Fixed Argument Pairings

Craig Costello

craig.costello@qut.edu.au
Queensland University of Technology

LatinCrypt 2010
 Puebla, Mexico

Joint work with Douglas Stebila

A mapping $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$:

- $P \in \mathbb{G}_{1}, Q \in \mathbb{G}_{2}$ and $e(P, Q) \in \mathbb{G}_{T}$: groups are all of prime order r (usually)
- Bilinear : $\mathbf{e}(\mathbf{a P}, \mathbf{b Q})=\mathbf{e}(\mathbf{P}, \mathbf{Q})^{\mathbf{a b}}=\mathbf{e}(\mathbf{b P}, \mathbf{a Q})$
- Now used all over the place: all types of encryption, all types of signatures, all types of key-agreement schemes, all types of proof systems, etc ...

Motivation: speed of pairing computation

- The efficient implementation of pairings has become quite a broad field of research in its own right
- Remarkable progress in the field: computing $e(P, Q)$
- 1993: a few minutes
- Today: less than a millisecond (next talk)
- Somewhat strangely, they still have this "slow" stigma attached to them
- Until this myth is dispelled (and probably long after), we will continue to look for optimizations wherever we can find them...

This work...

Fixed Argument Pairings

Computing $e(P, Q)$ where one of the arguments, either P or Q, is fixed

- It could be that $P=P_{\text {priv }}$ is a long-term secret key that is used to decrypt many messages (paired with many different Q_{i})
- It could be that $Q=Q_{\text {pub }}$ is a public parameter that is used in every encryption (paired with many P_{i} 's)
- It could be that $Q=Q_{\text {ID }}$ is an identity-based parameter belonging to an identity with whom communication is regular
- It could be a whole range of things...

Fixed arguments in pairing-based cryptosystems

	\# pairings	fixed arguments	pairings	fixed arguments
Public key encryption	0 Encryption		Decryption	
Boyen-Mei-Waters			1	$2^{\text {nd }}$
ID-based encryption	Encryption		Decryption	
Boneh-Franklin	1	$2^{\text {nd }}$	1	$1^{\text {st }}$
Boneh-Boyen	0		1	$2^{\text {nd }}$
Waters	0		2	both in $2^{\text {nd }}$
Attribute-based encr.	$\begin{array}{ll} & \text { Encryption } \\ 0 & \\ 0 & \\ \end{array}$		Decryption	
GPSW			\leq \#attr	all in $1^{\text {st }}$
LOSTW			≤ 2. \#attr.	all in $2^{\text {nd }}$
ID-based signatures	Signing		Verification	
Waters	0		2	1 in $2^{\text {nd }}$
ID-based key exchange	Initiator		Responder	
Smart-1	2	$1^{\text {st }}, 1$ in $2^{\text {nd }}$	2	1 in $1^{\text {st }}, 1$ in $2^{\text {nd }}$
Chen-Kudla	1	$1^{\text {st }}$	1	$2^{\text {nd }}$
McCullagh-Barreto	1	$2^{\text {nd }}$	1	$2^{\text {nd }}$

Boneh Franklin IBE

(1) Setup: Public parameters are the pairing groups, some hash functions and $\left\langle P, P_{0}\right\rangle$, where $P=s P_{0}$ and s is TA's master secret
(2) Extract: Given an identity $\mathrm{ID} \in\{0,1\}^{*}$, set $d_{\text {ID }}=s H_{1}(\mathrm{ID})$ as the private key of the identity.
(3) Encrypt: Inputs are the message M and a target identity $I D$.
(1) Choose random $t \in \mathbb{Z}_{r}$
(2) Compute the ciphertext

$$
C=\left\langle t P, M \oplus H_{2}\left(e\left(H_{1}(\mathrm{ID}), P_{0}\right)^{t}\right)\right\rangle
$$

(9) Decrypt: Given a ciphertext $\langle U, V\rangle$ and a private key $d_{I D}$, compute:

$$
M=V \oplus H_{2}\left(e\left(d_{I D}, U\right)\right)
$$

"Our" work: other options for the title

- The possibility of exploiting fixed argument pairings was first discussed by Scott and again by Scott et al. in 2006
- They suggested natural pre-computations in the fixed argument, before the second argument exists or is known
- We simply build on their ideas and propose more pre-computations
- Other possible (more honest) titles didn't sound as good:
- "Doing a few more pre computations when one of the arguments is fixed in a pairing-based protocol"
- "Another other look at fixed argument pairings""
- "Fixed argument pairings revisited again"

"Our" work cont.: other options for the author list

- We are also indebted to the anonymous reviewer of a (similar) prior paper who suggested:
"The authors might also like to look at the (surprisingly common) scenario, where in the pairing e $(P, Q), P$ is a fixed system parameter, or a fixed secret key. In this case precomputation of the multiples of P greatly speeds the ate pairing in particular".
- Other possible author lists also didn't sound as impressive:
- "Craig Costello, Douglas Stebila, and Anonymous Previous Reviewer"
- "Craig Costello, Douglas Stebila, and Author Unknown"'

Here comes the math...

... hang tight...

Group choices

The elements of \mathbb{G}_{2} are much bigger than the elements of \mathbb{G}_{1} (e.g. $k=12$)

$$
\mathbb{F}_{q^{12}}=\mathbb{F}_{q^{4}}(\alpha)=\mathbb{F}_{q^{2}}(\gamma)=\mathbb{F}_{q}(\beta)
$$

$P \in \mathbb{G}_{1}:[341746248540,710032105147]$
$Q \in \mathbb{G}_{2}$:
$\left[((502478767360 \cdot \beta+1034075074191) \cdot \gamma+342970860051 \cdot \beta+225764301423) \cdot \alpha^{2}+((205398279920 \cdot \beta+\right.$ $182600014119) \cdot \gamma+860891557473 \cdot \beta+435210764901) \cdot \alpha+(1043922075477 \cdot \beta+566889113793) \cdot \gamma+$ $150949917087 \cdot \beta+21392569319$, $((654337640030 \cdot \beta+744622505639) \cdot \gamma+1092264803801 \cdot \beta+895826335783) \cdot \alpha^{2}+((529466169391 \cdot \beta+$ $550511036767) \cdot \gamma+985244799144 \cdot \beta+554170865706) \cdot \alpha+(194564971321 \cdot \beta+969736450831) \cdot \gamma+$ (579122687888 • $\beta+581111086076)$]

- Original curve is $E\left(\mathbb{F}_{q}\right): y^{2}=x^{3}+a x+b$
- Twisted curve is $E^{\prime}\left(\mathbb{F}_{q^{k / d}}\right): y^{2}=x^{3}+a \omega^{4} x+b \omega^{6}, \omega \in \mathbb{F}_{q^{k}}$
- Possible degrees of twists are $d \in\{2,3,4,6\}$: the bigger the better!
- Twist $\Psi: E^{\prime} \rightarrow E:\left(x^{\prime}, y^{\prime}\right) \rightarrow\left(x^{\prime} / \omega^{2}, y^{\prime} / \omega^{3}\right)$ induces $\mathbb{G}_{2}^{\prime}=E^{\prime}\left(\mathbb{F}_{q^{k / d}}\right)[r]$ so that $\Psi: \mathbb{G}_{2}^{\prime} \rightarrow \mathbb{G}_{2}$
- Instead of working with $Q \in \mathbb{G}_{2}$, a lot of work can be done with $Q^{\prime} \in \mathbb{G}_{2}^{\prime}$ defined over subfield $\mathbb{F}_{q^{e}}=\mathbb{F}_{q^{k / d}}$
$P \in \mathbb{G}_{1}:(341746248540,710032105147)$
$Q^{\prime} \in \mathbb{G}_{2}^{\prime}=\Psi^{-1}\left(\mathbb{G}_{2}\right)$:
$\left((917087150949 \beta+25693192139) \cdot \omega^{2},(878885791226 \beta+860765811110) \cdot \omega^{3}\right)$

Tate vs. ate pairings

Tate-like pairings

$$
e_{r}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mu_{r},(P, Q) \mapsto f_{r, P}(Q)^{\frac{q^{k}-1}{r}}
$$

Ate-like pairing

$$
a_{T}: \mathbb{G}_{2} \times \mathbb{G}_{1} \rightarrow \mu_{r},(Q, P) \mapsto f_{T, Q}(P)^{\frac{q^{k}-1}{r}} .
$$

- Pairings $e(R, S)$ require the computation of Miller functions $f_{m, R}(S)$
- Function $f_{m, R}$ is of degree m
- Constructions require $\left\lfloor\log _{2} m\right\rfloor$ iterations of Miller's algorithm
- Most of the work is done in the first argument
- Tate needs $\left\lfloor\log _{2} r\right\rfloor$ iters, ate needs $\left\lfloor\log _{2} T\right\rfloor$ iters, $T \ll r$
- Trade-off is that more work in ate is done in larger field $\left(\mathbb{G}_{2}^{\prime}\right)$

Miller's algorithm to compute $e(R, S)=f_{m, R}(S)^{\left(q^{k}-1\right) / r}$

$m=\left(m_{l-1}, \ldots, m_{1}, m_{0}\right)_{2}$ initialize: $U=R, f=1$
(1) for $i=I-2$ to 0 do
a. i. Compute $f_{\mathrm{DBL}(U)}$ in the doubling of U
ii. $U \leftarrow[2] U$
//(DBL)
iii. $f \leftarrow f^{2} \cdot f_{\mathrm{DBL}(U)}(S)$
b. if $m_{i}=1$ then
i. Compute $f_{\mathrm{ADD}(U, R)}$ in the addition of $U+R$
ii. $U \leftarrow U+R$
//(ADD)
iii. $f \leftarrow f \cdot f_{\mathrm{ADD}(U, R)}(S)$
(2) $f \leftarrow f^{\left(q^{k}-1\right) / r}$.

An iteration of Miller's algorithm

a. i. Compute $f_{\operatorname{DBL}(U)}$ in the doubling of U
ii. $U \leftarrow[2] U$
//(DBL)
iii. $f \leftarrow f^{2} \cdot f_{\mathrm{DBL}(U)}(S)$
b. if $m_{i}=1$ then
i. Compute $f_{\mathrm{ADD}(U, R)}$ in the addition of $U+R$
ii. $U \leftarrow U+R$
//(ADD)
iii. $f \leftarrow f \cdot f_{\operatorname{ADD}(U, R)}(S)$
(DBL) $[2]\left(x_{1}, y_{1}\right)=\left(x_{3}, y_{3}\right)$
$x_{3}=\lambda^{2}-2 x_{1}$
$y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$
$\lambda=\left(3 x_{1}^{2}+a\right) /\left(2 y_{1}\right)$
$f_{\mathrm{DBL}(U) / \operatorname{ADD}(U+R)}=y-\lambda \cdot x-\left(y_{1}-\lambda \cdot x_{1}\right)$
$f_{\mathrm{DBL}(U) / \operatorname{ADD}(U+R)}(S)=y_{S}-\lambda \cdot x_{S}-\left(y_{1}-\lambda \cdot x_{1}\right)$

We only need to touch $S=\left(x_{S}, y_{S}\right)$ when we evaluate the line functions
a. i. Compute $f_{\mathrm{DBL}(U)}$ in the doubling of U
ii. $U \leftarrow[2] U$
iii. $f \leftarrow f^{2} \cdot f_{\operatorname{DBL}(U)}(S)$
b. if $m_{i}=1$ then
i. Compute $f_{\mathrm{ADD}(U, R)}$ in the addition of $U+R$
ii. $\quad U \leftarrow U+R$
//(ADD)
iii. $f \leftarrow f \cdot f_{\operatorname{ADD}(U, R)}(S)$

$$
f_{\mathrm{DBL}(U) / \operatorname{ADD}(U+R)}(S)=y_{S}-\lambda \cdot x_{S}-\left(y_{1}-\lambda \cdot x_{1}\right)
$$

- All the point operations and line coefficient computations are completely R-dependent ($U=v R$ throughout)
- If R is a fixed argument, we can pre-compute all of this before we input (or know) S
- Pre-compute and store all the $\left(\lambda, x_{U_{i}}, y U_{i}\right)$ tuples (Scott 2006)

The beauty of fixed arguments

An assumption: pre-computation time

We assume that we have ample time to do these pre-computations (at least a few seconds).

Another assumption: storage limit

We also assume that we have access to a significant amount of storage space to store these precomputations.

- Essentially we do whatever it takes to reduce the pairing computation time at runtime (once S is input)
- This allows us to work in (generally more expensive) affine coordinates:
- Projective Miller lines: $F_{\mathrm{DBL}(U)}=g_{x} \cdot x+g_{y} \cdot y+g_{0}$
- Affine Miller lines: $f_{\operatorname{DBL}(U)}=x+\lambda \cdot y+c$

Splitting the algorithm

- Starting observation: store $\left(\lambda_{i}, c_{i}\right)$ tuples instead of $\left(x_{i}, y_{i}, \lambda_{i}\right)$ tuples \rightarrow only storing line functions: natural split

R-dependent pre-comps	S-dependent dynamic comps
Input: R	Input: Vec, S
for $i=1-2$ to 0	for $i=I-2$ to 0
Compute $f_{\mathrm{DBL}(U)}=\left(\lambda_{i}, c_{i}\right)$	
Store Vec $\leftarrow\left(\lambda_{i}, c_{i}\right)$	
if $m_{i}=1$ then	if $m_{i}=1$ then
$\begin{aligned} & \text { Compute } f_{\mathrm{ADD}(U, R)}=\left(\tilde{\lambda}_{i}, \tilde{c}_{i}\right) \\ & U \leftarrow U+R \end{aligned}$	$f \leftarrow f \cdot\left(y_{s}+\tilde{\lambda}_{i} \cdot x_{S}+\tilde{c}_{i}\right)$
```Store Vec}\leftarrow(\tilde{\mp@subsup{\lambda}{i}{}},\mp@subsup{\tilde{c}}{i}{} end if end for```	end if end for
Output: Vec	Output: $f_{m, R} S \leftarrow f$

- No major improvements, but helps to conceptualize what's to come...


## Doing more pre-computations

- Question: can we possibly push any more of the $S$-dependent computations across to the $R$-dependent side?

$R$-dependent pre-comps	$S$-dependent dynamic comps
for $i=I-2$ to 0	for $i=I-2$ to 0
Compute $f_{\mathrm{DBL}(U)}=\left(\lambda_{i}, c_{i}\right)$	$f \leftarrow f^{2} \cdot\left(y_{S}+\lambda_{i} \cdot x_{S}+c_{i}\right)$
$U \leftarrow[2] U$	if $m_{i}=1$ then
Store $\operatorname{Vec} \leftarrow\left(\lambda_{i}, c_{i}\right)$	
if $m_{i}=1$ then	$f \leftarrow f \cdot\left(y_{S}+\tilde{\lambda}_{i} \cdot x_{S}+\tilde{c}_{i}\right)$
Compute $f_{\mathrm{ADD}}(U, R)=\left(\tilde{\lambda}_{i}, \tilde{c}_{i}\right)$	
$U \leftarrow U+R$	end if   Store $\operatorname{Vec} \leftarrow\left(\tilde{\lambda}_{i}, \tilde{c}_{i}\right)$
end if	
end for	

- Answer: perhaps we can perform operations on the line functions, before they're evaluate at $S$
- Once the line function is evaluated at $S$, it's going to be squared, so why not square the indeterminate function before evaluating it at $S$ ?


## Doing more pre-computations cont...

- Analogous to prior work (CBGW at WAIFI'10) which was done for general pairings (both arguments input at the same time)
- In the case of fixed arguments, the technique is much more powerful... any operations we do on the indeterminate functions can be done in advance
- Loop unrolling for general pairings was only much faster in Tate-like pairings where the line function coefficients were in the ground field $\mathbb{F}_{p}$
- The ate pairing benefits just as much (if not more) from loop unrolling in the fixed argument scenario, as the extra operations spent in $\mathbb{F}_{p^{e}}$ are pre-computations anyway
- Get the usual $R$-dependent output

$$
\mathrm{Vec}=\left[\left(\lambda_{1}, c_{1}\right),\left(\lambda_{2}, c_{2}\right), \ldots,\left(\lambda_{L}, c_{L}\right)\right]
$$

which corresponds to $L$ indeterminate line functions of the form $y+\lambda_{i} x+c_{i}$

- Combine $n$ of them at a time (keeping in mind that each line function would have been squared) to form new indeterminate functions

$$
\begin{aligned}
\prod_{i=1}^{n}\left(y+\lambda_{i} x+c_{i}\right)^{2^{(i-1)}} & =f(x)+g(x) \cdot y \\
& =\prod_{j=0}^{T_{1}} z_{j} \cdot x^{j}+\prod_{j=0}^{T_{2}} \hat{z}_{j} \cdot x^{j} \cdot y
\end{aligned}
$$

where the $z_{j}$ 's and $\hat{z}_{j}$ 's are functions of the $\left(\lambda_{i}, c_{i}\right)$ tuples

- What's the best $n$ value?
- Store these bigger functions until $S$ exists or is input
- More pre-computational work, more storage requirements...
- BUT less function evaluations and less Miller updates!

The old vs. the new

S-dependent comps (OLD)	S-dependent comps (NEW)
Input: Vec, $S$	Input: VecNew, $S$
$L$ iterations	$\lceil L / n\rceil$ iterations
$f \leftarrow f^{2} \cdot\left(y_{S}+\lambda_{i} \cdot x_{S}+c_{i}\right)$	$f \leftarrow f^{2^{n}} \cdot\left(\prod z_{j} \cdot x_{S}^{j}+\prod \hat{z}_{j} \cdot x_{S}^{j} \cdot y_{S}\right)$
if $m_{i}=1$ then	if any of the old $m_{i}$ were 1 then
$f \leftarrow f \cdot\left(y_{S}+\tilde{\lambda}_{i} \cdot x_{S}+\tilde{c}_{i}\right)$	$f \leftarrow f \cdot\left(\prod z_{j} \cdot x_{S}^{j}+\prod \hat{z}_{j} \cdot x_{S}^{j} \cdot y_{S}\right)$
end if	end if   end for
Output: $f_{m, R} S \leftarrow f$	Output: $f_{m, R} S \leftarrow f$

- The old way $n$ function updates every $n$ iterations, where as the new way has 1 function update in the equivalent of every $n$ iterations
- It doesn't look like much, but the savings can be quite substantial...


## Results

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline $$
\begin{gathered}
\text { Security } \\
\& r \\
\text { (bits) } \\
\hline
\end{gathered}
$$ \& $k$ \& Best

$\rho$ \& \[
$$
\begin{gathered}
\mathbb{F}_{p} \\
\text { (bits) }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathbb{F}_{p^{k / d}} \\
\text { (bits) }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathbb{F}_{p^{k}} \\
\text { (bits) }
\end{gathered}
$$
\] \& Pairing \& $m$ \& $n$ \& $\# \mathbf{m}_{1}$ \& pre. \& dup

no pre. <br>
\hline 80 \& 6 \& 2.000 \& 320 \& 320 \& 1920 \& Tate \& 80 \& 2 \& 1843 \& 7.8 \& 37.1 <br>
\hline \& \& \& \& \& \& ate \& 80 \& 2 \& 1846 \& 7.7 \& 37.0 <br>
\hline $r=160$ \& 8 \& 1.500 \& 240 \& 480 \& 1920 \& Tate \& 120 \& 2 \& 5069 \& 11.2 \& 30.8 <br>
\hline \& \& \& \& \& \& ate \& 120 \& 2 \& 5058 \& 11.4 \& 30.9 <br>
\hline 112 \& 12 \& 1.000 \& 224 \& 448 \& 2688 \& Tate \& 112 \& 3 \& 7308 \& 11.8 \& 29.5 <br>
\hline \& \& \& \& \& \& ate \& 56 \& 3 \& 3646 \& 12.0 \& 29.7 <br>
\hline $r=224$ \& 16 \& 1.250 \& 280 \& 1120 \& 4480 \& Tate \& 112 \& 2 \& 13460 \& 14.6 \& 25.9 <br>
\hline \& \& \& \& \& \& ate \& 28 \& 2 \& 3346 \& 15.1 \& 26.3 <br>
\hline 128 \& 12 \& 1.000 \& 256 \& 512 \& 3072 \& Tate \& 128 \& 3 \& 8263 \& 12.7 \& 30.3 <br>
\hline \& \& \& \& \& \& ate \& 64 \& 2 \& 4198 \& 11.3 \& 29.2 <br>
\hline \& 16 \& 1.250 \& 320 \& 1280 \& 4096 \& Tate \& 128 \& 2 \& 15368 \& 14.7 \& 26.0 <br>
\hline $r=256$ \& \& \& \& \& \& ate \& 32 \& 2 \& 3823 \& 15.1 \& 26.3 <br>
\hline \& 18 \& 1.333 \& 342 \& 1026 \& 4608 \& Tate \& 128 \& 3 \& 13590 \& 13.6 \& 28.5 <br>
\hline \& \& \& \& \& \& ate \& 43 \& 3 \& 4697 \& 11.1 \& 26.5 <br>
\hline 192 \& 18 \& 1.333 \& 512 \& 1536 \& 6912 \& Tate \& 192 \& 3 \& 20173 \& 14.2 \& 29.3 <br>
\hline \& \& \& \& \& \& ate \& 64 \& 3 \& 6881 \& 12.5 \& 27.6 <br>
\hline $r=384$ \& 24 \& 1.250 \& 478 \& 1912 \& 9216 \& Tate \& 192 \& 3 \& 34540 \& 18.2 \& 30.4 <br>
\hline \& \& \& \& \& \& ate \& 48 \& 3 \& 8577 \& 18.7 \& 30.9 <br>
\hline 256 \& 32 \& 1.125 \& 576 \& 4608 \& 16384 \& Tate \& 256 \& 3 \& 87876 \& 17.9 \& 25.7 <br>
\hline \& \& \& \& \& \& ate \& 32 \& 3 \& 10777 \& 19.5 \& 27.1 <br>
\hline $r=512$ \& 36 \& 1.167 \& 598 \& 3588 \& 18432 \& Tate \& 264 \& 3 \& 102960 \& 18.2 \& 29.5 <br>
\hline \& \& \& \& \& \& ate \& 43 \& 3 \& 13202 \& 16.1 \& 27.7 <br>
\hline
\end{tabular}

n column: represents the optimal number of iterations to merge... i.e. the optimal number of $\left(\lambda_{i}, c_{i}\right)$ "line functions" to combine

Tate vs. ate $\mathbb{F}_{p}$-muls vs. storage cost $(k=12, r=256)$



## Ate $\mathbb{F}_{p}$-muls for different $k, n$



## In case you missed any of that...

- Pairings $e(R, S)$ are just functions of the four coordinates $e(R, S)=f\left(x_{R}, y_{R}, x_{S}, y_{S}\right)$
- We just tweaked the pairing computation algorithm to do a bit more with $x_{R}$ and $y_{R}$, in order to reduce the workload when the $S=\left(x_{S}, y_{S}\right)^{\prime} s$ come

The lesson learned...

- IF you're wanting to implement one of the many exciting pairing-based protocols...
- AND there is a long-term fixed argument that could be exploited in that protocol...
- AND you're still not happy with the efficiency of pairings...
- AND you have a little more storage space...
- THEN employ some conceptually simple pre-computation and enjoy the (up to $37 \%$ ) speedups

