
Computing Cryptographic Pairings: the State of
the Art

Craig Costello

craig.costello@qut.edu.au
QUT and UCI

Winter 2010
University of California, Irvine

Craig Costello Computing Cryptographic Pairings: the State of the Art

Pairing computation speeds: then and now

Then:
- 1993 Menezes’ elliptic curve book (post MOV

attack) : few minutes

...BIG GAP...

Now:
-2009 Hankerson, Menezes, Scott: 4.01ms
-April 2010 Naehrig, Niederhagen, Schwabe: 1.80ms
-June 2010 Beuchat et al.: 0.94ms
-October 2010 Aranha et al.: 0.65ms

Craig Costello Computing Cryptographic Pairings: the State of the Art

So what happened in the big gap?

Heaps of exciting protocol stuff has happened...

ID-based encryption (IBE), ID-based key agreement, short
signatures, group signatures, ring signatures, certificateless
encryption, hierarchical encryption, predicate-based encryption,
attribute-based encryption, and many many more!!!

Heaps of cool pairing optimizations have ‘followed’...

Tate pairing instead of Weil pairing
denominator elimination
group choices and twisted curves
endomorphism rings and loop shortening
low rho-valued curves
pairing and towering-friendly fields
quick explicit formulas
... and many more!!!

Craig Costello Computing Cryptographic Pairings: the State of the Art

Pairings

A mapping e : G1 ×G2 → GT :

P ∈ G1, Q ∈ G2 and e(P,Q) ∈ GT : (cyclic) groups are all of
prime order r (usually)

Bilinear : e(aP,bQ) = e(P,Q)ab = e(bP, aQ)

Note: G1 and G2 must be linearly independent

e(P,Q) = f (xP , yP , xQ , yQ) ∈ Fqk

Craig Costello Computing Cryptographic Pairings: the State of the Art

Groups involved: the r -torsion and Frobenius eigenspaces

The points P and Q in the pairing come from the r -torsion
E (F̄q)[r] = Zr × Zr .

Fq must be extended (Fqk) to contain the entire r torsion

P ∈ G1 = E (Fq)[r] Q ∈ G2 ⊂ E (Fqk)[r]

Frobenius endomorphism πq(x , y) 7→ (xq, yq)

G1 = E [r] ∩Ker(πq − [1]) G2 = E [r] ∩Ker(πq − [q])

Both eigenspaces are very (computationally) convenient

Craig Costello Computing Cryptographic Pairings: the State of the Art

The embedding degree k and pairing-friendly curves

#E (Fq) = q + 1− t ≈ q and #E (Fq) = hr (h small, r big
prime)

To contain entire r -torsion (both G1 and G2), must extend Fq

to Fqk

k ∈ N is smallest s.t. r | qk − 1

In general, k ≈ r (Balasubramanian and Koblitz)

Let’s be modest: q = 160 bits, r = 160 bits →
Fqk ≈ F

2160(2160)

Need to find ‘pairing-friendly’ elliptic curves where k is small
enough k < 50

Finding pairing-friendly curves is an art in itself...

Craig Costello Computing Cryptographic Pairings: the State of the Art

Pairing-friendly curves

Attacker can target either discrete log problem: E (Fq) or Fqk

We aim to balance their difficulty to optimize implementation

Define ρ = log q/ log r (closer to 1 the better)

(AES) Security Subgroup Extension Embedding degree k
level (bits) size r (bits) field qk (bits) ρ ≈ 1 ρ ≈ 2

80 160 960-1280 6-8 2-4
112 224 2200-3600 10-16 5-8
128 256 3000-5000 12-20 6-10
192 384 8000-10000 20-26 10-13
256 512 14000-18000 28-36 14-18

Table: I stole this table from the “taxonomy” paper (Freeman, Scott, Teske)

Craig Costello Computing Cryptographic Pairings: the State of the Art

A good example: BN curves

Barreto and Naehrig found a family of really nice curves for
k = 12

q(x) = 36x4 − 36x3 + 24x2 − 6x + 1
#E (Fq)(x) = 36x4 − 36x3 + 18x2 − 6x + 1
t(x) = 6x2 + 1

Find x s.t. q(x) is prime and #E (x) is also prime and you
have a BN curve y2 = x3 + b

In fact, almost all constructions (r prime) result in a curve
y2 = x3 + b or y2 = x3 + ax (no CM needed)

The “bible”: Freeman-Scott-Teske - “A taxonomy of
pairing-friendly elliptic curves”

Craig Costello Computing Cryptographic Pairings: the State of the Art

Group sizes

The elements of G2 are much bigger than the elements of
G1 (e.g. k = 12)

Fq12 = Fq4(α) = Fq2(γ) = Fq(β)

P ∈ G1: [341746248540, 710032105147]

Q ∈ G2:
[((502478767360 · β + 1034075074191) · γ + 342970860051 · β + 225764301423) · α2 + ((205398279920 · β +

182600014119) · γ + 860891557473 · β + 435210764901) · α + (1043922075477 · β + 566889113793) · γ +

150949917087 · β + 21392569319,

((654337640030 · β + 744622505639) · γ + 1092264803801 · β + 895826335783) · α2 + ((529466169391 · β +

550511036767) · γ + 985244799144 · β + 554170865706) · α + (194564971321 · β + 969736450831) · γ +

(579122687888 · β + 581111086076)]

Craig Costello Computing Cryptographic Pairings: the State of the Art

The twisted curve

Original curve is E (Fq) : y2 = x3 + ax + b

Twisted curve is E ′(Fqk/d): y2 = x3 + aω4x + bω6, ω ∈ Fqk

Possible degrees of twists are d ∈ {2, 3, 4, 6}: the bigger the
better!

Twist Ψ : E ′ → E : (x ′, y ′)→ (x ′/ω2, y ′/ω3) induces
G′2 = E ′(Fqk/d)[r] so that Ψ : G′2 → G2

Instead of working with Q ∈ G2, a lot of work can be done
with Q ′ ∈ G′2 defined over subfield Fqe = Fqk/d

P ∈ G1: (341746248540, 710032105147)

Q ′ ∈ G′2 = Ψ−1(G2):
((917087150949β + 25693192139) · ω2, (878885791226β + 860765811110) · ω3)

Craig Costello Computing Cryptographic Pairings: the State of the Art

Achieving a bilinear pairing

On elliptic curves, group homomorphism from points to
divisor classes

P 7→ (P)− (O) = DP

Let D be the divisor D =
∑

P nP(P) on E and f ∈ Fqk (E):

f (D) =
∏
P

f (P)nP

f , g ∈ Fqk (E): Weil reciprocity: f (div(g)) = g(div(f))

Achieve bilinearity (and other necessary properties) by finding
a function fP whose divisor is some (linear) multiple of
DP = (P)− (O)...

Craig Costello Computing Cryptographic Pairings: the State of the Art

Achieving a bilinear pairing (cont.)

Let P ∈ E [r], (assume) we can construct the function fv ,P
such that

div(fv ,P) = v(P)− ([v]P)− (v − 1)(O)

When v = r , we have

div(fr ,P) = r(P)− ([r]P)− (r − 1)(O)

= r(P)− r(O)

= rDP

fP = fr ,P is a degree r function (has zero of degree r at P)...

Remember r has to be large > 2160 for ECDLP to be hard

Craig Costello Computing Cryptographic Pairings: the State of the Art

Weil vs. Tate pairings

Weil pairing

e : G1 ×G2 → µr ∈ Fqk , (P,Q) 7→ fr ,P(Q)/fr ,Q(P)

Tate(-Lichtenbaum) pairing

e : G1 ×G2 → µr ∈ Fqk , (P,Q) 7→ fr ,P(Q)
qk−1

r .

Weil pairing: compute two degree r functions

Tate pairing: compute one degree r function and exponentiate
(much faster)

Exponentiation is somewhat standard, so how to compute
fr ,P(Q) efficiently

1986: Miller proposes efficient algorithm for fr ,P(Q) (“The
Weil pairing, and it’s efficient calculation”)

Craig Costello Computing Cryptographic Pairings: the State of the Art

Miller’s algorithm

Craig Costello Computing Cryptographic Pairings: the State of the Art

Miller’s algorithm to compute fr ,P(Q)

r = (rl−1, . . . , r1, r0)2 initialize: U = P, f = 1

for i = l − 2 to 0 do
a. i. Compute fDBL(U) in the doubling of U

ii. U ← [2]U //(DBL)
iii. f ← f 2 · fDBL(U)(Q)

b. if mi = 1 then
i. Compute fADD(U,P) in the addition of U + P
ii. U ← U + P //(ADD)
iii. f ← f · fADD(U,P)(S)

Craig Costello Computing Cryptographic Pairings: the State of the Art

Optimization: force r(x) to have low Hamming-weight

r = (rl−1, . . . , r1, r0)2 initialize: U = P, f = 1

for i = l − 2 to 0 do
a. i. Compute fDBL(U) in the doubling of U

ii. U ← [2]U //(DBL)
iii. f ← f 2 · fDBL(U)(Q)

b. if mi = 1 then
i. Compute fADD(U,P) in the addition of U + P
ii. U ← U + P //(ADD)
iii. f ← f · fADD(U,P)(S)

Craig Costello Computing Cryptographic Pairings: the State of the Art

Optimization: avoid costly inversions and exploit
exponentiation

r = (rl−1, . . . , r1, r0)2 initialize: U = P, f = 1

for i = l − 2 to 0 do

i. Compute fDBL(U) in the doubling of U

ii. U ← [2]U //(DBL)

iii. f ← f 2 · fDBL(U)(Q)

Irrelevant factors: Because the final value of f is
exponentiated to (qk − 1)/r , any subfield factors accumulated
in f can be ignored!

Projective coordinates: Affine coordinates require
inversions: use (X : Y : Z) to represent (x , y) = (X/Z ,Y /Z)
or some other projection

Craig Costello Computing Cryptographic Pairings: the State of the Art

Optimization: lower degree Miller functions (loop
shortening)

Exploit the fact that since Q ∈ G2 = E [r] ∩Ker(πq − [q]), a
bilinear pairing with a much smaller degree (than r) if Q is
the first argument

e(Q,P) = fλ,Q(P)(qk−1)/r where λ ≡ q mod r

Vercauteren (“Optimal pairings”) and Hess (“Pairing
lattices”) prove that λ can be achieved as small as r1/ϕ(k)

Most of the computations are performed on the first argument
(now Q ∈ E (Fqk)), but many less iterations required for the
lower degree function

Dubbed the (optimal) “ate” pairing (since it reverses the
arguments of the “eta” pairing, and it is (generally) faster
than the Tate pairing

Craig Costello Computing Cryptographic Pairings: the State of the Art

Optimization: pairing and towering-friendly fields

Koblitz-Menezes 2005: Build extension fields as towers of
extensions (using irreducible binomials)
e.g. k = 24 build Fqk as

Arithmetic and implementation much easier k = 2i3j means
mk = 3i5jm1 (e.g. m24 = 135m1)
Best way to tower: Benger-Scott WAIFI2010 paper

Craig Costello Computing Cryptographic Pairings: the State of the Art

Optimization: quick explicit formulas

In the Tate pairing, point operations and line computations
were performed on P ∈ E (Fq) (somewhat negligible compared
to the dominant operations in Fqk for larger k)

In the ate pairing, these operations are now performed in Fqk/d

Important to optimize the combination of a point doubling
U 7→ [2]U (resp. additions) and the line computations that
contribute to fλ,Q

Craig Costello Computing Cryptographic Pairings: the State of the Art

Optimization: quick explicit formulas (cont.)

C-Hisil-Boyd-Gonzalez-Wong (Pairing09): fastest pairings for
y2 = x3 + c2 (special Weierstrass): homogenous projective
coordinates achieve 8 subfield multiplications

C-Lange-Naehrig (PKC2010): “Faster pairings on curves with
high-degree twists”:

i. y2 = x3 + ax (j = 1728 or D = 1): weight-(1,2) coordinates
achieve 10 subfield multiplications

ii. y2 = x3 + b (j = 0 or D = 3): Projective coordinates achieve
9 subfield multiplications (used in recent record 0.65ms)

Craig Costello Computing Cryptographic Pairings: the State of the Art

Other curve models

Weierstrass curves are nice for pairings since the line
computations are inherent in the point addition formulas
Edwards curves (also Jacobi-Quartics, Hessian etc) are far
superior in standard ECC because of fast addition formulas

Figure: Picture taken from Arene et al. Edward’s pairing paper

Pairing-based cryptosystems need more than just pairings
Galbraith showed E and E ′ can’t both be written in Edwards
form (“Edwards curves aren’t likely candidates for ate pairing
which requires computations”)...

Craig Costello Computing Cryptographic Pairings: the State of the Art

Ate pairing on Edwards curves

C-Lange-Naehrig (PKC2010): a bilinear pairing can be
computed entirely on the twist E ′

Choose E so that E ′ can be written in Edwards form (it
doesn’t matter that E can’t)

C-Lange-Naehrig: “The ate pairing on twisted Edwards
curves” (work in progress)

Craig Costello Computing Cryptographic Pairings: the State of the Art

Some recent results

i. Compute fDBL(U) in the doubling of U

ii. U ← [2]U //(DBL)

iii. f ← f 2 · fDBL(U)(S)

——————————————————————————–

(DBL) [2](x1, y1) = (x3, y3)

fDBL(U)(x , y) = y − λ · x − (y1 − λ · x1)

fDBL(U)(S) = yS − λ · xS − (y1 − λ · x1)

—————————————————————————————–

Perhaps it isn’t optimal to evaluate indeterminate function
fDBL(U)(x , y) yet

Leave as an indeterminate function for n-iterations (CBGW -
AfricaCrypt2010 paper, CBGW - WAIFI 2010 paper)

Even more advantageous in the case of a fixed pairing argument
(C-Stebila - “Fixed argument pairings” - LatinCrypt 2010)

Craig Costello Computing Cryptographic Pairings: the State of the Art

e(R , S): R-dependent vs. S-dependent computations

a. i. Compute fDBL(U) in the doubling of U

ii. U ← [2]U //(DBL)

iii. f ← f 2 · fDBL(U)(S)

b. if mi = 1 then

i. Compute fADD(U,R) in the addition of U + R

ii. U ← U + R //(ADD)
iii. f ← f · fADD(U,R)(S)

All the point operations and line coefficient computations are
completely R-dependent (U = vR throughout)

If R is a fixed argument, we can pre-compute all of this
before we input (or know) S

Pre-compute and store all the (λ, xUi
, yUi

) tuples (Scott 2006)

C-Stebila: do much more with all of the fADD functions
before S is known (or input)

Craig Costello Computing Cryptographic Pairings: the State of the Art

Tate and ate Fp-muls vs. storage cost (k = 12, r = 256)

Craig Costello Computing Cryptographic Pairings: the State of the Art

Current/future work: genus 2 pairings

Working in the Jacobian JacC (Fq)

The general belief is that genus 2 pairings won’t be
competitive with pairings on elliptic curves

I’m naive in this arena and am therefore not yet convinced

Holding genus 2 implementations back: ρ-values are currently
very bad in comparison

ρ = g log q/ log r

At the top of my wish list: pairing-friendly genus 2 curves
k ≤ 50 and ρ << 4

Craig Costello Computing Cryptographic Pairings: the State of the Art

Thanks for your attention...

Questions?

Craig Costello Computing Cryptographic Pairings: the State of the Art

