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Some thoughts to carry with you...

Pairings are extremely useful in cryptography

Don’t worry if you don’t understand because I didn’t either

Always remember, pairings are just a function

e(P,Q) = f (xP , yP , xQ , yQ)

of two points (four numbers)

We can talk for as long as you like after the talk...
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Pairing computation speeds: then and now

Then:
- 1993 Menezes’ elliptic curve book : few minutes

...BIG GAP...

Now:
-2009 Hankerson, Menezes, Scott: 4.01ms
-April 2010 Naehrig, Niederhagen, Schwabe: 1.80ms
-June 2010 Beuchat et al.: 0.94ms
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So what happened in the big gap?

Heaps of exciting protocol stuff has happened...

ID-based encryption (IBE), ID-based key agreement, short
signatures, group signatures, ring signatures, certificateless
encryption, hierarchical encryption, predicate-based encryption,
attribute-based encryption, .... and many more!!!

Heaps of cool pairing optimizations has since ‘followed’...

Tate pairing instead of Weil pairing
denominator elimination
group choices and twisted curves
endomorphism rings and loop shortening
low rho-valued curves
pairing and towering-friendly fields
... and many more!!!

Today we will just touch on some of the major stuff that has
happened
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Two parts

1 Elliptic curves (a group of points)

2 Pairings (a function of two points in these elliptic curve
groups) with very useful properties
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PART 1: Elliptic Curves
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The search for “better” groups

Groups are sets with a binary operation that have the
following properties

1 closure
2 associativity
3 identity
4 inverse

There may be groups in settings that we are (relatively)
familiar with (integers Z, rationals Q, complex numbers C)

In what follows we will search for a slightly more abstract
group (called Elliptic curves)

These groups offer many advantages in cryptography (and
elsewhere)
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Some rough motivation on where to start

FIRST AND FOREMOST: We want a setting where
combining (operating on) two elements gives another
elements

Very very roughly: a polynomial of degree n has n roots over
C

Therefore, a polynomial of degree 3 has 3 roots

If we have two of the roots, this implies (allows us to
determine) the third root

None of this is very helpful yet and we’re nowhere near a
group... but it’s a start
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A step closer...

Theorem (Bezout)

Two projective curves of degree m and n having no component in
common intersect in mn points.

Let’s generalise (in a sense) the statement about roots of
polynomials on the previous slide

The statement on the previous slide: take x-axis as a curve of
degree 1... then n degree polynomial intersects x-axis in n
places, i.e. has n roots.

... forget the x-axis from now on

Craig Costello An Introduction to Computing Cryptographic Pairings: Part 1



Elliptic Curves
Pairings

A step closer...

There will be 3 intersections of a line (curve of degree 1) and
a cubic (curve of degree 3)

Specifying two of them allows us to find the third, but how
can we form a “big” cryptographically useful group out of the
intersection of a line and a cubic (three points)???

Behold the magic of the group definition on elliptic curves....
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Elliptic Curve

We are interested in cubic equations

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0

Any cubic with a rational point can be transformed into

y ′
2

+ px ′y ′ + qy ′ = x ′
3

+ rx ′
2

+ sx ′ + t

Definition

An elliptic curve over Q is the set of points (xi , yi ) ∈ Q×Q
satisfying the equation

y2 = x3 + Ax + B

for some A,B ∈ Q where 4A3 + 27B2 6= 0 together with the point
at infinity O.
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The Group Law

We have a set of points (i.e. what an elliptic curve is!).

Our goal is to form a group

All we need is a binary operation (our group law).... LET’S
DRAW/DERIVE IT!

... (it’s also got to satisfy those four earlier properties)
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“Addition”

We just want to perform an operation on two elements so
that it gives another element

We call it ”adding”

It’s not traditional “adding”!
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Doubling

What about when we want to add something to itself?

Where’s the line between a point and itself?

Group law often called chord-and-tangent!
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Deriving the affine group law

Let’s draw and derive the group law (Viette’s formula)
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Are we right?

ADDITION (x3, y3) = (x1, y1) + (x2, y2)

λ = (y2 − y1)/(x2 − x1)

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

DOUBLING (x3, y3) = 2(x1, y1)

λ = (3x2
1 + a)/(2y1)

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1
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Point Addition

E : y2 = x3 − x + 1 over Q

A = −1 and B = 1.

∆ = −4A3 − 27B2 = −23 6= 0, E is an elliptic curve.

The point P = (1, 1) is a rational point on E .

Q = P + P = (1, 1) + (1, 1) = (−1, 1)

R = Q + P = (1,−1) + (1, 1) = (0,−1)
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Point Addition

E : y2 = x3 − x + 1 over Q

S = R + P =
(

0, −1
)

+
(

1, 1
)

=
(

3, −5
)

T = S + P =
(

3, −5
)

+
(

1, 1
)

=
(

5, 11
)

U = T + P =
(

5, 11
)

+
(

1, 1
)

=
(

1/4, 7/8
)

V = U + P =
(

1/4, 7/8
)

+
(

1, 1
)

=
(
− 11/9, −17/27

)
Y = V + P =

(
− 11/9, −17/27

)
+
(

1, 1
)

=
(

19/25, −103/125
)
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Everything is starting to take shape, but the points are
growing in size... we need to control this and have some
consistency

Instead of defining elliptic curves over the rationals, lets use
finite fields

For now, we will only consider prime fields Fp and their
extensions
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Point Addition: a toy example

Same curve as before E : y2 = x3 − x + 1 over F13

∆ = −4A3 − 27B2 = −23 ≡ 3 mod 13 6= 0, E is an elliptic curve.

19 Points: (0, 1), (0, 12), (1, 1), (1, 12), (3, 5),
(3, 8),(4, 3),(4, 10),(5, 2),(5, 11),
(6, 4),(6, 9),(7, 5),(7, 8),(10, 4),
(10, 9), (12, 1), (12, 12)....., oh, and don’t forget O.

Let P = (1, 12) and Q = (4, 10) on E .

P + Q = (1, 12) + (4, 10) = (7, 5).

2P = P + P = (1, 12) + (1, 12) = (12, 12)

3P = 2P + P = (12, 12) + (1, 12) = (0, 1)

4P = 3P + P = (0, 1) + (1, 12) = (3, 5) .........
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Point Addition

Same curve as before E : y2 = x3 − x + 1 over F13

... 10 ∗ P = P + P + ...P = (4, 10) = Q

Given P and Q, the discrete log problem to base P involves finding
s such that sP = Q and in this case s = 10

It is simple to find the discrete logarithm (using brute force attack)
when curve is defined over such a small field...

But what if we increase the field size like we did before...
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A cryptographically suitable curve

Same curve as before E : y2 = x3 − x + 1 over Fp

p = 1461501637330902918203684832716283019655932542983

#E = 1461501637330902918203686004385807989344528195053

P = (1321554781015706068290537639827905592412509913620,
1136877326354697828904160020005825111410953389610)

r = 115641388596795456695979756324256781634201930388

Q = rP =
(715875109644815085946717311816604681845099700277,
1450877329524262790654657764775612031321288027789)
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A cryptographically suitable curve

It was easy for me (my computer) to multiply P by r to get Q
(milliseconds)...

... but to get r from Q and P...

A lazy brute force loop...
T = P
while T 6= Q do
T = T + P
end while

Loop will have to do r ≈ p additions before terminating
(impossible)

So r is buried inside the elliptic curve discrete logarithm
problem (ECDLP)

Attacks are much better than brute force (as always), but in
this context they are much slower than what we may be used
to
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Elliptic curves in cryptography

To put it simply, elliptic curves (on their own) just provide an
alternative discrete logarithm problem (the ECDLP)

Arithmetic in the forward direction, i.e. multiplying a point by
an integer (finding rP from r and P) is very fast
(double-and-add techniques)

Finding r from P and rP is computationally “hard”

In fact, for identical field sizes, the ECDLP is much harder
than the DLP (somewhat intuitive)

This is the beauty of elliptic curves - we can use much much
smaller fields for discrete log based cryptosystems

Actually, this is just the beginning...
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DEEP BREATHE....

Questions so far?
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PART 2: Pairings on elliptic curves
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The Groups Involved
Pairing types

Don’t forget...

Pairings are just a function

e(P,Q) = f (xP , yP , xQ , yQ)

of two points (four numbers)
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What complicates things

The groups the points P and Q come from

The degree and nature of this function

More than one setting for the discrete log problem... attack
complexity varies

The need for speed...
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What are pairings?

A bilinear pairing e is just a mapping where 2 inputs “pair” to
result in a value

e(P,Q) = t

The bilinearity property is as follows:

e(aP, bQ) = tab = e(bP, aQ)

Behold the magic of bilinearity (a quick key exchange). TA
holds master secret s. Alice’s identity is A. Bob’s is B.
TA issues Alice sA. TA issues Bob sB.

Alice→ e(sA,B) = e(A,B)s = e(A, sB)← Bob
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Why Elliptic Curves?

There is only one known mathematical setting where desirable
bilinear pairings exist: (hyper)elliptic curves

Therefore in e(P,Q), P and Q are points on an elliptic curve

Attacks on elliptic curves are much slower than on finite fields
(160 bit group order for elliptic curves comparable to 1024 bit
security in finite fields)

Lucky for elliptic curves

The fact that elliptic curves just happen to be more efficient than
finite fields is a happy coincidence... we need them to pair with
regardless
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The General Pairing Definition

General Pairings

e : G1 ×G2 → GT

G1 is almost always a subgroup of E (Fq).

G2 is almost always a subgroup of E (Fqk ).

GT is the multiplication group of a finite field Fqk (k is called
the embedding degree).

The embedding degree

k is called the embedding degree and plays a big role in
pairing-based crypto...
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Two Discrete Log Problems

Recall from a couple of slides ago: TA issues Alice sA. Alice
computes e(sA,B) = e(A,B)s . Alice can compute
t = e(A,B) from identities.

Andrew has sA,A ∈ E (Fq), as well as ts , t ∈ Fqk .

To find master secret s, Alice can attack whichever discrete
log problem is easiest

Pairing based cryptography is a balancing act

1 Hard ECDLP in G1, G2

2 Hard DLP in GT

3 Efficient algorithms across all groups

We can achieve “good balance” if we can be flexible with k
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What else do we want in a pairing

General Pairings

e : G1 ×G2 → GT

1 We want to be able to efficiently hash random strings to G1

and G2

2 We (usually) want an efficiently computable isomorphism
ψ : G2 → G1

3 We want to be flexible in our choice of the embedding degree
k

Unfortunately, achieving all three of these properties
simultaneously is not currently possible

Prior to this being well known, cryptographers often made
incorrect assumptions
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The r -torsion

The points P and Q in the pairing come from the r -torsion
E [r ] = Zr × Zr .

The green subgroup is usually chosen as G1 for efficiency
(base field)... all we need is another subgroup G2

We can get out of the blue subgroups (trace map), but we
can’t hash into them

Ironically, the only other subgroup we can hash to (the red
subgroup), is the only one we can’t map back out of.

Cryptographers must make a choice....
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Supersingular Curves

The only time we can simultaneously do these two things is
unfortunately on supersingular curves where our embedding
degree k = 2, 3, 6 is restricted.

This inability to satisfy all desired properties forces us to define
different types of pairings, each with its own pros and cons
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Type 1 Pairings

Can efficiently hash both P and Q onto the base field
subgroup

Use the distorsion map to send Q into a linearly independent
subgroup

Pairing defined over same group so isomorphism exists

BUT... Supersingular curves only (k = 2 for large
characteristic)
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Type 2 Pairings

Can efficiently hash P onto the base field subgroup

The trace map will map Q back to the base field subgroup

Available over all curves and embedding degrees

BUT... cannot randomly sample from this blue group without
knowing the discrete logarithm
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Type 3 Pairings

Can hash P and Q to their subgroups

Available over all curves and embedding degrees

BUT... no map from this Q’s group back to P’s group
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Type 4 Pairings

Can hash both P and Q onto their subgroups

Available over all curves and embedding degrees

There will always be a map back (the trace map)

Cannot hash points into the same subgroup (no discrete log
between two Q’s)
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Pairings in Protocols

There have been schemes published that incorrectly assume
that all properties of pairings can be utilised simultaneously

Cryptographers must be careful when developing protocols
that the pairings they need actually exist
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Common group choices

G1 = E [r ] ∩ ker(πq − [1]) = E (Fq)[r ], (the base field)

G2 = E [r ] ∩ ker(πq − [q]) ⊂ E (Fqk )[r ], (the full extension field)

The elements of G2 are much bigger than the elements of G1 (e.g. k = 12)

Fq12 = Fq4 (α) = Fq2 (γ) = Fq(β)

P ∈ G1: [341746248540, 710032105147]

Q ∈ G2:
[((502478767360 · β + 1034075074191) · γ + 342970860051 · β + 225764301423) · α2 + ((205398279920 · β +

182600014119) · γ + 860891557473 · β + 435210764901) · α + (1043922075477 · β + 566889113793) · γ +

150949917087 · β + 21392569319,

((654337640030 · β + 744622505639) · γ + 1092264803801 · β + 895826335783) · α2 + ((529466169391 · β +

550511036767) · γ + 985244799144 · β + 554170865706) · α + (194564971321 · β + 969736450831) · γ +

(579122687888 · β + 581111086076)]
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The twisted curve

Original curve is E (Fq) : y2 = x3 + ax + b

Twisted curve is E ′(Fqk/d ): y2 = x3 + aω4x + bω6, ω ∈ Fqk

Possible degrees of twists are d ∈ {2, 3, 4, 6}
d > 2 requires a = 0 or b = 0

Twist Ψ : E ′ → E : (x ′, y ′)→ (x ′/ω2, y ′/ω3) induces
G′2 = E ′(Fqk/d )[r ] so that Ψ : G′2 → G2

Instead of working with Q ∈ G2, a lot of work can be done
with Q ′ ∈ G′2 defined over subfield Fqe = Fqk/d

P ∈ G1: (341746248540, 710032105147)

Q ′ ∈ G′2 = Ψ−1(G2):
((917087150949β + 25693192139) · ω2, (878885791226β + 860765811110) · ω3)
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Theory behind Miller’s algorithm

Recall: pairings are just a function

e(P,Q) = f (xP , yP , xQ , yQ)

of two points (four numbers)

The theory behind how this function is constructed and why
it’s bilinear is too in depth for today’s discussion

We will take Miller’s algorithm for granted (for now)

The pairing is computed as e(P,Q) = fr ,P(Q)(qk−1)/r , where
fr ,P(Q) would expand explicitly as

fr ,P(Q) =
r∑

i=0

i∑
j=0

ci ,j · x i−j
Q y j

Q ,

where the ci ,j ’s are entirely P dependent...
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Miller’s algorithm for e(P , Q) = fr ,P(Q)(qk−1)/r

Input: P, Q and r = (rblog(r)c, ..., r0)2

Output: fr ,P(Q)(qk−1)/r

f ← 1, T ← P

for i from blog(r)c − 1 to 0 do
1 Compute g = l in the chord-and-tangent doubling of T
2 T ← [2]T
3 f ← f 2 · g(Q)
4 if ri = 1 then

i. Compute g = l in the chord-and-tangent addition of T + P
ii. T ← T + P
iii. f ← f · g(Q)

end if

end for: return f ← f (qk−1)/r
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A good place to stop...

The next talk will be entirely about optimizing Miller’s algorithm
(over 200 papers contributing)
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