
Elliptic Curves
Pairings

An Introduction to Computing Cryptographic
Pairings: Part 1

Craig Costello

craig.costello@qut.edu.au
Queensland University of Technology

Izmir Yasar University, Turkey

1st July, 2010

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Some thoughts to carry with you...

Pairings are extremely useful in cryptography

Don’t worry if you don’t understand because I didn’t either

Always remember, pairings are just a function

e(P,Q) = f (xP , yP , xQ , yQ)

of two points (four numbers)

We can talk for as long as you like after the talk...

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Pairing computation speeds: then and now

Then:
- 1993 Menezes’ elliptic curve book : few minutes

...BIG GAP...

Now:
-2009 Hankerson, Menezes, Scott: 4.01ms
-April 2010 Naehrig, Niederhagen, Schwabe: 1.80ms
-June 2010 Beuchat et al.: 0.94ms

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

So what happened in the big gap?

Heaps of exciting protocol stuff has happened...

ID-based encryption (IBE), ID-based key agreement, short
signatures, group signatures, ring signatures, certificateless
encryption, hierarchical encryption, predicate-based encryption,
attribute-based encryption, and many more!!!

Heaps of cool pairing optimizations has since ‘followed’...

Tate pairing instead of Weil pairing
denominator elimination
group choices and twisted curves
endomorphism rings and loop shortening
low rho-valued curves
pairing and towering-friendly fields
... and many more!!!

Today we will just touch on some of the major stuff that has
happened

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Two parts

1 Elliptic curves (a group of points)

2 Pairings (a function of two points in these elliptic curve
groups) with very useful properties

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

PART 1: Elliptic Curves

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The search for “better” groups

Groups are sets with a binary operation that have the
following properties

1 closure
2 associativity
3 identity
4 inverse

There may be groups in settings that we are (relatively)
familiar with (integers Z, rationals Q, complex numbers C)

In what follows we will search for a slightly more abstract
group (called Elliptic curves)

These groups offer many advantages in cryptography (and
elsewhere)

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Some rough motivation on where to start

FIRST AND FOREMOST: We want a setting where
combining (operating on) two elements gives another
elements

Very very roughly: a polynomial of degree n has n roots over
C

Therefore, a polynomial of degree 3 has 3 roots

If we have two of the roots, this implies (allows us to
determine) the third root

None of this is very helpful yet and we’re nowhere near a
group... but it’s a start

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

A step closer...

Theorem (Bezout)

Two projective curves of degree m and n having no component in
common intersect in mn points.

Let’s generalise (in a sense) the statement about roots of
polynomials on the previous slide

The statement on the previous slide: take x-axis as a curve of
degree 1... then n degree polynomial intersects x-axis in n
places, i.e. has n roots.

... forget the x-axis from now on

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

A step closer...

There will be 3 intersections of a line (curve of degree 1) and
a cubic (curve of degree 3)

Specifying two of them allows us to find the third, but how
can we form a “big” cryptographically useful group out of the
intersection of a line and a cubic (three points)???

Behold the magic of the group definition on elliptic curves....

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Elliptic Curve

We are interested in cubic equations

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0

Any cubic with a rational point can be transformed into

y ′
2

+ px ′y ′ + qy ′ = x ′
3

+ rx ′
2

+ sx ′ + t

Definition

An elliptic curve over Q is the set of points (xi , yi) ∈ Q×Q
satisfying the equation

y2 = x3 + Ax + B

for some A,B ∈ Q where 4A3 + 27B2 6= 0 together with the point
at infinity O.

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Group Law

We have a set of points (i.e. what an elliptic curve is!).

Our goal is to form a group

All we need is a binary operation (our group law).... LET’S
DRAW/DERIVE IT!

... (it’s also got to satisfy those four earlier properties)

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

“Addition”

We just want to perform an operation on two elements so
that it gives another element

We call it ”adding”

It’s not traditional “adding”!

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Doubling

What about when we want to add something to itself?

Where’s the line between a point and itself?

Group law often called chord-and-tangent!

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Deriving the affine group law

Let’s draw and derive the group law (Viette’s formula)

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Are we right?

ADDITION (x3, y3) = (x1, y1) + (x2, y2)

λ = (y2 − y1)/(x2 − x1)

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

DOUBLING (x3, y3) = 2(x1, y1)

λ = (3x2
1 + a)/(2y1)

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Point Addition

E : y2 = x3 − x + 1 over Q

A = −1 and B = 1.

∆ = −4A3 − 27B2 = −23 6= 0, E is an elliptic curve.

The point P = (1, 1) is a rational point on E .

Q = P + P = (1, 1) + (1, 1) = (−1, 1)

R = Q + P = (1,−1) + (1, 1) = (0,−1)

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Point Addition

E : y2 = x3 − x + 1 over Q

S = R + P =
(

0, −1
)

+
(

1, 1
)

=
(

3, −5
)

T = S + P =
(

3, −5
)

+
(

1, 1
)

=
(

5, 11
)

U = T + P =
(

5, 11
)

+
(

1, 1
)

=
(

1/4, 7/8
)

V = U + P =
(

1/4, 7/8
)

+
(

1, 1
)

=
(
− 11/9, −17/27

)
Y = V + P =

(
− 11/9, −17/27

)
+
(

1, 1
)

=
(

19/25, −103/125
)

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Everything is starting to take shape, but the points are
growing in size... we need to control this and have some
consistency

Instead of defining elliptic curves over the rationals, lets use
finite fields

For now, we will only consider prime fields Fp and their
extensions

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Point Addition: a toy example

Same curve as before E : y2 = x3 − x + 1 over F13

∆ = −4A3 − 27B2 = −23 ≡ 3 mod 13 6= 0, E is an elliptic curve.

19 Points: (0, 1), (0, 12), (1, 1), (1, 12), (3, 5),
(3, 8),(4, 3),(4, 10),(5, 2),(5, 11),
(6, 4),(6, 9),(7, 5),(7, 8),(10, 4),
(10, 9), (12, 1), (12, 12)....., oh, and don’t forget O.

Let P = (1, 12) and Q = (4, 10) on E .

P + Q = (1, 12) + (4, 10) = (7, 5).

2P = P + P = (1, 12) + (1, 12) = (12, 12)

3P = 2P + P = (12, 12) + (1, 12) = (0, 1)

4P = 3P + P = (0, 1) + (1, 12) = (3, 5)

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Point Addition

Same curve as before E : y2 = x3 − x + 1 over F13

... 10 ∗ P = P + P + ...P = (4, 10) = Q

Given P and Q, the discrete log problem to base P involves finding
s such that sP = Q and in this case s = 10

It is simple to find the discrete logarithm (using brute force attack)
when curve is defined over such a small field...

But what if we increase the field size like we did before...

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

A cryptographically suitable curve

Same curve as before E : y2 = x3 − x + 1 over Fp

p = 1461501637330902918203684832716283019655932542983

#E = 1461501637330902918203686004385807989344528195053

P = (1321554781015706068290537639827905592412509913620,
1136877326354697828904160020005825111410953389610)

r = 115641388596795456695979756324256781634201930388

Q = rP =
(715875109644815085946717311816604681845099700277,
1450877329524262790654657764775612031321288027789)

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

A cryptographically suitable curve

It was easy for me (my computer) to multiply P by r to get Q
(milliseconds)...

... but to get r from Q and P...

A lazy brute force loop...
T = P
while T 6= Q do
T = T + P
end while

Loop will have to do r ≈ p additions before terminating
(impossible)

So r is buried inside the elliptic curve discrete logarithm
problem (ECDLP)

Attacks are much better than brute force (as always), but in
this context they are much slower than what we may be used
to

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

Elliptic curves in cryptography

To put it simply, elliptic curves (on their own) just provide an
alternative discrete logarithm problem (the ECDLP)

Arithmetic in the forward direction, i.e. multiplying a point by
an integer (finding rP from r and P) is very fast
(double-and-add techniques)

Finding r from P and rP is computationally “hard”

In fact, for identical field sizes, the ECDLP is much harder
than the DLP (somewhat intuitive)

This is the beauty of elliptic curves - we can use much much
smaller fields for discrete log based cryptosystems

Actually, this is just the beginning...

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

DEEP BREATHE....

Questions so far?

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

PART 2: Pairings on elliptic curves

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

Don’t forget...

Pairings are just a function

e(P,Q) = f (xP , yP , xQ , yQ)

of two points (four numbers)

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

What complicates things

The groups the points P and Q come from

The degree and nature of this function

More than one setting for the discrete log problem... attack
complexity varies

The need for speed...

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

What are pairings?

A bilinear pairing e is just a mapping where 2 inputs “pair” to
result in a value

e(P,Q) = t

The bilinearity property is as follows:

e(aP, bQ) = tab = e(bP, aQ)

Behold the magic of bilinearity (a quick key exchange). TA
holds master secret s. Alice’s identity is A. Bob’s is B.
TA issues Alice sA. TA issues Bob sB.

Alice→ e(sA,B) = e(A,B)s = e(A, sB)← Bob

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

Why Elliptic Curves?

There is only one known mathematical setting where desirable
bilinear pairings exist: (hyper)elliptic curves

Therefore in e(P,Q), P and Q are points on an elliptic curve

Attacks on elliptic curves are much slower than on finite fields
(160 bit group order for elliptic curves comparable to 1024 bit
security in finite fields)

Lucky for elliptic curves

The fact that elliptic curves just happen to be more efficient than
finite fields is a happy coincidence... we need them to pair with
regardless

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

The General Pairing Definition

General Pairings

e : G1 ×G2 → GT

G1 is almost always a subgroup of E (Fq).

G2 is almost always a subgroup of E (Fqk).

GT is the multiplication group of a finite field Fqk (k is called
the embedding degree).

The embedding degree

k is called the embedding degree and plays a big role in
pairing-based crypto...

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

Two Discrete Log Problems

Recall from a couple of slides ago: TA issues Alice sA. Alice
computes e(sA,B) = e(A,B)s . Alice can compute
t = e(A,B) from identities.

Andrew has sA,A ∈ E (Fq), as well as ts , t ∈ Fqk .

To find master secret s, Alice can attack whichever discrete
log problem is easiest

Pairing based cryptography is a balancing act

1 Hard ECDLP in G1, G2

2 Hard DLP in GT

3 Efficient algorithms across all groups

We can achieve “good balance” if we can be flexible with k

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

What else do we want in a pairing

General Pairings

e : G1 ×G2 → GT

1 We want to be able to efficiently hash random strings to G1

and G2

2 We (usually) want an efficiently computable isomorphism
ψ : G2 → G1

3 We want to be flexible in our choice of the embedding degree
k

Unfortunately, achieving all three of these properties
simultaneously is not currently possible

Prior to this being well known, cryptographers often made
incorrect assumptions

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

The r -torsion

The points P and Q in the pairing come from the r -torsion
E [r] = Zr × Zr .

The green subgroup is usually chosen as G1 for efficiency
(base field)... all we need is another subgroup G2

We can get out of the blue subgroups (trace map), but we
can’t hash into them

Ironically, the only other subgroup we can hash to (the red
subgroup), is the only one we can’t map back out of.

Cryptographers must make a choice....

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

Supersingular Curves

The only time we can simultaneously do these two things is
unfortunately on supersingular curves where our embedding
degree k = 2, 3, 6 is restricted.

This inability to satisfy all desired properties forces us to define
different types of pairings, each with its own pros and cons

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

Type 1 Pairings

Can efficiently hash both P and Q onto the base field
subgroup

Use the distorsion map to send Q into a linearly independent
subgroup

Pairing defined over same group so isomorphism exists

BUT... Supersingular curves only (k = 2 for large
characteristic)

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

Type 2 Pairings

Can efficiently hash P onto the base field subgroup

The trace map will map Q back to the base field subgroup

Available over all curves and embedding degrees

BUT... cannot randomly sample from this blue group without
knowing the discrete logarithm

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

Type 3 Pairings

Can hash P and Q to their subgroups

Available over all curves and embedding degrees

BUT... no map from this Q’s group back to P’s group

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

Type 4 Pairings

Can hash both P and Q onto their subgroups

Available over all curves and embedding degrees

There will always be a map back (the trace map)

Cannot hash points into the same subgroup (no discrete log
between two Q’s)

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

Pairings in Protocols

There have been schemes published that incorrectly assume
that all properties of pairings can be utilised simultaneously

Cryptographers must be careful when developing protocols
that the pairings they need actually exist

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

Common group choices

G1 = E [r] ∩ ker(πq − [1]) = E (Fq)[r], (the base field)

G2 = E [r] ∩ ker(πq − [q]) ⊂ E (Fqk)[r], (the full extension field)

The elements of G2 are much bigger than the elements of G1 (e.g. k = 12)

Fq12 = Fq4 (α) = Fq2 (γ) = Fq(β)

P ∈ G1: [341746248540, 710032105147]

Q ∈ G2:
[((502478767360 · β + 1034075074191) · γ + 342970860051 · β + 225764301423) · α2 + ((205398279920 · β +

182600014119) · γ + 860891557473 · β + 435210764901) · α + (1043922075477 · β + 566889113793) · γ +

150949917087 · β + 21392569319,

((654337640030 · β + 744622505639) · γ + 1092264803801 · β + 895826335783) · α2 + ((529466169391 · β +

550511036767) · γ + 985244799144 · β + 554170865706) · α + (194564971321 · β + 969736450831) · γ +

(579122687888 · β + 581111086076)]

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

The twisted curve

Original curve is E (Fq) : y2 = x3 + ax + b

Twisted curve is E ′(Fqk/d): y2 = x3 + aω4x + bω6, ω ∈ Fqk

Possible degrees of twists are d ∈ {2, 3, 4, 6}
d > 2 requires a = 0 or b = 0

Twist Ψ : E ′ → E : (x ′, y ′)→ (x ′/ω2, y ′/ω3) induces
G′2 = E ′(Fqk/d)[r] so that Ψ : G′2 → G2

Instead of working with Q ∈ G2, a lot of work can be done
with Q ′ ∈ G′2 defined over subfield Fqe = Fqk/d

P ∈ G1: (341746248540, 710032105147)

Q ′ ∈ G′2 = Ψ−1(G2):
((917087150949β + 25693192139) · ω2, (878885791226β + 860765811110) · ω3)

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

Theory behind Miller’s algorithm

Recall: pairings are just a function

e(P,Q) = f (xP , yP , xQ , yQ)

of two points (four numbers)

The theory behind how this function is constructed and why
it’s bilinear is too in depth for today’s discussion

We will take Miller’s algorithm for granted (for now)

The pairing is computed as e(P,Q) = fr ,P(Q)(qk−1)/r , where
fr ,P(Q) would expand explicitly as

fr ,P(Q) =
r∑

i=0

i∑
j=0

ci ,j · x i−j
Q y j

Q ,

where the ci ,j ’s are entirely P dependent...

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

Miller’s algorithm for e(P , Q) = fr ,P(Q)(qk−1)/r

Input: P, Q and r = (rblog(r)c, ..., r0)2

Output: fr ,P(Q)(qk−1)/r

f ← 1, T ← P

for i from blog(r)c − 1 to 0 do
1 Compute g = l in the chord-and-tangent doubling of T
2 T ← [2]T
3 f ← f 2 · g(Q)
4 if ri = 1 then

i. Compute g = l in the chord-and-tangent addition of T + P
ii. T ← T + P
iii. f ← f · g(Q)

end if

end for: return f ← f (qk−1)/r

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

Elliptic Curves
Pairings

The Groups Involved
Pairing types

A good place to stop...

The next talk will be entirely about optimizing Miller’s algorithm
(over 200 papers contributing)

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1

	Elliptic Curves
	Pairings
	The Groups Involved
	Pairing types

