Delaying Mismatched Field Multiplications in Pairing Computations

Craig Costello
craig.costello@qut.edu.au Queensland University of Technology

WAIFI 2010 - Istanbul, Turkey
Joint work with Colin Boyd, Juanma Gonzalez-Nieto, Kenneth Koon-Ho Wong

Pairing computation speeds: then and now

- Then:
- 1993

...BIG GAP...

- Now:

-2009
-April 2010

-June 2010

Menezes' elliptic curve book: few minutes

So what happened in the big gap?

- Heaps of exciting protocol stuff has happened...

ID-based encryption (IBE), ID-based key agreement, short signatures, group signatures, ring signatures, certificateless encryption, hierarchical encryption, predicate-based encryption, attribute-based encryption, and many more!!!

- Heaps of cool pairing optimizations has since 'followed'...
- Tate pairing instead of Weil pairing
- denominator elimination
- group choices and twisted curves
- endomorphism rings and loop shortening
- low rho-valued curves
- pairing and towering-friendly fields
- ... and many more!!!

Current research

- Many of the high-level optimizations on elliptic curves (genus 1) have been thoroughly explored
- Meanwhile, more neat ideas and notable optimizations continue to solidly improve the situation (Granger \& Scott PKC'10, Benger \& Scott WAIFI'10, ALNR with Edwards, etc)
- The time is ripe for 'lower-level' and implementation specific improvements
- Even though they're faster than a milli-second, some cryptographers still think they're slow in practice... so we will keep optimizing...
- Targets one step in Miller's algorithm that hasn't received a great deal of attention
- Step where different degree extension fields are combined $\mathbb{F}_{p}, \mathbb{F}_{p^{k / d}}, \mathbb{F}_{p^{k}} \rightarrow \mathbb{F}_{p^{k}}$.
- 'Replaces' higher degree extension field arithmetic with arithmetic in smaller subfields
- Ultimate goal: optimize the number of equivalent base field \mathbb{F}_{p}-operations

Group choices

The embedding degree k

Must form a degree k field extension of \mathbb{F}_{q} to find two order r subgroups and balance ECDLP and DLP

$$
\begin{array}{ll}
\mathbb{G}_{1}=E[r] \cap \operatorname{ker}\left(\pi_{q}-[1]\right)=E\left(\mathbb{F}_{q}\right)[r], & \text { (the base field) } \\
\mathbb{G}_{2}=E[r] \cap \operatorname{ker}\left(\pi_{q}-[q]\right) \subset E\left(\mathbb{F}_{q^{k}}\right)[r], & \text { (the full extension field) }
\end{array}
$$

The elements of \mathbb{G}_{2} are much bigger than the elements of \mathbb{G}_{1} (e.g. $k=12$)

$$
\mathbb{F}_{q^{12}}=\mathbb{F}_{q^{4}}(\alpha)=\mathbb{F}_{q^{2}}(\gamma)=\mathbb{F}_{q}(\beta)
$$

$P \in \mathbb{G}_{1}:{ }_{[341746248540,710032105147]}$
$Q \in \mathbb{G}_{2}:$
$\left[((502478767360 \cdot \beta+1034075074191) \cdot \gamma+342970860051 \cdot \beta+225764301423) \cdot \alpha^{2}+((205398279920 \cdot \beta+\right.$

```
182600014119) \cdot \gamma + 860891557473 \cdot \beta+435210764901) \cdot\alpha+(1043922075477 \cdot \beta+566889113793) \cdot\gamma+
```

$150949917087 \cdot \beta+21392569319$,
$((654337640030 \cdot \beta+744622505639) \cdot \gamma+1092264803801 \cdot \beta+895826335783) \cdot \alpha^{2}+((529466169391 \cdot \beta+$
$550511036767) \cdot \gamma+985244799144 \cdot \beta+554170865706) \cdot \alpha+(194564971321 \cdot \beta+969736450831) \cdot \gamma+$
(579122687888 • $\beta+581111086076)$]

- Original curve is $E\left(\mathbb{F}_{q}\right): y^{2}=x^{3}+a x+b$
- Twisted curve is $E^{\prime}\left(\mathbb{F}_{q^{k / d}}\right): y^{2}=x^{3}+a \omega^{4} x+b \omega^{6}, \omega \in \mathbb{F}_{q^{k}}$
- Possible degrees of twists are $d \in\{2,3,4,6\}$
- $d>2$ requires $a=0$ or $b=0$
- Twist $\Psi: E^{\prime} \rightarrow E:\left(x^{\prime}, y^{\prime}\right) \rightarrow\left(x^{\prime} / \omega^{2}, y^{\prime} / \omega^{3}\right)$ induces $\mathbb{G}_{2}^{\prime}=E^{\prime}\left(\mathbb{F}_{q^{k / d}}\right)[r]$ so that $\psi: \mathbb{G}_{2}^{\prime} \rightarrow \mathbb{G}_{2}$
- Instead of working with $Q \in \mathbb{G}_{2}$, a lot of work can be done with $Q^{\prime} \in \mathbb{G}_{2}^{\prime}$ defined over subfield $\mathbb{F}_{q^{e}}=\mathbb{F}_{q^{k / d}}$
$P \in \mathbb{G}_{1}:(341746245540,710032105147)$
$Q^{\prime} \in \mathbb{G}_{2}^{\prime}=\Psi^{-1}\left(\mathbb{G}_{2}\right)$:
$\left((917087150949 \beta+25693192139) \cdot \omega^{2},(878885791226 \beta+860765811110) \cdot \omega^{3}\right)$

Lite vs. full pairings

Miller-lite (Tate, twisted ate, η, etc)

$$
e_{r}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mu_{r},(P, Q) \mapsto f_{r, P}(Q)^{\frac{q^{k}-1}{r}} .
$$

Miller-full (ate, R-ate, ate ${ }_{i}$, etc)

$$
a_{T}: \mathbb{G}_{2} \times \mathbb{G}_{1} \rightarrow \mu_{r},(Q, P) \mapsto f_{T, Q}(P)^{\frac{q^{k}-1}{r}}
$$

- Pairings require the computation of Miller functions $f_{m, R}(S)$
- Function $f_{m, R}$ is of degree m
- Constructions require $\left\lfloor\log _{2} m\right\rfloor$ iterations of Miller's algorithm
- Most of the work is done in the first argument
- Tate needs $\left\lfloor\log _{2} r\right\rfloor$ iters, ate needs $\left\lfloor\log _{2} T\right\rfloor$ iters, $T \ll r$
- Trade-off is that more work in ate is done in larger field $\left(\mathbb{G}_{2}^{\prime}\right)$

Miller-lite pairings

- The results in this paper are advantageous for Miller-lite pairings (bigger gap between P^{\prime} s coordinates and $\mathbb{F}_{q^{k}}$)
- Thus, from here on assume first arg. $P=\left(x_{P}, y_{P}\right) \in E\left(\mathbb{F}_{q}\right)$ (base field) and second arg. $Q=\left(x_{Q}, y_{Q}\right) \in E\left(\mathbb{F}_{q^{k}}\right)$ (extension field)
- The pairing is computed as $e(P, Q)=f_{r, P}(Q)^{\left(q^{k}-1\right) / r}$, where $f_{r, P}(Q)$ would expand explicitly as

$$
f_{r, P}(Q)=\sum_{i=0}^{r} \sum_{j=0}^{i} c_{i, j} \cdot x_{Q}^{i-j} y_{Q}^{j},
$$

where the $c_{i, j}$'s are entirely P dependent, $c_{i, j} \in \mathbb{F}_{q}$.

- Indeterminate $f_{r, P}(x)$ has degree r (at least 160 bits), so must compute by building function and evaluating as we go...

Miller's algorithm for $e(P, Q)=f_{r, P}(Q)^{\left(q^{k}-1\right) / r}$

Input: $\quad P, Q$ and $r=\left(r_{\lfloor\log (r)\rfloor}, \ldots, r_{0}\right)_{2}$
Output: $f_{r, P}(Q)^{\left(q^{k}-1\right) / r}$

- $f \leftarrow 1, T \leftarrow P$
- for i from $\lfloor\log (r)\rfloor-1$ to 0 do
(1) Compute $g=I$ in the chord-and-tangent doubling of T
(2) $T \leftarrow[2] T$
(3) $f \leftarrow f^{2} \cdot g(Q)$
(9) if $r_{i}=1$ then
i. Compute $g=I$ in the chord-and-tangent addition of $T+P$
ii. $T \leftarrow T+P$
iii. $f \leftarrow f \cdot g(Q)$
end if
end for: return $f \leftarrow f\left(q^{k}-1\right) / r$

Miller's algorithm for $e(P, Q)=f_{r, P}(Q)^{\left(q^{k}-1\right) / r}$

State-of-the-art implementations employ low hamming-weight r values, so let's ignore additions (for now)

Input: $\quad P, Q$ and $r=\left(r_{\lfloor\log (r)\rfloor}, \ldots, r_{0}\right)_{2}$
Output: $f_{r, P}(Q)^{\left(q^{k}-1\right) / r}$

- $f \leftarrow 1, T \leftarrow P$
- for i from $\lfloor\log (r)\rfloor-1$ to 0 do
(1) Compute $g=I$ in the chord-and-tangent doubling of T
(2) $T \leftarrow[2] T$
(3) $f \leftarrow f^{2} \cdot g(Q)$
(9) if $r_{i}=1$ then
i. Compute $g=I$ in the chord-and-tangent addition of $T+P$
ii. $T \leftarrow T+P$
iii. $f \leftarrow f \cdot g(Q)$
end if
end for: return $f \leftarrow f\left(q^{k}-1\right) / r$

Miller's algorithm without the additions

Input: $\quad P, Q$ and $r=\left(r_{\lfloor\log (r)\rfloor}, \ldots, r_{0}\right)_{2}$
Output: $f_{r, P}(Q)^{\left(q^{k}-1\right) / r}$

- $f \leftarrow 1, T \leftarrow P$
- for i from $\lfloor\log (r)\rfloor-1$ to 0 do
(1) Compute $g=I$ in the chord-and-tangent doubling of T
(2) $T \leftarrow[2] T$
(3) $f \leftarrow f^{2} \cdot g(Q)$
end for: return $f \leftarrow f\left(q^{k}-1\right) / r$
- Miller lite: Steps 1 and 2 are operations taking place in \mathbb{F}_{q}
- Step 3 takes place in $\mathbb{F}_{q^{k}}$
- $\mathbb{F}_{q^{k}}$ operations dominate computations, particularly as k gets larger
- let $\mathbf{m}_{t}, \mathbf{s}_{t}$ be cost of mul/squ in $\mathbb{F}_{q^{t} \ldots \text { if } t=2^{i} 3^{j} \text { then }}$ $\mathbf{m}_{t}=3^{i} 5^{j} \mathbf{m}_{1}$ (Karatsuba, Toom-Cook multiplication)
- e.g. a multiplication in $\mathbb{F}_{q^{12}}$ costs $\mathbf{m}_{12}=45 \mathbf{m}_{1}$

A closer look at the Miller update $f^{2} \cdot g(Q)$

Three steps in the update... just like traffic lights
i. $f \leftarrow f^{2}$
ii. Evaluate g at Q
iii. $f \leftarrow f \cdot g$
i. $f \in \mathbb{F}_{q^{k}}$;
$\rightarrow 1$ full extension field multiplication (quadratic in \mathbf{m}_{1})
ii. $g(x, y)=g_{2} \cdot x+g_{1} \cdot y+g_{0}, g_{i} \in \mathbb{F}_{q}$; multiplying g_{i} by coordinate of Q is computing $\mathbb{F}_{q} \cdot \mathbb{F}_{q^{e}}$;
$\rightarrow 2 e$ multiplications in \mathbb{F}_{q} (linear in \mathbf{m}_{1})
iii. $g \in \mathbb{F}_{q^{k}}$ then looks something like $g\left(x_{Q}, y_{Q}\right)=\hat{g}_{2} \cdot \beta+\hat{g}_{1} \cdot \alpha+g_{0} \in \mathbb{F}_{q^{k}}$, with $g_{1}, g_{2} \in \mathbb{F}_{q^{e}}$ and $g_{0} \in \mathbb{F}_{q}$ \rightarrow a bit awkward (g is usually sparse, f is not)... what to do???

What to do with f and g

- An example of f and g for a $d=6$ sextic twist is used $f=\left(f_{2,1} \cdot \alpha+f_{2,0}\right) \cdot \beta^{2}+\left(f_{1,1} \cdot \alpha+f_{1,0}\right) \cdot \beta+\left(f_{0,1} \cdot \alpha+f_{0,0}\right) \in \mathbb{F}_{p^{k}}$, $g=\hat{g}_{2} \cdot \beta+\hat{g}_{1} \cdot \alpha+g_{0} \in \mathbb{F}_{q^{k}}$, where $f_{i, j}$'s and g_{i} 's are in $\mathbb{F}_{q^{12}}, \alpha$ and β are algebraic (define extensions).
- Could just multiply adjust full extension field multiplication routine (and op count) accordingly
- Intuitively, we lose some of the "magic" of Karatsuba and Toom-Cook like techniques (difference between trivial coordinate-wise multiplication not so impressive)

Idea: What about not multiplying f by g in this iteration, and waiting for the next g^{\prime} first before "touching" f

Perhaps $f \cdot\left(g \cdot g^{\prime}\right)$ will beat $(f \cdot g) \cdot g^{\prime} ? ? ?$

What to do with f and g... cont

- Not actually as simple as $\quad f \cdot\left(g \cdot g^{\prime}\right)$ vs. $(f \cdot g) \cdot g^{\prime}$ since g would have been absorbed into f and squared
- Should actually be $\quad f \cdot\left(g^{2} \cdot g^{\prime}\right)$ vs. $(f \cdot g) \cdot g^{\prime}$ which doesn't look as good!
- We've only touched $f \in \mathbb{F}_{q^{k}}$ once, but we have to do more to compute $g^{2} \cdot g^{\prime}$

Idea: Why don't we keep g as indeterminate... that way we don't even have to touch the $\mathbb{F}_{q^{e}}$ elements before $\left(g^{2} \cdot g^{\prime}\right)$ is formed
All the work in forming the indeterminate $g^{2} \cdot g^{\prime}$ product will then be done is the base field \mathbb{F}_{q}

- Trade off: spending a lot more computations in \mathbb{F}_{q} to avoid a computation in $\mathbb{F}_{q^{k}} \ldots$ potentially favorable, particularly for large k

Merging n iterations at a time

- If it is favorable to delay evaluation of g at Q and to delay the multiplication of f by $g(Q)$, why should we stop at delaying only once?
- The general case (merging n iterations at a time) looks like
for $i=\left\lfloor\log _{2^{n}}(r)\right\rfloor-1$ to 0 do
Compute $g_{\text {prod }}=g_{1}^{2^{n-1}} g_{2}^{2^{n-2}} \cdots g_{n-1}^{2^{1}} g_{n}$
$T \leftarrow\left[2^{n}\right] T$ (double n times)
Evaluate $g_{\text {prod }}$ at Q
$f \leftarrow f^{2^{n}} \cdot g_{\text {prod }}(Q)$
end for
- No more orange!!!

In case you missed any of that...

- Essentially, all we are doing is:
- Loop unrolling Miller's algorithm (Granger, Page, Stam 2006) - supersingular characteristic 3 pairings
- OR Miller's algorithm with window size n
- OR loop parameter is written in 2^{n}-ary form, rather than binary form
- for $i=\left\lfloor\log _{2^{n}}(r)\right\rfloor-1$ to 0 do

$$
\text { Compute } g_{\text {prod }}=g_{1}^{2^{n-1}} g_{2}^{2^{n-2}} \ldots g_{n-1}^{2^{1}} g_{n}
$$

$T \leftarrow\left[2^{n}\right] T$ (double n times)

Evaluate $g_{\text {prod }}$ at Q

```
f\leftarrowf\mp@subsup{2}{}{2n}\cdotg}\mp@subsup{g}{\mathrm{ prod }}{(Q)
```


end for

- This work (1) vs. AfricaCrypt paper (2) - difference is the way $g_{\text {prod }}$ is computed
- (2) presents lengthy reduced explicit formulas
- potentially cumbersome to implement
- Herein we choose not to reduce \rightarrow only slightly slower, but easier to implement

Non-reduced line products

- For $n=2: g_{\text {prod }}=\left(g_{2} \cdot x+g_{1} \cdot y+g_{0}\right)^{2} \cdot\left(g_{2}^{\prime} \cdot x+g_{1}^{\prime} \cdot y+g_{0}^{\prime}\right)$
- Just expand $g_{\text {prod }}$ in the trivial sense
- In the paper we generalize above product to an inderterminant product of n powers of lines: $g_{\text {prod }}(x, y)=$ $\left(g_{2} \cdot x+g_{1} \cdot y+g_{0}\right)^{2^{n}} \cdot\left(\hat{g}_{2} \cdot x+\hat{g}_{1} \cdot y+\hat{g}_{0}\right)^{2^{n-1}} \cdot \ldots \cdot\left(g_{2}^{\prime} \cdot x+g_{1}^{\prime} \cdot y+g_{0}^{\prime}\right)$
- Expand and reduce modulo $y^{2}=x^{3}+a x+b$ to give $g_{\text {prod }}=h(x)+\hat{h}(x) \cdot y$
- Carefully keep track of optimal operation count to evaluate expanded version... assuming inputs of $\left(g_{2}, g_{1}, g_{0}\right) \in \mathbb{F}_{p}$ tuples
- Cost to get from $g_{\text {prod }}$ to next
$g_{\text {prod }}^{\prime}=g_{\text {prod }}^{2} \cdot\left(g_{2} \cdot x+g_{1} \cdot y+g_{0}\right)$ and generalize \ldots

$$
\begin{aligned}
\operatorname{cost}_{n}= & {\left[6\left(2^{n}-1\right)+2\right] e \mathbf{m}_{1}+[(n+1)(m+s \Omega)+3 n(\Omega-6)} \\
& \left.+3\left(2^{n}-1\right)\left(\left(2^{n+1}-3\right) \Omega+12\right)\right] \mathbf{m}_{1}+(1+(n+1) \Omega) \mathbf{m}_{k},
\end{aligned}
$$

- Plug in paramters (k, e, Ω) and minimize over n
- If cost ${ }_{n>0}$ significantly better than cost $_{0}$ then speedup
- $k=2^{i} \cdot 3^{j} \rightarrow \mathbf{m}_{k}=3^{i} \cdot 5^{j} \mathbf{m}_{1}$ (all in terms of base field operations)

Operation counts and optimal n

k	D	m, s	$\mathbb{F}_{p^{u}} \subseteq \mathbb{F}_{p^{e}} \subset \mathbb{F}_{p^{k}}$	$\Omega=1(\mathrm{~s}=\mathrm{m})$		$\Omega=0.8(\mathbf{s}=0.8 \mathrm{~m})$	
				$\begin{aligned} & N=0 \\ & \text { count } \end{aligned}$	$\begin{aligned} & \text { Optimal N } \\ & \text { count } \end{aligned}$	$N=0$	Optimal N count
12	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{2}} \subset \mathbb{F}_{p^{12}}$	103	196.5	92.6	185.5
14	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{7}} \subset \mathbb{F}_{p^{14}}$	155	1148	140.4	1132.8
16	1	2, 8	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{4}} \subset \mathbb{F}_{p} 16$	180	1159.5	162.2	1141.1
18	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{3}} \subset \mathbb{F}_{p^{18}}$	165	1145.5	148.6	1128.5
20	1	2, 8	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{10}} \subset \mathbb{F}_{p^{20}}$	254	1217.5	229	1191.9
22	1	2, 8	$\mathbb{F}_{p} \subset \mathbb{F}_{p}{ }^{11} \subset \mathbb{F}_{p}{ }^{22}$	428	1363	386.8	1321.2
24	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{4}} \subset \mathbb{F}_{p^{24}}$	287	1239.5	258.6	1210.5
26	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{13}} \subset \mathbb{F}_{p^{26}}$	581	1482.5	525	1425.9
28	1	2, 8	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{7}} \subset \mathbb{F}_{p^{28}}$	420	1347	378.8	1305.2
30	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{10}} \subset \mathbb{F}_{p^{30}}$	409	1333.5	368.6	1292.5
32	1	2, 8	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{8}} \subset \mathbb{F}_{p^{32}}$	512	1418.5	461.8	$1 \begin{array}{ll}1 & 367.7\end{array}$
34	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{17}} \subset \mathbb{F}_{p} 34$	961	2775.3	867.8	2678.7
36	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{6}} \subset \mathbb{F}_{p^{36}}$	471	1382.5	424.6	1335.5
38	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p} 19 \subset \mathbb{F}_{p} 38$	1187	2936.7	1071.6	2817.9
40	1	2, 8	$\mathbb{F}_{p} \subset \mathbb{F}_{p} 10 \subset \mathbb{F}_{p} 40$	732	2585.6	660.2	2510.5
42	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{7}} \subset \mathbb{F}_{p^{42}}$	683	2536.7	615.6	2465.9
44	1	2, 8	$\mathbb{F}_{p} \subset \mathbb{F}_{p} 11 \subset \mathbb{F}_{p}{ }^{44}$	1220	2916.3	1099.6	2792.5
46	1	2, 8	$\mathbb{F}_{p} \subset \mathbb{F}_{p}{ }^{23} \subset \mathbb{F}_{p} 46$	1712	21308.3	1544.8	21137.7
48	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{8}} \subset \mathbb{F}_{p^{48}}$	835	2643.3	752.6	2557.5
50	3	2,7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{25}} \subset \mathbb{F}_{p^{50}}$	1073	1881.5	970.2	1778.1

Simple algorithm description

for $i=I_{n}-2$ to $0 \quad$ (loop parameter is base 2^{n})
Initialize $G(x, y)=h(x)+\hat{h}(x) \cdot y=1$
for $j=1$ to n
Compute $\left[\left(g_{n, 2}, g_{n, 1}, g_{n, 0}\right), T\right]=\operatorname{MillerDBL}(T)$
Compute $G(x, y)^{2} \cdot\left(g_{n, 2} \cdot x+g_{n, 1} \cdot y+g_{n, 0}\right)$

$$
f \leftarrow f^{2}
$$

end for
Evaluate $G\left(x_{Q}, y_{Q}\right)$
$f \leftarrow f \cdot G$
if $m_{i} \neq 0$
Compute $[g, T]=$ MillerADd $\left(T,\left[m_{i}\right] R\right)$ $f \leftarrow f \cdot f_{\left[m_{j}\right] R} \cdot g$
end if
end for return f

- MillerDBL(T) and MillerADD (T) same as always
- Often code is minor amendment to standard DBL and ADD routines

Summary

- An alternative to the explicit formulas in AfricaCrypt paper
- Only slight speed loss, but implementation is much easier
- Old code could be modified with injection of conceptually simple subroutine
- Minor add on to results: Miller-lite (Tate-like) pairings still in use for Type 1,2,4 pairings. Compression not always available so $\left(x_{Q}, y_{Q}\right)$ are full extension field elements \rightarrow future ePrint version
- Technique most powerful in context of fixed argument pairings, where P is a long-term secret key and precomputation is available in affine coordinate (http://eprint.iacr.org/2010/342 - "Fixed Argument Pairings")
- Actual implementations coming in future

Thanks

