Computing Cryptographic Pairings: the State of the Art

Craig Costello
craig.costello@qut.edu.au
QUT and UCI
Winter 2010
University of California, Irvine

- Then:
- 1993 Menezes' elliptic curve book (post MOV attack) : few minutes

...BIG GAP...

- Now:

-2009
-April 2010
-June $2010 \quad$ Beuchat et al.: 0.94 ms
-October 2010 Aranha et al.: 0.65 ms

So what happened in the big gap?

- Heaps of exciting protocol stuff has happened... ID-based encryption (IBE), ID-based key agreement, short signatures, group signatures, ring signatures, certificateless encryption, hierarchical encryption, predicate-based encryption, attribute-based encryption, and many many more!!!
- Heaps of cool pairing optimizations have 'followed'...
- Tate pairing instead of Weil pairing
- denominator elimination
- group choices and twisted curves
- endomorphism rings and loop shortening
- low rho-valued curves
- pairing and towering-friendly fields
- quick explicit formulas
- ... and many more!!!

Pairings

A mapping $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$:

- $P \in \mathbb{G}_{1}, Q \in \mathbb{G}_{2}$ and $e(P, Q) \in \mathbb{G}_{T}$: (cyclic) groups are all of prime order r (usually)
- Bilinear : $\mathbf{e}(\mathbf{a P}, \mathbf{b Q})=\mathbf{e}(\mathbf{P}, \mathbf{Q})^{\mathbf{a b}}=\mathbf{e}(\mathbf{b P}, \mathbf{a Q})$
- Note: \mathbb{G}_{1} and \mathbb{G}_{2} must be linearly independent
- $e(P, Q)=f\left(x_{P}, y_{P}, x_{Q}, y_{Q}\right) \in \mathbb{F}_{q^{k}}$

Groups involved: the r-torsion and Frobenius eigenspaces

- The points P and Q in the pairing come from the r-torsion $E\left(\overline{\mathbb{F}_{q}}\right)[r]=\mathbb{Z}_{r} \times \mathbb{Z}_{r}$.

- \mathbb{F}_{q} must be extended $\left(\mathbb{F}_{q^{k}}\right)$ to contain the entire r torsion
- $P \in \mathbb{G}_{1}=E\left(\mathbb{F}_{q}\right)[r]$
- Frobenius endomorphism
- $G_{1}=E[r] \cap \operatorname{Ker}\left(\pi_{q}-[1]\right)$
\square

$$
\pi_{q}(x, y) \mapsto\left(x^{q}, y^{q}\right)
$$

$$
G_{2}=E[r] \cap \operatorname{Ker}\left(\pi_{q}-[q]\right)
$$

- Both eigenspaces are very (computationally) convenient
- $\# E\left(\mathbb{F}_{q}\right)=q+1-t \approx q$ and $\# E\left(\mathbb{F}_{q}\right)=h r(h$ small, r big prime)
- To contain entire r-torsion (both \mathbb{G}_{1} and \mathbb{G}_{2}), must extend \mathbb{F}_{q} to $\mathbb{F}_{q^{k}}$
- $k \in \mathbb{N}$ is smallest s.t. $r \mid q^{k}-1$
- In general, $k \approx r$ (Balasubramanian and Koblitz)
- Let's be modest: $q=160$ bits, $r=160$ bits \rightarrow $\mathbb{F}_{q^{k}} \approx \mathbb{F}_{2^{160\left(2^{160}\right)}}$
- Need to find 'pairing-friendly' elliptic curves where k is small enough $k<50$
- Finding pairing-friendly curves is an art in itself...

Pairing-friendly curves

- Attacker can target either discrete log problem: $E\left(\mathbb{F}_{q}\right)$ or $\mathbb{F}_{q^{k}}$
- We aim to balance their difficulty to optimize implementation
- Define $\rho=\log q / \log r$ (closer to 1 the better)

(AES) Security	Subgroup	Extension	Embedding degree k	
level (bits)	size r (bits)	field q^{k} (bits)	$\rho \approx 1$	$\rho \approx 2$
80	160	$960-1280$	$6-8$	$2-4$
112	224	$2200-3600$	$10-16$	$5-8$
128	256	$3000-5000$	$12-20$	$6-10$
192	384	$8000-10000$	$20-26$	$10-13$
256	512	$14000-18000$	$28-36$	$14-18$

Table: I stole this table from the "taxonomy" paper (Freeman, Scott, Teske)

A good example: BN curves

- Barreto and Naehrig found a family of really nice curves for $k=12$

$$
\begin{aligned}
& q(x)=36 x^{4}-36 x^{3}+24 x^{2}-6 x+1 \\
& \# E\left(\mathbb{F}_{q}\right)(x)=36 x^{4}-36 x^{3}+18 x^{2}-6 x+1 \\
& t(x)=6 x^{2}+1
\end{aligned}
$$

- Find x s.t. $q(x)$ is prime and $\# E(x)$ is also prime and you have a BN curve $y^{2}=x^{3}+b$
- In fact, almost all constructions (r prime) result in a curve $y^{2}=x^{3}+b$ or $y^{2}=x^{3}+a x$ (no CM needed)
- The "bible": Freeman-Scott-Teske - "A taxonomy of pairing-friendly elliptic curves"

Group sizes

The elements of \mathbb{G}_{2} are much bigger than the elements of \mathbb{G}_{1} (e.g. $k=12$)
 $$
\mathbb{F}_{q^{12}}=\mathbb{F}_{q^{4}}(\alpha)=\mathbb{F}_{q^{2}}(\gamma)=\mathbb{F}_{q}(\beta)
$$

$P \in \mathbb{G}_{1}:[341746248540,710032105147]$
$Q \in \mathbb{G}_{2}$:
$\left[((502478767360 \cdot \beta+1034075074191) \cdot \gamma+342970860051 \cdot \beta+225764301423) \cdot \alpha^{2}+((205398279920 \cdot \beta+\right.$ $182600014119) \cdot \gamma+860891557473 \cdot \beta+435210764901) \cdot \alpha+(1043922075477 \cdot \beta+566889113793) \cdot \gamma+$ $150949917087 \cdot \beta+21392569319$, $((654337640030 \cdot \beta+744622505639) \cdot \gamma+1092264803801 \cdot \beta+895826335783) \cdot \alpha^{2}+((529466169391 \cdot \beta+$ $550511036767) \cdot \gamma+985244799144 \cdot \beta+554170865706) \cdot \alpha+(194564971321 \cdot \beta+969736450831) \cdot \gamma+$ (579122687888 • $\beta+581111086076)$]

- Original curve is $E\left(\mathbb{F}_{q}\right): y^{2}=x^{3}+a x+b$
- Twisted curve is $E^{\prime}\left(\mathbb{F}_{q^{k / d}}\right): y^{2}=x^{3}+a \omega^{4} x+b \omega^{6}, \omega \in \mathbb{F}_{q^{k}}$
- Possible degrees of twists are $d \in\{2,3,4,6\}$: the bigger the better!
- Twist $\Psi: E^{\prime} \rightarrow E:\left(x^{\prime}, y^{\prime}\right) \rightarrow\left(x^{\prime} / \omega^{2}, y^{\prime} / \omega^{3}\right)$ induces $\mathbb{G}_{2}^{\prime}=E^{\prime}\left(\mathbb{F}_{q^{k / d}}\right)[r]$ so that $\Psi: \mathbb{G}_{2}^{\prime} \rightarrow \mathbb{G}_{2}$
- Instead of working with $Q \in \mathbb{G}_{2}$, a lot of work can be done with $Q^{\prime} \in \mathbb{G}_{2}^{\prime}$ defined over subfield $\mathbb{F}_{q^{e}}=\mathbb{F}_{q^{k / d}}$
$P \in \mathbb{G}_{1}:(341746248540,710032105147)$
$Q^{\prime} \in \mathbb{G}_{2}^{\prime}=\Psi^{-1}\left(\mathbb{G}_{2}\right)$:
$\left((917087150949 \beta+25693192139) \cdot \omega^{2},(878885791226 \beta+860765811110) \cdot \omega^{3}\right)$

Achieving a bilinear pairing

- On elliptic curves, group homomorphism from points to divisor classes

$$
P \mapsto(P)-(\mathcal{O})=D_{P}
$$

- Let D be the divisor $D=\sum_{P} n_{P}(P)$ on E and $f \in \mathbb{F}_{q^{k}}(E)$:

$$
f(D)=\prod_{P} f(P)^{n_{P}}
$$

- $f, g \in \mathbb{F}_{q^{k}}(E)$: Weil reciprocity: $f(\operatorname{div}(g))=g(\operatorname{div}(f))$
- Achieve bilinearity (and other necessary properties) by finding a function f_{P} whose divisor is some (linear) multiple of $D_{P}=(P)-(\mathcal{O}) \ldots$

Achieving a bilinear pairing (cont.)

- Let $P \in E[r]$, (assume) we can construct the function $f_{v, P}$ such that

$$
\operatorname{div}\left(f_{v, P}\right)=v(P)-([v] P)-(v-1)(\mathcal{O})
$$

- When $v=r$, we have

$$
\begin{aligned}
\operatorname{div}\left(f_{r, P}\right) & =r(P)-([r] P)-(r-1)(\mathcal{O}) \\
& =r(P)-r(\mathcal{O}) \\
& =r D_{P}
\end{aligned}
$$

- $f_{P}=f_{r, P}$ is a degree r function (has zero of degree r at P)...
- Remember r has to be large $>2^{160}$ for ECDLP to be hard

Weil vs. Tate pairings

Weil pairing

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mu_{r} \in \mathbb{F}_{q^{k}}, \quad(P, Q) \mapsto f_{r, P}(Q) / f_{r, Q}(P)
$$

Tate(-Lichtenbaum) pairing

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mu_{r} \in \mathbb{F}_{q^{k}}, \quad(P, Q) \mapsto f_{r, P}(Q)^{\frac{q^{k}-1}{r}} .
$$

- Weil pairing: compute two degree r functions
- Tate pairing: compute one degree r function and exponentiate (much faster)
- Exponentiation is somewhat standard, so how to compute $f_{r, P}(Q)$ efficiently
- 1986: Miller proposes efficient algorithm for $f_{r, P}(Q)$ ("The Weil pairing, and it's efficient calculation")

Miller's algorithm

Miller's algorithm to compute $f_{r, p}(Q)$

$r=\left(r_{I-1}, \ldots, r_{1}, r_{0}\right)_{2}$ initialize: $U=P, f=1$
for $i=I-2$ to 0 do
a. i. Compute $f_{\operatorname{DBL}(U)}$ in the doubling of U
ii. $U \leftarrow[2] U$
//(DBL)
iii. $f \leftarrow f^{2} \cdot f_{\mathrm{DBL}(U)}(Q)$
b. if $m_{i}=1$ then
i. Compute $f_{\mathrm{ADD}(U, P)}$ in the addition of $U+P$
ii. $U \leftarrow U+P$
iii. $f \leftarrow f \cdot f_{\operatorname{ADD}(U, P)}(S)$

Optimization: force $r(x)$ to have low Hamming-weight

$r=\left(r_{l-1}, \ldots, r_{1}, r_{0}\right)_{2}$ initialize: $U=P, f=1$
for $i=I-2$ to 0 do
a. i. Compute $f_{\mathrm{DBL}(U)}$ in the doubling of U
ii. $U \leftarrow[2] U$
iii. $f \leftarrow f^{2} \cdot f_{\operatorname{DBL}(U)}(Q)$
b. if $m_{i}=1$ then
i. Compute $f_{\mathrm{ADD}(U, P)}$ in the addition of $U \perp P$
ii. $U \leftarrow U+P$
iii. $f \leftarrow f \cdot f_{\operatorname{ADD}(U, P)}(S)$

Optimization: avoid costly inversions and exploit exponentiation

$r=\left(r_{l-1}, \ldots, r_{1}, r_{0}\right)_{2}$ initialize: $U=P, f=1$
for $i=I-2$ to 0 do
i. Compute $f_{\mathrm{DBL}(U)}$ in the doubling of U
ii. $U \leftarrow[2] U$
iii. $f \leftarrow f^{2} \cdot f_{\operatorname{DBL}(U)}(Q)$

- Irrelevant factors: Because the final value of f is exponentiated to $\left(q^{k}-1\right) / r$, any subfield factors accumulated in f can be ignored!
- Projective coordinates: Affine coordinates require inversions: use $(X: Y: Z)$ to represent $(x, y)=(X / Z, Y / Z)$ or some other projection

Optimization: lower degree Miller functions (loop shortening)

- Exploit the fact that since $Q \in \mathbb{G}_{2}=E[r] \cap \operatorname{Ker}\left(\pi_{q}-[q]\right)$, a bilinear pairing with a much smaller degree (than r) if Q is the first argument
- $e(Q, P)=f_{\lambda, Q}(P)^{\left(q^{k}-1\right) / r}$ where $\lambda \equiv q \bmod r$
- Vercauteren ("Optimal pairings") and Hess ("Pairing lattices") prove that λ can be achieved as small as $r^{1 / \varphi(k)}$
- Most of the computations are performed on the first argument (now $Q \in E\left(\mathbb{F}_{q^{k}}\right)$), but many less iterations required for the lower degree function
- Dubbed the (optimal) "ate" pairing (since it reverses the arguments of the "eta" pairing, and it is (generally) faster than the Tate pairing

Optimization: pairing and towering-friendly fields

- Koblitz-Menezes 2005: Build extension fields as towers of extensions (using irreducible binomials)
- e.g. $k=24$ build $\mathbb{F}_{q^{k}}$ as

Fig. 1. Tower of pairing-friendly fields

- Arithmetic and implementation much easier $k=2^{i} 3^{j}$ means $\mathbf{m}_{k}=3^{i} 5^{j} \mathbf{m}_{1}$ (e.g. $\mathbf{m}_{24}=135 \mathbf{m}_{1}$)
- Best way to tower: Benger-Scott WAIFI2010 paper

Optimization: quick explicit formulas

- In the Tate pairing, point operations and line computations were performed on $P \in E\left(\mathbb{F}_{q}\right)$ (somewhat negligible compared to the dominant operations in $\mathbb{F}_{q^{k}}$ for larger k)
- In the ate pairing, these operations are now performed in $\mathbb{F}_{q^{k / d}}$
- Important to optimize the combination of a point doubling $U \mapsto[2] U$ (resp. additions) and the line computations that contribute to $f_{\lambda, Q}$

Optimization: quick explicit formulas (cont.)

- C-Hisil-Boyd-Gonzalez-Wong (Pairing09): fastest pairings for $y^{2}=x^{3}+c^{2}$ (special Weierstrass): homogenous projective coordinates achieve 8 subfield multiplications
- C-Lange-Naehrig (PKC2010): "Faster pairings on curves with high-degree twists":
i. $y^{2}=x^{3}+a x(j=1728$ or $D=1)$: weight- $(1,2)$ coordinates achieve 10 subfield multiplications
ii. $y^{2}=x^{3}+b(j=0$ or $D=3)$: Projective coordinates achieve 9 subfield multiplications (used in recent record 0.65 ms)

Other curve models

- Weierstrass curves are nice for pairings since the line computations are inherent in the point addition formulas
- Edwards curves (also Jacobi-Quartics, Hessian etc) are far superior in standard ECC because of fast addition formulas

(a) $P_{1} \neq P_{2}, P_{1}, P_{2} \neq \mathcal{O}^{\prime}, P_{3}=P_{1}+P_{2}$

(b) $P_{1}=P_{2} \neq \mathcal{O}^{\prime}, P_{3}=2 P_{1}$

Figure: Picture taken from Arene et al. Edward's pairing paper

- Pairing-based cryptosystems need more than just pairings
- Galbraith showed E and E^{\prime} can't both be written in Edwards form ("Edwards curves aren't likely candidates for ate pairing which requires computations")...

Ate pairing on Edwards curves

- C-Lange-Naehrig (PKC2010): a bilinear pairing can be computed entirely on the twist E^{\prime}
- Choose E so that E^{\prime} can be written in Edwards form (it doesn't matter that E can't)
- C-Lange-Naehrig: "The ate pairing on twisted Edwards curves" (work in progress)

Some recent results

i. Compute $f_{\operatorname{DBL}(U)}$ in the doubling of U
ii. $U \leftarrow[2] U$
iii. $f \leftarrow f^{2} \cdot f_{\operatorname{DBL}(U)}(S)$

$$
\begin{gathered}
(\mathrm{DBL})[2]\left(x_{1}, y_{1}\right)=\left(x_{3}, y_{3}\right) \\
f_{\mathrm{DBL}(U)}(x, y)=y-\lambda \cdot x-\left(y_{1}-\lambda \cdot x_{1}\right) \\
f_{\mathrm{DBL}(U)}(S)=y_{S}-\lambda \cdot x_{S}-\left(y_{1}-\lambda \cdot x_{1}\right)
\end{gathered}
$$

- Perhaps it isn't optimal to evaluate indeterminate function $f_{\mathrm{DBL}(U)}(x, y)$ yet
- Leave as an indeterminate function for n-iterations (CBGW AfricaCrypt2010 paper, CBGW - WAIFI 2010 paper)
- Even more advantageous in the case of a fixed pairing argument (C-Stebila - "Fixed argument pairings" - LatinCrypt 2010)
a. i. Compute $f_{\operatorname{DBL}(U)}$ in the doubling of U
ii. $U \leftarrow[2] U$
iii. $f \leftarrow f^{2} \cdot f_{\operatorname{DBL}(U)}(S)$
b. if $m_{i}=1$ then
i. Compute $f_{\mathrm{ADD}(U, R)}$ in the addition of $U+R$
ii. $\quad U \leftarrow U+R$
//(ADD)
iii. $f \leftarrow f \cdot f_{\operatorname{ADD}(U, R)}(S)$
- All the point operations and line coefficient computations are completely R-dependent ($U=v R$ throughout)
- If R is a fixed argument, we can pre-compute all of this before we input (or know) S
- Pre-compute and store all the $\left(\lambda, x_{U_{i}}, y_{U_{i}}\right)$ tuples (Scott 2006)
- C-Stebila: do much more with all of the $f_{\text {ADD }}$ functions before S is known (or input)

Tate and ate \mathbb{F}_{p}-muls vs. storage cost $(k=12, r=256)$

Current/future work: genus 2 pairings

- Working in the Jacobian $\operatorname{Jac}_{C}\left(\mathbb{F}_{q}\right)$
- The general belief is that genus 2 pairings won't be competitive with pairings on elliptic curves
- I'm naive in this arena and am therefore not yet convinced
- Holding genus 2 implementations back: ρ-values are currently very bad in comparison

$$
\rho=g \log q / \log r
$$

- At the top of my wish list: pairing-friendly genus 2 curves $k \leq 50$ and $\rho \ll 4$

Thanks for your attention...

Questions?

