Fixed Argument Pairings

Craig Costello

craig.costello@qut.edu.au Queensland University of Technology

> LatinCrypt 2010 Puebla, Mexico

Joint work with Douglas Stebila

A mapping $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$:

- P ∈ G₁, Q ∈ G₂ and e(P, Q) ∈ G_T: groups are all of prime order r (usually)
- Bilinear : $e(aP, bQ) = e(P, Q)^{ab} = e(bP, aQ)$
- Now used all over the place: all types of encryption, all types of signatures, all types of key-agreement schemes, all types of proof systems, etc ...

Motivation: speed of pairing computation

- The efficient implementation of pairings has become quite a broad field of research in its own right
- Remarkable progress in the field: computing e(P, Q)
 - 1993: a few minutes
 - Today: less than a millisecond (next talk)
- Somewhat strangely, they still have this "slow" stigma attached to them
- Until this myth is dispelled (and probably long after), we will continue to look for optimizations wherever we can find them...

Fixed Argument Pairings

Computing e(P, Q) where one of the arguments, either P or Q, is fixed

- It could be that P = P_{priv} is a long-term secret key that is used to decrypt many messages (paired with many different Q_i)
- It could be that Q = Q_{pub} is a public parameter that is used in every encryption (paired with many P_i's)
- It could be that $Q = Q_{ID}$ is an identity-based parameter belonging to an identity with whom communication is regular
- It could be a whole range of things...

Fixed arguments in pairing-based cryptosystems

	#	fixed	#	fixed		
	pairings	arguments	pairings	arguments		
Public key encryption	Ei	ncryption	Decryption			
Boyen-Mei-Waters	0		1	2 nd		
ID-based encryption	Ei	ncryption	Decryption			
Boneh-Franklin	1	2 nd	1	1^{st}		
Boneh-Boyen	0		1	2 nd		
Waters	0		2	both in 2^{nd}		
Attribute-based encr.	Ei	ncryption	Decryption			
GPSW	0		\leq #attr.	all in 1^{st}		
LOSTW	0		$\leq 2 \cdot \#$ attr.	all in 2^{nd}		
ID-based signatures	Signing		Verification			
Waters	0		2	$1 \text{ in } 2^{\mathrm{nd}}$		
ID-based key exchange	Initiator		Responder			
Smart-1	2	1 in 1 $^{ m st}$, 1 in 2 $^{ m nd}$	2	1 in $1^{ m st}$, 1 in $2^{ m nd}$		
Chen-Kudla	1	1^{st}	1	2 nd		
McCullagh-Barreto	1	2 nd	1	2 nd		

Boneh Franklin IBE

- Setup: Public parameters are the pairing groups, some hash functions and ⟨P, P₀⟩, where P = sP₀ and s is TA's master secret
- **2** Extract: Given an identity $ID \in \{0, 1\}^*$, set $d_{ID} = sH_1(ID)$ as the private key of the identity.
- **Solution** Encrypt: Inputs are the message *M* and a target identity *ID*.
 - **1** Choose random $t \in \mathbb{Z}_r$
 - O Compute the ciphertext

$$C = \langle tP, M \oplus H_2(e(H_1(\mathrm{ID}), P_0)^t) \rangle$$

Oecrypt: Given a ciphertext (U, V) and a private key d_{ID}, compute:

$$M = V \oplus H_2(e(d_{\tt ID}, U))$$

"Our" work: other options for the title

- The possibility of exploiting fixed argument pairings was first discussed by Scott and again by Scott *et al.* in 2006
- They suggested natural pre-computations in the fixed argument, before the second argument exists or is known
- We simply build on their ideas and propose more pre-computations
- Other possible (more honest) titles didn't sound as good:
 - "Doing a few more pre-computations when one of the arguments is fixed in a pairing-based protocol"
 - "Another other look at fixed argument pairings"
 - "Fixed argument pairings revisited again"

• We are also indebted to the anonymous reviewer of a (similar) prior paper who suggested:

"The authors might also like to look at the (surprisingly common) scenario, where in the pairing e(P,Q), P is a fixed system parameter, or a fixed secret key. In this case precomputation of the multiples of P greatly speeds the ate pairing in particular".

- Other possible author lists also didn't sound as impressive:
 - "Craig Costello, Douglas Stebila, and Anonymous Previous Reviewer"
 - "Craig Costello, Douglas Stebila, and Author Unknown"

... hang tight...

The elements of \mathbb{G}_2 are much bigger than the elements of \mathbb{G}_1 (e.g. k = 12)

$$\mathbb{F}_{q^{12}} = \mathbb{F}_{q^4}(\alpha) = \mathbb{F}_{q^2}(\gamma) = \mathbb{F}_q(\beta)$$

 $P \in \mathbb{G}_1$: [341746248540,710032105147] $Q \in \mathbb{G}_2$:

$$\begin{split} & [((502478767360 \cdot \beta + 1034075074191) \cdot \gamma + 342970860051 \cdot \beta + 225764301423) \cdot \alpha^2 + ((205398279920 \cdot \beta + 182600014119) \cdot \gamma + 860891557473 \cdot \beta + 435210764901) \cdot \alpha + (1043922075477 \cdot \beta + 566889113793) \cdot \gamma + 150949917087 \cdot \beta + 21392569319, \\ & ((654337640030 \cdot \beta + 744622505639) \cdot \gamma + 1092264803801 \cdot \beta + 895826335783) \cdot \alpha^2 + ((529466169391 \cdot \beta + 550511036767) \cdot \gamma + 985244799144 \cdot \beta + 554170865706) \cdot \alpha + (194564971321 \cdot \beta + 969736450831) \cdot \gamma + \end{split}$$

 $(579122687888 \cdot \beta + 581111086076)]$

The twisted curve

- Original curve is $E(\mathbb{F}_q): y^2 = x^3 + ax + b$
- Twisted curve is $E'(\mathbb{F}_{q^{k/d}})$: $y^2 = x^3 + a\omega^4 x + b\omega^6$, $\omega \in \mathbb{F}_{q^k}$
- Possible degrees of twists are d ∈ {2,3,4,6}: the bigger the better!
- Twist $\Psi: E' \to E: (x', y') \to (x'/\omega^2, y'/\omega^3)$ induces $\mathbb{G}'_2 = E'(\mathbb{F}_{q^{k/d}})[r]$ so that $\Psi: \mathbb{G}'_2 \to \mathbb{G}_2$
- Instead of working with $Q \in \mathbb{G}_2$, a lot of work can be done with $Q' \in \mathbb{G}'_2$ defined over subfield $\mathbb{F}_{q^e} = \mathbb{F}_{a^{k/d}}$

 $P \in \mathbb{G}_1$: (341746248540, 710032105147) $Q' \in \mathbb{G}_2' = \Psi^{-1}(\mathbb{G}_2)$:

 $((917087150949\beta + 25693192139) \cdot \omega^2, (878885791226\beta + 860765811110) \cdot \omega^3)$

Tate vs. ate pairings

Tate-like pairings

$$e_r: \mathbb{G}_1 \times \mathbb{G}_2 \to \mu_r, \ (P, Q) \mapsto f_{r, P}(Q)^{\frac{q^k - 1}{r}}$$

Ate-like pairing

$$a_T: \mathbb{G}_2 \times \mathbb{G}_1 \to \mu_r, \ (Q, P) \mapsto f_{T,Q}(P)^{\frac{q^{\kappa}-1}{r}}.$$

- Pairings e(R, S) require the computation of Miller functions $f_{m,R}(S)$
- Function $f_{m,R}$ is of degree m
- Constructions require $\lfloor \log_2 m \rfloor$ iterations of Miller's algorithm
- Most of the work is done in the first argument
- Tate needs $\lfloor \log_2 r \rfloor$ iters, ate needs $\lfloor \log_2 T \rfloor$ iters, $T \ll r$
- Trade-off is that more work in ate is done in larger field (\mathbb{G}_2')

Miller's algorithm to compute $e(R, S) = f_{m,R}(S)^{(q^k-1)/r}$

$$m = (m_{l-1}, \dots, m_1, m_0)_2 \text{ initialize: } U = R, f = 1$$

1 for $i = l - 2$ to 0 do

a. i. Compute $f_{DBL(U)}$ in the doubling of U

ii. $U \leftarrow [2]U$

iii. $f \leftarrow f^2 \cdot f_{DBL(U)}(S)$

b. if $m_i = 1$ then

i. Compute $f_{ADD(U,R)}$ in the addition of $U + R$

ii. $U \leftarrow U + R$

iii. $f \leftarrow f \cdot f_{ADD(U,R)}(S)$

2 $f \leftarrow f^{(q^k-1)/r}$.

3 $f \leftarrow f^{(q^k-1)/r}$.

An iteration of Miller's algorithm

a. i. Compute
$$f_{DBL(U)}$$
 in the doubling of U
ii. $U \leftarrow [2]U$ //(DBL)
iii. $f \leftarrow f^2 \cdot f_{DBL(U)}(S)$
b. if $m_i = 1$ then
i. Compute $f_{ADD(U,R)}$ in the addition of $U + R$
ii. $U \leftarrow U + R$ //(ADD)
iii. $f \leftarrow f \cdot f_{ADD(U,R)}(S)$

$$(DBL) [2](x_1, y_1) = (x_3, y_3)$$

$$(ADD) (x_1, y_1) + (x_2, y_2) = (x_3, y_3)$$

$$x_3 = \lambda^2 - 2x_1$$

$$y_3 = \lambda(x_1 - x_3) - y_1$$

$$\lambda = (3x_1^2 + a)/(2y_1)$$

$$(ADD) (x_1, y_1) + (x_2, y_2) = (x_3, y_3)$$

$$x_3 = \lambda^2 - x_1 - x_2$$

$$y_3 = \lambda(x_1 - x_3) - y_1$$

$$\lambda = (y_2 - y_1)/(x_2 - x_1)$$

$$f_{\text{DBL}(U)/\text{ADD}(U+R)} = y - \lambda \cdot x - (y_1 - \lambda \cdot x_1)$$

$$f_{\text{DBL}(U)/\text{ADD}(U+R)}(S) = y_S - \lambda \cdot x_S - (y_1 - \lambda \cdot x_1)$$

We only need to touch $S = (x_S, y_S)$ when we evaluate the line functions

e(R, S): R-dependent vs. S-dependent computations

i. Compute $f_{\text{DBL}(U)}$ in the doubling of U а.

ii.
$$U \leftarrow [2]U$$

iii. $f \leftarrow f^2 \cdot f_{\text{DBL}}(u)$

i.
$$f \leftarrow f^2 \cdot f_{\text{DBL}(U)}(S)$$

ii. $U \leftarrow U + R$ iii. $f \leftarrow f \cdot f_{ADD(U,R)}(S)$

b. if
$$m_i = 1$$
 then

i. Compute
$$f_{ADD(U,R)}$$
 in the addition of $U + R$

//(DBL)

$$f_{\text{DBL}(U)/\text{ADD}(U+R)}(S) = y_S - \lambda \cdot x_S - (y_1 - \lambda \cdot x_1)$$

- All the point operations and line coefficient computations are completely *R*-dependent (U = vR throughout)
- If *R* is a fixed argument, we can pre-compute all of this before we input (or know) S
- Pre-compute and store all the $(\lambda, x_{U_i}, y_{U_i})$ tuples (Scott 2006)

An assumption: pre-computation time

We assume that we have ample time to do these pre-computations (at least a few seconds).

Another assumption: storage limit

We also assume that we have access to a significant amount of storage space to store these precomputations.

- Essentially we do whatever it takes to reduce the pairing computation time at runtime (once *S* is input)
- This allows us to work in (generally more expensive) affine coordinates:
 - Projective Miller lines: $F_{\text{DBL}(U)} = g_x \cdot x + g_y \cdot y + g_0$
 - Affine Miller lines: $f_{\text{DBL}(U)} = x + \lambda \cdot y + c$

Splitting the algorithm

Starting observation: store (λ_i, c_i) tuples instead of (x_i, y_i, λ_i) tuples → only storing line functions: natural split

R-dependent pre-comps	S-dependent dynamic comps
Input: R	Input: Vec, S
for $i = l - 2$ to 0	for $i = l - 2$ to 0
Compute $f_{\text{DBL}(U)} = (\lambda_i, c_i)$	
$U \leftarrow [2]U$	$f \leftarrow f^2 \cdot (y_S + \lambda_i \cdot x_S + c_i)$
$Store\; Vec \leftarrow (\lambda_i, \boldsymbol{c}_i)$	
if $m_i = 1$ then	if $m_i = 1$ then
Compute $f_{ ext{ADD}(U,R)} = (ilde{\lambda_i}, ilde{c_i})$	
$U \leftarrow U + R$	$f \leftarrow f \cdot (y_S + \tilde{\lambda}_i \cdot x_S + \tilde{c}_i)$
$Store \; Vec \leftarrow (ilde{\lambda_i}, ilde{c_i})$	
end if	end if
end for	end for
Output: Vec	Output: $f_{m,R}S \leftarrow f$

• No major improvements, but helps to conceptualize what's to come...

Doing more pre-computations

• **Question**: can we possibly push any more of the *S*-dependent computations across to the *R*-dependent side?

<i>R</i> -dependent pre-comps	S-dependent dynamic comps				
for $i = l - 2$ to 0	for $i = l - 2$ to 0				
Compute $f_{\text{DBL}(U)} = (\lambda_i, c_i)$					
$U \leftarrow [2]U$	$f \leftarrow f^2 \cdot (y_S + \lambda_i \cdot x_S + c_i)$				
$Store \; Vec \leftarrow (\lambda_i, c_i)$					
if $m_i = 1$ then	if $m_i = 1$ then				
Compute $f_{ ext{ADD}(U,R)} = (ilde{\lambda_i}, ilde{c_i})$					
$U \leftarrow U + R$	$f \leftarrow f \cdot (y_S + \tilde{\lambda}_i \cdot x_S + \tilde{c}_i)$				
$Store \; Vec \leftarrow (ilde{\lambda_i}, ilde{c_i})$					
end if	end if				
end for	end for				

- **Answer**: perhaps we can perform operations on the line functions, before they're evaluate at *S*
- Once the line function is evaluated at *S*, it's going to be squared, so why not square the indeterminate function before evaluating it at *S*?

Doing more pre-computations cont...

- Analogous to prior work (CBGW at WAIFI'10) which was done for general pairings (both arguments input at the same time)
- In the case of fixed arguments, the technique is much more powerful... any operations we do on the indeterminate functions can be done in advance
- Loop unrolling for general pairings was only much faster in Tate-like pairings where the line function coefficients were in the ground field F_p
- The ate pairing benefits just as much (if not more) from loop unrolling in the fixed argument scenario, as the extra operations spent in 𝑘_{p^e} are pre-computations anyway

The recipe

• Get the usual *R*-dependent output

$$\texttt{Vec} = [(\lambda_1, c_1), (\lambda_2, c_2), ..., (\lambda_L, c_L)]$$

which corresponds to L indeterminate line functions of the form $y+\lambda_i x+c_i$

• Combine *n* of them at a time (keeping in mind that each line function would have been squared) to form new indeterminate functions

$$\begin{split} \prod_{i=1}^{n} (y + \lambda_i x + c_i)^{2^{(i-1)}} &= f(x) + g(x) \cdot y \\ &= \prod_{j=0}^{T_1} z_j \cdot x^j + \prod_{j=0}^{T_2} \hat{z}_j \cdot x^j \cdot y, \end{split}$$

where the z_j 's and \hat{z}_j 's are functions of the (λ_i, c_i) tuples

What's the best n value?

n

- Store these bigger functions until S exists or is input
- More pre-computational work, more storage requirements...
- BUT less function evaluations and less Miller updates!

The old vs. the new

S-dependent comps (OLD)	S-dependent comps (NEW)				
Input: Vec, S	Input: VecNew, S				
L iterations	$\lceil L/n \rceil$ iterations				
$f \leftarrow f^2 \cdot (y_S + \lambda_i \cdot x_S + c_i)$	$f \leftarrow f^{2^n} \cdot (\prod z_j \cdot x_S^j + \prod \hat{z}_j \cdot x_S^j \cdot y_S)$				
if $m_i = 1$ then	if any of the old m_i were 1 then				
$f \leftarrow f \cdot (y_S + \tilde{\lambda}_i \cdot x_S + \tilde{c}_i)$	$f \leftarrow f \cdot (\prod \mathbf{z}_j \cdot \mathbf{x}_S^j + \prod \hat{\mathbf{z}}_j \cdot \mathbf{x}_S^j \cdot \mathbf{y}_S)$				
end if	end if				
end for	end for				
Output: $f_{m,R}S \leftarrow f$	Output: $f_{m,R}S \leftarrow f$				

- The old way *n* function updates every *n* iterations, where as the new way has 1 function update in the equivalent of every *n* iterations
- It doesn't look like much, but the savings can be quite substantial...

Results

Security	<i>k</i>	Best	\mathbb{F}_{p}	$\mathbb{F}_{p^{k}/d}$	<i>𝔽_pk</i>	Pairing	m	n	$\#\mathbf{m}_1$	% Speedup	
& r					P						
(bits)		ρ	(bits)	(bits)	(bits)					pre.	no pre.
80	6	2.000	320	320	1920	Tate	80	2	1843	7.8	37.1
						ate	80	2	1846	7.7	37.0
r = 160	8	1.500	240	480	1920	Tate	120	2	5069	11.2	30.8
						ate	120	2	5058	11.4	30.9
112	12	1.000	224	448	2688	Tate	112	3	7308	11.8	29.5
						ate	56	3	3646	12.0	29.7
r = 224	16	1.250	280	1120	4480	Tate	112	2	13460	14.6	25.9
						ate	28	2	3346	15.1	26.3
128	12	1.000	256	512	3072	Tate	128	3	8263	12.7	30.3
						ate	64	2	4198	11.3	29.2
	16	1.250	320	1280	4096	Tate	128	2	15368	14.7	26.0
r = 256						ate	32	2	3823	15.1	26.3
	18	1.333	342	1026	4608	Tate	128	3	13590	13.6	28.5
						ate	43	3	4697	11.1	26.5
192	18	1.333	512	1536	6912	Tate	192	3	20173	14.2	29.3
						ate	64	3	6881	12.5	27.6
r = 384	24	1.250	478	1912	9216	Tate	192	3	34540	18.2	30.4
						ate	48	3	8577	18.7	30.9
256	32	1.125	576	4608	16384	Tate	256	3	87876	17.9	25.7
						ate	32	3	10777	19.5	27.1
r = 512	36	1.167	598	3588	18432	Tate	264	3	102960	18.2	29.5
						ate	43	3	13202	16.1	27.7

n column: represents the optimal number of iterations to merge... i.e. the optimal number of (λ_i, c_i) "line functions" to combine

Tate vs. ate \mathbb{F}_p -muls vs. storage cost (k = 12, r = 256)

Tate \mathbb{F}_p -muls for different k, n

amount of precomputation (n)

- Pairings e(R, S) are just functions of the four coordinates $e(R, S) = f(x_R, y_R, x_S, y_S)$
- We just tweaked the pairing computation algorithm to do a bit more with x_R and y_R , in order to reduce the workload when the $S = (x_S, y_S)'s$ come

The lesson learned...

- **IF** you're wanting to implement one of the many exciting pairing-based protocols...
- **AND** there is a long-term fixed argument that could be exploited in that protocol...
- AND you're still not happy with the efficiency of pairings...
- AND you have a little more storage space...

• **THEN** employ some conceptually simple pre-computation and enjoy the (up to 37%) speedups