
Delaying Mismatched Field Multiplications in
Pairing Computations

Craig Costello

craig.costello@qut.edu.au
Queensland University of Technology

WAIFI 2010 - Istanbul, Turkey

Joint work with Colin Boyd, Juanma Gonzalez-Nieto, Kenneth Koon-Ho Wong

Craig Costello Delaying Mismatched Field Multiplications in Pairing Computations

Pairing computation speeds: then and now

Then:
- 1993 Menezes’ elliptic curve book : few minutes

...BIG GAP...

Now:
-2009 Hankerson, Menezes, Scott: 4.01ms
-April 2010 Naehrig, Niederhagen, Schwabe: 1.80ms
-June 2010 Beuchat et al.: 0.94ms

Craig Costello Field Multiplications in Pairing Computations

So what happened in the big gap?

Heaps of exciting protocol stuff has happened...

ID-based encryption (IBE), ID-based key agreement, short
signatures, group signatures, ring signatures, certificateless
encryption, hierarchical encryption, predicate-based encryption,
attribute-based encryption, and many more!!!

Heaps of cool pairing optimizations has since ‘followed’...

Tate pairing instead of Weil pairing
denominator elimination
group choices and twisted curves
endomorphism rings and loop shortening
low rho-valued curves
pairing and towering-friendly fields
... and many more!!!

Craig Costello Field Multiplications in Pairing Computations

Current research

Many of the high-level optimizations on elliptic curves
(genus 1) have been thoroughly explored

Meanwhile, more neat ideas and notable optimizations
continue to solidly improve the situation (Granger & Scott
PKC’10, Benger & Scott WAIFI’10, ALNR with Edwards, etc)

The time is ripe for ‘lower-level’ and implementation specific
improvements

Even though they’re faster than a milli-second, some
cryptographers still think they’re slow in practice... so we will
keep optimizing...

Craig Costello Field Multiplications in Pairing Computations

This work

Targets one step in Miller’s algorithm that hasn’t received a
great deal of attention

Step where different degree extension fields are combined
Fp,Fpk/d ,Fpk → Fpk .

‘Replaces’ higher degree extension field arithmetic with
arithmetic in smaller subfields

Ultimate goal: optimize the number of equivalent base field
Fp-operations

Craig Costello Field Multiplications in Pairing Computations

Group choices

The embedding degree k

Must form a degree k field extension of Fq to find two order r
subgroups and balance ECDLP and DLP

G1 = E [r] ∩ ker(πq − [1]) = E (Fq)[r], (the base field)

G2 = E [r] ∩ ker(πq − [q]) ⊂ E (Fqk)[r], (the full extension field)

The elements of G2 are much bigger than the elements of G1 (e.g. k = 12)

Fq12 = Fq4 (α) = Fq2 (γ) = Fq(β)

P ∈ G1: [341746248540, 710032105147]

Q ∈ G2:
[((502478767360 · β + 1034075074191) · γ + 342970860051 · β + 225764301423) · α2 + ((205398279920 · β +

182600014119) · γ + 860891557473 · β + 435210764901) · α + (1043922075477 · β + 566889113793) · γ +

150949917087 · β + 21392569319,

((654337640030 · β + 744622505639) · γ + 1092264803801 · β + 895826335783) · α2 + ((529466169391 · β +

550511036767) · γ + 985244799144 · β + 554170865706) · α + (194564971321 · β + 969736450831) · γ +

(579122687888 · β + 581111086076)]

Craig Costello Field Multiplications in Pairing Computations

The twisted curve

Original curve is E (Fq) : y 2 = x3 + ax + b

Twisted curve is E ′(Fqk/d): y 2 = x3 + aω4x + bω6, ω ∈ Fqk

Possible degrees of twists are d ∈ {2, 3, 4, 6}
d > 2 requires a = 0 or b = 0

Twist Ψ : E ′ → E : (x ′, y ′)→ (x ′/ω2, y ′/ω3) induces
G′2 = E ′(Fqk/d)[r] so that Ψ : G′2 → G2

Instead of working with Q ∈ G2, a lot of work can be done
with Q ′ ∈ G′2 defined over subfield Fqe = Fqk/d

P ∈ G1: (341746248540, 710032105147)

Q ′ ∈ G′2 = Ψ−1(G2):
((917087150949β + 25693192139) · ω2, (878885791226β + 860765811110) · ω3)

Craig Costello Field Multiplications in Pairing Computations

Lite vs. full pairings

Miller-lite (Tate, twisted ate, η, etc)

er : G1 ×G2 → µr , (P,Q) 7→ fr ,P(Q)
qk−1

r .

Miller-full (ate, R-ate, atei , etc)

aT : G2 ×G1 → µr , (Q,P) 7→ fT ,Q(P)
qk−1

r .

Pairings require the computation of Miller functions fm,R(S)

Function fm,R is of degree m

Constructions require blog2 mc iterations of Miller’s algorithm

Most of the work is done in the first argument

Tate needs blog2 rc iters, ate needs blog2 T c iters, T � r

Trade-off is that more work in ate is done in larger field (G′2)

Craig Costello Field Multiplications in Pairing Computations

Miller-lite pairings

The results in this paper are advantageous for Miller-lite
pairings (bigger gap between P’s coordinates and Fqk)

Thus, from here on assume first arg. P = (xP , yP) ∈ E (Fq)
(base field) and second arg. Q = (xQ , yQ) ∈ E (Fqk)
(extension field)

The pairing is computed as e(P,Q) = fr ,P(Q)(qk−1)/r , where
fr ,P(Q) would expand explicitly as

fr ,P(Q) =
r∑

i=0

i∑
j=0

ci ,j · x i−j
Q y j

Q ,

where the ci ,j ’s are entirely P dependent, ci ,j ∈ Fq.

Indeterminate fr ,P(x) has degree r (at least 160 bits), so must
compute by building function and evaluating as we go...

Craig Costello Field Multiplications in Pairing Computations

Miller’s algorithm for e(P , Q) = fr ,P(Q)(qk−1)/r

Input: P, Q and r = (rblog(r)c, ..., r0)2

Output: fr ,P(Q)(qk−1)/r

f ← 1, T ← P

for i from blog(r)c − 1 to 0 do
1 Compute g = l in the chord-and-tangent doubling of T
2 T ← [2]T
3 f ← f 2 · g(Q)
4 if ri = 1 then

i. Compute g = l in the chord-and-tangent addition of T + P
ii. T ← T + P
iii. f ← f · g(Q)

end if

end for: return f ← f (qk−1)/r

Craig Costello Field Multiplications in Pairing Computations

Miller’s algorithm for e(P , Q) = fr ,P(Q)(qk−1)/r

State-of-the-art implementations employ low hamming-weight r
values, so let’s ignore additions (for now)

Input: P, Q and r = (rblog(r)c, ..., r0)2

Output: fr ,P(Q)(qk−1)/r

f ← 1, T ← P

for i from blog(r)c − 1 to 0 do
1 Compute g = l in the chord-and-tangent doubling of T
2 T ← [2]T
3 f ← f 2 · g(Q)
4 if ri = 1 then

i. Compute g = l in the chord-and-tangent addition of T + P
ii. T ← T + P
iii. f ← f · g(Q)

end if

end for: return f ← f (qk−1)/r

Craig Costello Field Multiplications in Pairing Computations

Miller’s algorithm without the additions

Input: P, Q and r = (rblog(r)c, ..., r0)2

Output: fr ,P(Q)(qk−1)/r

f ← 1, T ← P

for i from blog(r)c − 1 to 0 do
1 Compute g = l in the chord-and-tangent doubling of T
2 T ← [2]T

3 f ← f 2 · g(Q)

end for: return f ← f (qk−1)/r

Miller lite: Steps 1 and 2 are operations taking place in Fq

Step 3 takes place in Fqk

Fqk operations dominate computations, particularly as k gets
larger
let mt , st be cost of mul/squ in Fqt ... if t = 2i3j then
mt = 3i5jm1 (Karatsuba, Toom-Cook multiplication)
e.g. a multiplication in Fq12 costs m12 = 45m1

Craig Costello Field Multiplications in Pairing Computations

A closer look at the Miller update f 2 · g(Q)

Three steps in the update... just like traffic lights

i. f ← f 2

ii. Evaluate g at Q

iii. f ← f · g

i. f ∈ Fqk ;

→ 1 full extension field multiplication (quadratic in m1)

ii. g(x , y) = g2 · x + g1 · y + g0, gi ∈ Fq; multiplying gi by coordinate of
Q is computing Fq · Fqe ;

→ 2e multiplications in Fq (linear in m1)

iii. g ∈ Fqk then looks something like
g(xQ , yQ) = ĝ2 · β + ĝ1 · α+ g0 ∈ Fqk , with g1, g2 ∈ Fqe and g0 ∈ Fq

→ a bit awkward (g is usually sparse, f is not)... what to do???

Craig Costello Field Multiplications in Pairing Computations

What to do with f and g

An example of f and g for a d = 6 sextic twist is used

f = (f2,1 ·α+ f2,0) ·β2 +(f1,1 ·α+ f1,0) ·β+(f0,1 ·α+ f0,0) ∈ Fpk ,

g = ĝ2 · β + ĝ1 · α + g0 ∈ Fqk ,

where fi ,j ’s and gi ’s are in Fq12 , α and β are algebraic (define
extensions).

Could just multiply adjust full extension field multiplication
routine (and op count) accordingly

Intuitively, we lose some of the “magic” of Karatsuba and
Toom-Cook like techniques (difference between trivial
coordinate-wise multiplication not so impressive)

Idea: What about not multiplying f by g in this iteration, and
waiting for the next g ′ first before “touching” f

Perhaps f · (g · g ′) will beat (f · g) · g ′ ???

Craig Costello Field Multiplications in Pairing Computations

What to do with f and g ... cont

Not actually as simple as f · (g · g ′) vs. (f · g) · g ′
since g would have been absorbed into f and squared

Should actually be f · (g 2 · g ′) vs. (f · g) · g ′
which doesn’t look as good!

We’ve only touched f ∈ Fqk once, but we have to do more to
compute g 2 · g ′

Idea: Why don’t we keep g as indeterminate... that way we don’t
even have to touch the Fqe elements before (g 2 · g ′) is formed

All the work in forming the indeterminate g 2 · g ′ product will then
be done is the base field Fq

Trade off: spending a lot more computations in Fq to avoid a
computation in Fqk ... potentially favorable, particularly for
large k

Craig Costello Field Multiplications in Pairing Computations

Merging n iterations at a time

If it is favorable to delay evaluation of g at Q and to delay the
multiplication of f by g(Q), why should we stop at delaying
only once?

The general case (merging n iterations at a time) looks like

for i = blog2n(r)c − 1 to 0 do

Compute gprod = g 2n−1

1 g 2n−2

2 ...g 21

n−1gn

T ← [2n]T (double n times)

Evaluate gprod at Q

f ← f 2n · gprod(Q)

end for

No more orange!!!

Craig Costello Field Multiplications in Pairing Computations

In case you missed any of that...

Essentially, all we are doing is:

Loop unrolling Miller’s algorithm (Granger, Page, Stam 2006)
- supersingular characteristic 3 pairings

OR Miller’s algorithm with window size n

OR loop parameter is written in 2n-ary form, rather than
binary form

Craig Costello Field Multiplications in Pairing Computations

This work vs. other work

for i = blog2n(r)c − 1 to 0 do

Compute gprod = g 2n−1

1 g 2n−2

2 ...g 21

n−1gn

T ← [2n]T (double n times)

Evaluate gprod at Q

f ← f 2n · gprod(Q)

end for

This work (1) vs. AfricaCrypt paper (2) - difference is the way
gprod is computed

(2) presents lengthy reduced explicit formulas
potentially cumbersome to implement
Herein we choose not to reduce → only slightly slower, but
easier to implement

Craig Costello Field Multiplications in Pairing Computations

Non-reduced line products

For n = 2: gprod = (g2 · x + g1 · y + g0)2 · (g ′2 · x + g ′1 · y + g ′0)

Just expand gprod in the trivial sense

In the paper we generalize above product to an inderterminant
product of n powers of lines: gprod(x , y) =

(g2 ·x +g1 ·y +g0)2n ·(ĝ2 ·x +ĝ1 ·y +ĝ0)2n−1 ·...·(g ′2 ·x +g ′1 ·y +g ′0)

Expand and reduce modulo y 2 = x3 + ax + b to give
gprod = h(x) + ĥ(x) · y
Carefully keep track of optimal operation count to evaluate
expanded version... assuming inputs of (g2, g1, g0) ∈ Fp tuples

Cost to get from gprod to next
g ′prod = g 2

prod · (g2 · x + g1 · y + g0) and generalize...

Craig Costello Field Multiplications in Pairing Computations

The total cost of n merged iterations

costn =
[
6(2n − 1) + 2

]
em1 +

[
(n + 1)(m + sΩ) + 3n(Ω− 6)

+ 3(2n − 1)((2n+1 − 3)Ω + 12)
]
m1 + (1 + (n + 1)Ω)mk ,

Plug in paramters (k, e, Ω) and minimize over n

If costn>0 significantly better than cost0 then speedup

k = 2i · 3j → mk = 3i · 5jm1 (all in terms of base field
operations)

Craig Costello Field Multiplications in Pairing Computations

Operation counts and optimal n

Ω = 1 (s = m) Ω = 0.8 (s = 0.8 m)
k D m, s Fpu ⊆ Fpe ⊂ F

pk N = 0 Optimal N N = 0 Optimal N

count count count

12 3 2, 7 Fp ⊂ F
p2 ⊂ F

p12 103 1 96.5 92.6 1 85.5

14 3 2, 7 Fp ⊂ F
p7 ⊂ F

p14 155 1 148 140.4 1 132.8

16 1 2, 8 Fp ⊂ F
p4 ⊂ F

p16 180 1 159.5 162.2 1 141.1

18 3 2, 7 Fp ⊂ F
p3 ⊂ F

p18 165 1 145.5 148.6 1 128.5

20 1 2, 8 Fp ⊂ F
p10 ⊂ F

p20 254 1 217.5 229 1 191.9

22 1 2, 8 Fp ⊂ F
p11 ⊂ F

p22 428 1 363 386.8 1 321.2

24 3 2, 7 Fp ⊂ F
p4 ⊂ F

p24 287 1 239.5 258.6 1 210.5

26 3 2, 7 Fp ⊂ F
p13 ⊂ F

p26 581 1 482.5 525 1 425.9

28 1 2, 8 Fp ⊂ F
p7 ⊂ F

p28 420 1 347 378.8 1 305.2

30 3 2, 7 Fp ⊂ F
p10 ⊂ F

p30 409 1 333.5 368.6 1 292.5

32 1 2, 8 Fp ⊂ F
p8 ⊂ F

p32 512 1 418.5 461.8 1 367.7

34 3 2, 7 Fp ⊂ F
p17 ⊂ F

p34 961 2 775.3 867.8 2 678.7

36 3 2, 7 Fp ⊂ F
p6 ⊂ F

p36 471 1 382.5 424.6 1 335.5

38 3 2, 7 Fp ⊂ F
p19 ⊂ F

p38 1187 2 936.7 1071.6 2 817.9

40 1 2, 8 Fp ⊂ F
p10 ⊂ F

p40 732 2 585.6 660.2 2 510.5

42 3 2, 7 Fp ⊂ F
p7 ⊂ F

p42 683 2 536.7 615.6 2 465.9

44 1 2, 8 Fp ⊂ F
p11 ⊂ F

p44 1220 2 916.3 1099.6 2 792.5

46 1 2, 8 Fp ⊂ F
p23 ⊂ F

p46 1712 2 1308.3 1544.8 2 1137.7

48 3 2, 7 Fp ⊂ F
p8 ⊂ F

p48 835 2 643.3 752.6 2 557.5

50 3 2, 7 Fp ⊂ F
p25 ⊂ F

p50 1073 1 881.5 970.2 1 778.1

Craig Costello Field Multiplications in Pairing Computations

Simple algorithm description

for i = ln − 2 to 0 (loop parameter is base 2n)
Initialize G (x , y) = h(x) + ĥ(x) · y = 1
for j = 1 to n

Compute [(gn,2, gn,1, gn,0),T] = MillerDBL(T)

Compute G (x , y)2 · (gn,2 · x + gn,1 · y + gn,0)

f ← f 2

end for
Evaluate G (xQ , yQ)
f ← f · G
if mi 6= 0

Compute [g ,T] = MillerADD(T , [mi]R)
f ← f · f[mi]R · g

end if
end for
return f

MillerDBL(T) and MillerADD(T) same as always

Often code is minor amendment to standard DBL and ADD routines

Craig Costello Field Multiplications in Pairing Computations

Summary

An alternative to the explicit formulas in AfricaCrypt paper

Only slight speed loss, but implementation is much easier

Old code could be modified with injection of conceptually
simple subroutine

Craig Costello Field Multiplications in Pairing Computations

Related work

Minor add on to results: Miller-lite (Tate-like) pairings still in
use for Type 1,2,4 pairings. Compression not always available
so (xQ , yQ) are full extension field elements → future ePrint
version

Technique most powerful in context of fixed argument
pairings, where P is a long-term secret key and
precomputation is available in affine coordinate
(http://eprint.iacr.org/2010/342 -“Fixed Argument Pairings”)

Actual implementations coming in future

Craig Costello Field Multiplications in Pairing Computations

Thanks

Craig Costello Field Multiplications in Pairing Computations

