
Fixed Argument Pairings

Craig Costello

craig.costello@qut.edu.au
Queensland University of Technology

LatinCrypt 2010
Puebla, Mexico

Joint work with Douglas Stebila

Craig Costello Fixed Argument Pairings



Pairings

A mapping e : G1 ×G2 → GT :

P ∈ G1, Q ∈ G2 and e(P,Q) ∈ GT : groups are all of prime
order r (usually)

Bilinear : e(aP,bQ) = e(P,Q)ab = e(bP, aQ)

Now used all over the place: all types of encryption, all types
of signatures, all types of key-agreement schemes, all types of
proof systems, etc ...

Craig Costello Fixed Argument Pairings



Motivation: speed of pairing computation

The efficient implementation of pairings has become quite a
broad field of research in its own right

Remarkable progress in the field: computing e(P,Q)

1993: a few minutes
Today: less than a millisecond (next talk)

Somewhat strangely, they still have this “slow” stigma
attached to them

Until this myth is dispelled (and probably long after), we will
continue to look for optimizations wherever we can find
them...

Craig Costello Fixed Argument Pairings



This work...

Fixed Argument Pairings

Computing e(P,Q) where one of the arguments, either P or Q, is
fixed

It could be that P = Ppriv is a long-term secret key that is
used to decrypt many messages (paired with many different
Qi )

It could be that Q = Qpub is a public parameter that is used
in every encryption (paired with many Pi ’s)

It could be that Q = QID is an identity-based parameter
belonging to an identity with whom communication is regular

It could be a whole range of things...

Craig Costello Fixed Argument Pairings



Fixed arguments in pairing-based cryptosystems

# fixed # fixed
pairings arguments pairings arguments

Public key encryption Encryption Decryption

Boyen-Mei-Waters 0 1 2nd

ID-based encryption Encryption Decryption

Boneh-Franklin 1 2nd 1 1st

Boneh-Boyen 0 1 2nd

Waters 0 2 both in 2nd

Attribute-based encr. Encryption Decryption
GPSW 0 ≤ #attr. all in 1st

LOSTW 0 ≤ 2 · #attr. all in 2nd

ID-based signatures Signing Verification

Waters 0 2 1 in 2nd

ID-based key exchange Initiator Responder

Smart-1 2 1 in 1st, 1 in 2nd 2 1 in 1st , 1 in 2nd

Chen-Kudla 1 1st 1 2nd

McCullagh-Barreto 1 2nd 1 2nd

Craig Costello Fixed Argument Pairings



Boneh Franklin IBE

1 Setup: Public parameters are the pairing groups, some hash
functions and 〈P,P0〉, where P = sP0 and s is TA’s master
secret

2 Extract: Given an identity ID ∈ {0, 1}∗, set dID = sH1(ID) as
the private key of the identity.

3 Encrypt: Inputs are the message M and a target identity ID.
1 Choose random t ∈ Zr

2 Compute the ciphertext

C = 〈tP,M ⊕ H2(e(H1(ID),P0)t)〉

.

4 Decrypt: Given a ciphertext 〈U,V 〉 and a private key dID,
compute:

M = V ⊕ H2(e(dID,U))

.

Craig Costello Fixed Argument Pairings



“Our” work: other options for the title

The possibility of exploiting fixed argument pairings was first
discussed by Scott and again by Scott et al. in 2006

They suggested natural pre-computations in the fixed
argument, before the second argument exists or is known

We simply build on their ideas and propose more
pre-computations

Other possible (more honest) titles didn’t sound as good:

“Doing a few more pre-computations when one of the
arguments is fixed in a pairing-based protocol”
“Another other look at fixed argument pairings”
“Fixed argument pairings revisited again”

Craig Costello Fixed Argument Pairings



“Our” work cont.: other options for the author list

We are also indebted to the anonymous reviewer of a (similar)
prior paper who suggested:

“The authors might also like to look at the (surprisingly
common) scenario, where in the pairing e(P,Q), P is a fixed
system parameter, or a fixed secret key. In this case
precomputation of the multiples of P greatly speeds the ate
pairing in particular”.

Other possible author lists also didn’t sound as impressive:

“Craig Costello, Douglas Stebila, and Anonymous Previous
Reviewer”
“Craig Costello, Douglas Stebila, and Author Unknown”

Craig Costello Fixed Argument Pairings



Here comes the math...

... hang tight...

Craig Costello Fixed Argument Pairings



Group choices

The elements of G2 are much bigger than the elements of
G1 (e.g. k = 12)

Fq12 = Fq4(α) = Fq2(γ) = Fq(β)

P ∈ G1: [341746248540, 710032105147]

Q ∈ G2:
[((502478767360 · β + 1034075074191) · γ + 342970860051 · β + 225764301423) · α2 + ((205398279920 · β +

182600014119) · γ + 860891557473 · β + 435210764901) · α + (1043922075477 · β + 566889113793) · γ +

150949917087 · β + 21392569319,

((654337640030 · β + 744622505639) · γ + 1092264803801 · β + 895826335783) · α2 + ((529466169391 · β +

550511036767) · γ + 985244799144 · β + 554170865706) · α + (194564971321 · β + 969736450831) · γ +

(579122687888 · β + 581111086076)]

Craig Costello Fixed Argument Pairings



The twisted curve

Original curve is E (Fq) : y 2 = x3 + ax + b

Twisted curve is E ′(Fqk/d ): y 2 = x3 + aω4x + bω6, ω ∈ Fqk

Possible degrees of twists are d ∈ {2, 3, 4, 6}: the bigger the
better!

Twist Ψ : E ′ → E : (x ′, y ′)→ (x ′/ω2, y ′/ω3) induces
G′2 = E ′(Fqk/d )[r ] so that Ψ : G′2 → G2

Instead of working with Q ∈ G2, a lot of work can be done
with Q ′ ∈ G′2 defined over subfield Fqe = Fqk/d

P ∈ G1: (341746248540, 710032105147)

Q ′ ∈ G′2 = Ψ−1(G2):
((917087150949β + 25693192139) · ω2, (878885791226β + 860765811110) · ω3)

Craig Costello Fixed Argument Pairings



Tate vs. ate pairings

Tate-like pairings

er : G1 ×G2 → µr , (P,Q) 7→ fr ,P(Q)
qk−1

r .

Ate-like pairing

aT : G2 ×G1 → µr , (Q,P) 7→ fT ,Q(P)
qk−1

r .

Pairings e(R,S) require the computation of Miller functions
fm,R(S)

Function fm,R is of degree m

Constructions require blog2 mc iterations of Miller’s algorithm

Most of the work is done in the first argument

Tate needs blog2 rc iters, ate needs blog2 T c iters, T � r

Trade-off is that more work in ate is done in larger field (G′2)

Craig Costello Fixed Argument Pairings



Miller’s algorithm to compute e(R , S) = fm,R(S)(qk−1)/r

m = (ml−1, . . . ,m1,m0)2 initialize: U = R, f = 1

1 for i = l − 2 to 0 do
a. i. Compute fDBL(U) in the doubling of U

ii. U ← [2]U //(DBL)
iii. f ← f 2 · fDBL(U)(S)

b. if mi = 1 then
i. Compute fADD(U,R) in the addition of U + R
ii. U ← U + R //(ADD)
iii. f ← f · fADD(U,R)(S)

2 f ← f (qk−1)/r .

Craig Costello Fixed Argument Pairings



An iteration of Miller’s algorithm

a. i. Compute fDBL(U) in the doubling of U
ii. U ← [2]U //(DBL)
iii. f ← f 2 · fDBL(U)(S)

b. if mi = 1 then
i. Compute fADD(U,R) in the addition of U + R
ii. U ← U + R //(ADD)
iii. f ← f · fADD(U,R)(S)

——————————————————————————–
(DBL) [2](x1, y1) = (x3, y3) (ADD) (x1, y1) + (x2, y2) = (x3, y3)

x3 = λ2 − 2x1 x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1 y3 = λ(x1 − x3)− y1

λ = (3x2
1 + a)/(2y1) λ = (y2 − y1)/(x2 − x1)

fDBL(U)/ADD(U+R) = y − λ · x − (y1 − λ · x1)

fDBL(U)/ADD(U+R)(S) = yS − λ · xS − (y1 − λ · x1)

——————————————————————————–

We only need to touch S = (xS , yS) when we evaluate the line functions

Craig Costello Fixed Argument Pairings



e(R , S): R-dependent vs. S-dependent computations

a. i. Compute fDBL(U) in the doubling of U

ii. U ← [2]U //(DBL)

iii. f ← f 2 · fDBL(U)(S)
b. if mi = 1 then

i. Compute fADD(U,R) in the addition of U + R

ii. U ← U + R //(ADD)
iii. f ← f · fADD(U,R)(S)

——————————————————————————–

fDBL(U)/ADD(U+R)(S) = yS − λ · xS − (y1 − λ · x1)

——————————————————————————–

All the point operations and line coefficient computations are
completely R-dependent (U = vR throughout)

If R is a fixed argument, we can pre-compute all of this
before we input (or know) S

Pre-compute and store all the (λ, xUi
, yUi

) tuples (Scott 2006)

Craig Costello Fixed Argument Pairings



The beauty of fixed arguments

An assumption: pre-computation time

We assume that we have ample time to do these pre-computations
(at least a few seconds).

Another assumption: storage limit

We also assume that we have access to a significant amount of
storage space to store these precomputations.

Essentially we do whatever it takes to reduce the pairing
computation time at runtime (once S is input)

This allows us to work in (generally more expensive) affine
coordinates:

Projective Miller lines: FDBL(U) = gx · x + gy · y + g0

Affine Miller lines: fDBL(U) = x + λ · y + c

Craig Costello Fixed Argument Pairings



Splitting the algorithm

Starting observation: store (λi , ci ) tuples instead of (xi , yi , λi )
tuples → only storing line functions: natural split

R-dependent pre-comps S-dependent dynamic comps
Input: R Input: Vec, S
for i = l − 2 to 0 for i = l − 2 to 0
Compute fDBL(U) = (λi , ci )
U ← [2]U f ← f 2 · (yS + λi · xS + ci )
Store Vec← (λi , ci )
if mi = 1 then if mi = 1 then
Compute fADD(U,R) = (λ̃i , c̃i )

U ← U + R f ← f · (yS + λ̃i · xS + c̃i )

Store Vec← (λ̃i , c̃i )
end if end if

end for end for
Output: Vec Output: fm,RS ← f

No major improvements, but helps to conceptualize what’s to
come...

Craig Costello Fixed Argument Pairings



Doing more pre-computations

Question: can we possibly push any more of the S-dependent
computations across to the R-dependent side?

R-dependent pre-comps S-dependent dynamic comps
for i = l − 2 to 0 for i = l − 2 to 0
Compute fDBL(U) = (λi , ci )
U ← [2]U f ← f 2 · (yS + λi · xS + ci )
Store Vec← (λi , ci )
if mi = 1 then if mi = 1 then
Compute fADD(U,R) = (λ̃i , c̃i )

U ← U + R f ← f · (yS + λ̃i · xS + c̃i )

Store Vec← (λ̃i , c̃i )
end if end if

end for end for

Answer: perhaps we can perform operations on the line functions,
before they’re evaluate at S

Once the line function is evaluated at S , it’s going to be squared, so
why not square the indeterminate function before evaluating it at S?

Craig Costello Fixed Argument Pairings



Doing more pre-computations cont...

Analogous to prior work (CBGW at WAIFI’10) which was done
for general pairings (both arguments input at the same time)

In the case of fixed arguments, the technique is much more
powerful... any operations we do on the indeterminate
functions can be done in advance

Loop unrolling for general pairings was only much faster in
Tate-like pairings where the line function coefficients were in
the ground field Fp

The ate pairing benefits just as much (if not more) from loop
unrolling in the fixed argument scenario, as the extra
operations spent in Fpe are pre-computations anyway

Craig Costello Fixed Argument Pairings



The recipe

Get the usual R-dependent output

Vec = [(λ1, c1), (λ2, c2), ..., (λL, cL)]

which corresponds to L indeterminate line functions of the form
y + λix + ci

Combine n of them at a time (keeping in mind that each line
function would have been squared) to form new indeterminate
functions

n∏
i=1

(y + λix + ci )
2(i−1)

= f (x) + g(x) · y

=
T1∏
j=0

zj · x j +
T2∏
j=0

ẑj · x j · y ,

where the zj ’s and ẑj ’s are functions of the (λi , ci ) tuples
What’s the best n value?
Store these bigger functions until S exists or is input
More pre-computational work, more storage requirements...
BUT less function evaluations and less Miller updates!

Craig Costello Fixed Argument Pairings



The old vs. the new

S-dependent comps (OLD) S-dependent comps (NEW)

Input: Vec, S Input: VecNew, S

L iterations dL/ne iterations

f ← f 2 · (yS + λi · xS + ci ) f ← f 2n · (
∏

zj · x j
S +

∏
ẑj · x j

S · yS)

if mi = 1 then if any of the old mi were 1 then

f ← f · (yS + λ̃i · xS + c̃i ) f ← f · (
∏

zj · x j
S +

∏
ẑj · x j

S · yS)

end if end if
end for end for
Output: fm,RS ← f Output: fm,RS ← f

The old way n function updates every n iterations, where as the new
way has 1 function update in the equivalent of every n iterations

It doesn’t look like much, but the savings can be quite substantial...

Craig Costello Fixed Argument Pairings



Results

Security k Best Fp F
pk/d F

pk Pairing m n #m1 % Speedup

& r
(bits) ρ (bits) (bits) (bits) pre. no pre.

80 6 2.000 320 320 1920 Tate 80 2 1843 7.8 37.1
ate 80 2 1846 7.7 37.0

r = 160 8 1.500 240 480 1920 Tate 120 2 5069 11.2 30.8
ate 120 2 5058 11.4 30.9

112 12 1.000 224 448 2688 Tate 112 3 7308 11.8 29.5
ate 56 3 3646 12.0 29.7

r = 224 16 1.250 280 1120 4480 Tate 112 2 13460 14.6 25.9
ate 28 2 3346 15.1 26.3

128 12 1.000 256 512 3072 Tate 128 3 8263 12.7 30.3
ate 64 2 4198 11.3 29.2

16 1.250 320 1280 4096 Tate 128 2 15368 14.7 26.0
r = 256 ate 32 2 3823 15.1 26.3

18 1.333 342 1026 4608 Tate 128 3 13590 13.6 28.5
ate 43 3 4697 11.1 26.5

192 18 1.333 512 1536 6912 Tate 192 3 20173 14.2 29.3
ate 64 3 6881 12.5 27.6

r = 384 24 1.250 478 1912 9216 Tate 192 3 34540 18.2 30.4
ate 48 3 8577 18.7 30.9

256 32 1.125 576 4608 16384 Tate 256 3 87876 17.9 25.7
ate 32 3 10777 19.5 27.1

r = 512 36 1.167 598 3588 18432 Tate 264 3 102960 18.2 29.5
ate 43 3 13202 16.1 27.7

n column: represents the optimal number of iterations to merge...
i.e. the optimal number of (λi , ci ) “line functions” to combine

Craig Costello Fixed Argument Pairings



Tate vs. ate Fp-muls vs. storage cost (k = 12, r = 256)

Craig Costello Fixed Argument Pairings



Tate Fp-muls for different k , n

Craig Costello Fixed Argument Pairings



Ate Fp-muls for different k , n

Craig Costello Fixed Argument Pairings



In case you missed any of that...

Pairings e(R,S) are just functions of the four coordinates
e(R, S) = f (xR , yR , xS , yS)

We just tweaked the pairing computation algorithm to do a
bit more with xR and yR , in order to reduce the workload
when the S = (xS , yS)′s come

Craig Costello Fixed Argument Pairings



Summary

The lesson learned...

IF you’re wanting to implement one of the many exciting
pairing-based protocols...

AND there is a long-term fixed argument that could be
exploited in that protocol...

AND you’re still not happy with the efficiency of pairings...

AND you have a little more storage space...

THEN employ some conceptually simple pre-computation and

enjoy the (up to 37%) speedups ¨̂

Craig Costello Fixed Argument Pairings


