $f_{\text{ADD}(U,P)}$ in the addition of $U + P$
ii. $U \leftarrow U + P$ //(ADD)
iii. $f \leftarrow f \cdot f_{\text{ADD}(U,P)}(S)$

Craig Costello Computing Cryptographic Pairings: the State of the Art

E U+R

Optimization: avoid costly inversions and exploit exponentiation

$$r = (r_{l-1}, \dots, r_1, r_0)_2$$
 initialize: $U = P, f = 1$
for $i = l - 2$ to 0 do

i. Compute $f_{\text{DBL}(U)}$ in the doubling of U

ii.
$$U \leftarrow [2]U$$
 //(DBL)
iii. $f \leftarrow f^2 \cdot f_{\text{DBL}(U)}(Q)$

- Irrelevant factors: Because the final value of f is exponentiated to (q^k - 1)/r, any subfield factors accumulated in f can be ignored!
- Projective coordinates: Affine coordinates require inversions: use (X : Y : Z) to represent (x, y) = (X/Z, Y/Z) or some other projection

Optimization: lower degree Miller functions (loop shortening)

- Exploit the fact that since Q ∈ G₂ = E[r] ∩ Ker(π_q − [q]), a bilinear pairing with a much smaller degree (than r) if Q is the first argument
- $e(Q, P) = f_{\lambda,Q}(P)^{(q^k-1)/r}$ where $\lambda \equiv q \mod r$
- Vercauteren ("Optimal pairings") and Hess ("Pairing lattices") prove that λ can be achieved as small as $r^{1/\varphi(k)}$
- Most of the computations are performed on the first argument (now Q ∈ E(𝔽_{q^k})), but many less iterations required for the lower degree function
- Dubbed the (optimal) "ate" pairing (since it reverses the arguments of the "eta" pairing, and it is (generally) faster than the Tate pairing

Optimization: pairing and towering-friendly fields

• Koblitz-Menezes 2005: Build extension fields as towers of extensions (using irreducible binomials)

• e.g.
$$k = 24$$
 build \mathbb{F}_{q^k} as

Fig. 1. Tower of pairing-friendly fields

- Arithmetic and implementation much easier $k = 2^{i}3^{j}$ means $\mathbf{m}_{k} = 3^{i}5^{j}\mathbf{m}_{1}$ (e.g. $\mathbf{m}_{24} = 135\mathbf{m}_{1}$)
- Best way to tower: Benger-Scott WAIFI2010 paper

Optimization: quick explicit formulas

- In the Tate pairing, point operations and line computations were performed on P ∈ E(F_q) (somewhat negligible compared to the dominant operations in F_{a^k} for larger k)
- In the ate pairing, these operations are now performed in $\mathbb{F}_{a^{k/d}}$
- Important to optimize the combination of a point doubling $U \mapsto [2]U$ (resp. additions) and the line computations that contribute to $f_{\lambda,Q}$

Optimization: quick explicit formulas (cont.)

- C-Hisil-Boyd-Gonzalez-Wong (Pairing09): fastest pairings for $y^2 = x^3 + c^2$ (special Weierstrass): homogenous projective coordinates achieve 8 subfield multiplications
- C-Lange-Naehrig (PKC2010): "Faster pairings on curves with high-degree twists":
 - i. $y^2 = x^3 + ax$ (j = 1728 or D = 1): weight-(1,2) coordinates achieve 10 subfield multiplications
 - ii. $y^2 = x^3 + b$ (j = 0 or D = 3): Projective coordinates achieve 9 subfield multiplications (used in recent record 0.65ms)

Other curve models

- Weierstrass curves are nice for pairings since the line computations are inherent in the point addition formulas
- Edwards curves (also Jacobi-Quartics, Hessian etc) are far superior in standard ECC because of fast addition formulas

Figure: Picture taken from Arene et al. Edward's pairing paper

- Pairing-based cryptosystems need more than just pairings
- Galbraith showed *E* and *E'* can't both be written in Edwards form ("Edwards curves aren't likely candidates for ate pairing which requires computations")...

- C-Lange-Naehrig (PKC2010): a bilinear pairing can be computed entirely on the twist *E*'
- Choose *E* so that *E'* can be written in Edwards form (it doesn't matter that *E* can't)
- C-Lange-Naehrig: "The ate pairing on twisted Edwards curves" (work in progress)

Some recent results

i. Compute $f_{\text{DBL}(U)}$ in the doubling of Uii. $U \leftarrow [2]U$ iii. $f \leftarrow f^2 \cdot f_{\text{DBL}(U)}(S)$

$$(\mathsf{DBL}) [2](x_1, y_1) = (x_3, y_3)$$

$$f_{\mathsf{DBL}(U)}(x, y) = y - \lambda \cdot x - (y_1 - \lambda \cdot x_1)$$

$$f_{\mathsf{DBL}(U)}(S) = y_S - \lambda \cdot x_S - (y_1 - \lambda \cdot x_1)$$

- Perhaps it isn't optimal to evaluate indeterminate function $f_{\text{DBL}(U)}(x, y)$ yet
- Leave as an indeterminate function for *n*-iterations (CBGW AfricaCrypt2010 paper, CBGW WAIFI 2010 paper)
- Even more advantageous in the case of a fixed pairing argument (C-Stebila - "Fixed argument pairings" - LatinCrypt 2010)

e(R, S): R-dependent vs. S-dependent computations

a. i. Compute $f_{\text{DBL}(U)}$ in the doubling of U

ii.
$$U \leftarrow [2]U$$

iii. $f \leftarrow f^2 \cdot f_{\text{DBL}(U)}(S)$

- b. if $m_i = 1$ then
 - i. Compute $f_{ADD(U,R)}$ in the addition of U + R

ii.
$$U \leftarrow U + R$$

iii.
$$f \leftarrow f \cdot f_{ADD(U,R)}(S)$$

- All the point operations and line coefficient computations are completely R-dependent (U = vR throughout)
- If *R* is a fixed argument, we can pre-compute all of this before we input (or know) *S*
- Pre-compute and store all the $(\lambda, x_{U_i}, y_{U_i})$ tuples (Scott 2006)
- C-Stebila: do much more with all of the $f_{\rm ADD}$ functions before S is known (or input)

Tate and ate \mathbb{F}_p -muls vs. storage cost (k = 12, r = 256)

Computing Cryptographic Pairings: the State of the Art

Current/future work: genus 2 pairings

- Working in the Jacobian $\operatorname{Jac}_C(\mathbb{F}_q)$
- The general belief is that genus 2 pairings won't be competitive with pairings on elliptic curves
- I'm naive in this arena and am therefore not yet convinced
- Holding genus 2 implementations back: ρ-values are currently very bad in comparison

$$ho = g \log q / \log r$$

• At the top of my wish list: pairing-friendly genus 2 curves $k \le 50$ and $\rho << 4$

Questions?