Delaying Mismatched Field Multiplications in Pairing Computations

Craig Costello

craig.costello@qut.edu.au Queensland University of Technology

WAIFI 2010 - Istanbul, Turkey

Joint work with Colin Boyd, Juanma Gonzalez-Nieto, Kenneth Koon-Ho Wong

• Then:

- 1993 Menezes' elliptic curve book : few minutes

...BIG GAP...

• Now:

-2009Hankerson, Menezes, Scott: 4.01ms-April 2010Naehrig, Niederhagen, Schwabe: 1.80ms-June 2010Beuchat et al.: 0.94ms

So what happened in the big gap?

- Heaps of exciting protocol stuff has happened... ID-based encryption (IBE), ID-based key agreement, short signatures, group signatures, ring signatures, certificateless encryption, hierarchical encryption, predicate-based encryption, attribute-based encryption, and many more!!!
- Heaps of cool pairing optimizations has since 'followed'...
 - Tate pairing instead of Weil pairing
 - denominator elimination
 - group choices and twisted curves
 - endomorphism rings and loop shortening
 - low rho-valued curves
 - pairing and towering-friendly fields
 - ... and many more!!!

- Many of the high-level optimizations on **elliptic curves** (genus 1) have been thoroughly explored
- Meanwhile, more neat ideas and notable optimizations continue to solidly improve the situation (Granger & Scott PKC'10, Benger & Scott WAIFI'10, ALNR with Edwards, etc)
- The time is ripe for 'lower-level' and implementation specific improvements
- Even though they're faster than a milli-second, some cryptographers still think they're slow in practice... so we will keep optimizing...

- Targets one step in Miller's algorithm that hasn't received a great deal of attention
- Step where different degree extension fields are combined $\mathbb{F}_p, \mathbb{F}_{p^{k/d}}, \mathbb{F}_{p^k} \to \mathbb{F}_{p^k}.$
- 'Replaces' higher degree extension field arithmetic with arithmetic in smaller subfields
- Ultimate goal: optimize the number of equivalent base field \mathbb{F}_p -operations

The embedding degree k

Must form a degree k field extension of \mathbb{F}_q to find two order r subgroups and balance ECDLP and DLP

 $\mathbb{G}_1 = E[r] \cap \ker(\pi_q - [1]) = E(\mathbb{F}_q)[r], \quad \text{ (the base field)}$

 $\mathbb{G}_2 = E[r] \cap \ker(\pi_q - [q]) \subset E(\mathbb{F}_{q^k})[r], \quad (ext{the full extension field})$

The elements of \mathbb{G}_2 are much bigger than the elements of \mathbb{G}_1 (e.g. k = 12)

$$\mathbb{F}_{q^{12}} = \mathbb{F}_{q^4}(\alpha) = \mathbb{F}_{q^2}(\gamma) = \mathbb{F}_q(\beta)$$

 $P \in \mathbb{G}_1$: [341746248540,710032105147] $Q \in \mathbb{G}_2$:

 $150949917087 \cdot \beta + 21392569319$,

 $((654337640030 \cdot \beta + 744622505639) \cdot \gamma + 1092264803801 \cdot \beta + 895826335783) \cdot \alpha^2 + ((529466169391 \cdot \beta + 89582633578)) \cdot \alpha^2 + ((529466669391 \cdot \beta + 89582633578)) \cdot \alpha^2 + ((529466669391 \cdot \beta + 89582633578)) \cdot \alpha^2 + ((5294666669391 \cdot \beta + 89582633578))$

 $(579122687888 \cdot \beta + 581111086076)]$

The twisted curve

- Original curve is $E(\mathbb{F}_q): y^2 = x^3 + ax + b$
- Twisted curve is $E'(\mathbb{F}_{q^{k/d}})$: $y^2 = x^3 + a\omega^4 x + b\omega^6$, $\omega \in \mathbb{F}_{q^k}$
- Possible degrees of twists are $d \in \{2, 3, 4, 6\}$
- d > 2 requires a = 0 or b = 0
- Twist $\Psi: E' \to E: (x', y') \to (x'/\omega^2, y'/\omega^3)$ induces $\mathbb{G}'_2 = E'(\mathbb{F}_{q^{k/d}})[r]$ so that $\Psi: \mathbb{G}'_2 \to \mathbb{G}_2$
- Instead of working with $Q \in \mathbb{G}_2$, a lot of work can be done with $Q' \in \mathbb{G}'_2$ defined over subfield $\mathbb{F}_{q^e} = \mathbb{F}_{q^{k/d}}$

 $P \in \mathbb{G}_1$: (341746248540, 710032105147) $Q' \in \mathbb{G}'_2 = \Psi^{-1}(\mathbb{G}_2)$:

 $((917087150949\beta + 25693192139) \cdot \omega^2, (878885791226\beta + 860765811110) \cdot \omega^3)$

Lite vs. full pairings

Miller-lite (Tate, twisted ate, η , etc)

$$e_r: \mathbb{G}_1 \times \mathbb{G}_2 \to \mu_r, \ (P, Q) \mapsto f_{r, P}(Q)^{\frac{q^k - 1}{r}}$$

Miller-full (ate, R-ate, ate_i, etc)

$$a_T: \mathbb{G}_2 \times \mathbb{G}_1 \to \mu_r, \ (Q, P) \mapsto f_{T,Q}(P)^{\frac{q^{\kappa}-1}{r}}.$$

- Pairings require the computation of Miller functions $f_{m,R}(S)$
- Function $f_{m,R}$ is of degree m
- Constructions require $\lfloor \log_2 m \rfloor$ iterations of Miller's algorithm
- Most of the work is done in the first argument
- Tate needs $\lfloor \log_2 r \rfloor$ iters, ate needs $\lfloor \log_2 T \rfloor$ iters, $T \ll r$
- Trade-off is that more work in ate is done in larger field (\mathbb{G}_2')

Miller-lite pairings

- The results in this paper are advantageous for Miller-lite pairings (bigger gap between P's coordinates and F_{a^k})
- Thus, from here on assume first arg. P = (x_P, y_P) ∈ E(𝔽_q) (base field) and second arg. Q = (x_Q, y_Q) ∈ E(𝔽_{q^k}) (extension field)
- The pairing is computed as $e(P, Q) = f_{r,P}(Q)^{(q^k-1)/r}$, where $f_{r,P}(Q)$ would expand explicitly as

$$f_{r,P}(Q) = \sum_{i=0}^{r} \sum_{j=0}^{i} c_{i,j} \cdot x_Q^{i-j} y_Q^j,$$

where the $c_{i,j}$'s are entirely P dependent, $c_{i,j} \in \mathbb{F}_q$.

 Indeterminate f_{r,P}(x) has degree r (at least 160 bits), so must compute by building function and evaluating as we go... Miller's algorithm for $e(P, Q) = f_{r,P}(Q)^{(q^k-1)/r}$

Input: *P*, *Q* and $r = (r_{|\log(r)|}, ..., r_0)_2$ Output: $f_{r,P}(Q)^{(q^k-1)/r}$ • $f \leftarrow 1, T \leftarrow P$ • for *i* from $|\log(r)| - 1$ to 0 do **1** Compute g = I in the chord-and-tangent doubling of T $O T \leftarrow [2] T$ $f \leftarrow f^2 \cdot g(Q)$ **(**) if $r_i = 1$ then i. Compute g = I in the chord-and-tangent addition of T + Pii. $T \leftarrow T + P$ iii. $f \leftarrow f \cdot g(Q)$ end if end for: return $f \leftarrow f^{(q^k-1)/r}$

Miller's algorithm for $e(P,Q) = f_{r,P}(Q)^{(q^k-1)/r}$

State-of-the-art implementations employ low hamming-weight r values, so let's ignore additions (for now)

Input: P, Q and $r = (r_{\lfloor \log(r) \rfloor}, ..., r_0)_2$ Output: $f_{r,P}(Q)^{(q^k-1)/r}$

•
$$f \leftarrow 1, T \leftarrow P$$

for *i* from ⌊log(r)⌋ - 1 to 0 do
Compute g = l in the chord-and-tangent doubling of T
T ← [2]T
f ← f² ⋅ g(Q)
if r_i = 1 then

i. Compute g = l in the chord-and-tangent addition of T + P
ii. T ← T + P
iii. f ← f ⋅ g(Q)

end if
end for: return f ← f^{(q^k-1)/r}

Miller's algorithm without the additions

Input:
$$P, Q$$
 and $r = (r_{\lfloor \log(r) \rfloor}, ..., r_0)_2$
Output: $f_{r,P}(Q)^{(q^k-1)/r}$

•
$$f \leftarrow 1, T \leftarrow P$$

- Miller lite: Steps 1 and 2 are operations taking place in \mathbb{F}_q
- Step 3 takes place in \mathbb{F}_{q^k}
- \mathbb{F}_{q^k} operations dominate computations, particularly as k gets larger
- let $\mathbf{m}_t, \mathbf{s}_t$ be cost of mul/squ in $\mathbb{F}_{q^t}...$ if $t = 2^i 3^j$ then $\mathbf{m}_t = 3^i 5^j \mathbf{m}_1$ (Karatsuba, Toom-Cook multiplication)
- e.g. a multiplication in $\mathbb{F}_{q^{12}}$ costs $\mathbf{m}_{12} = 45\mathbf{m}_1$

A closer look at the Miller update $f^2 \cdot g(Q)$

- i. $f \in \mathbb{F}_{q^k}$; $\rightarrow 1$ full extension field multiplication (quadratic in \mathbf{m}_1)
- ii. $g(x, y) = g_2 \cdot x + g_1 \cdot y + g_0, g_i \in \mathbb{F}_q$; multiplying g_i by coordinate of *Q* is computing $\mathbb{F}_q \cdot \mathbb{F}_{q^e}$;

 $\rightarrow 2e$ multiplications in \mathbb{F}_q (linear in \mathbf{m}_1)

iii. $g \in \mathbb{F}_{q^k}$ then looks something like $g(x_Q, y_Q) = \hat{g}_2 \cdot \beta + \hat{g}_1 \cdot \alpha + g_0 \in \mathbb{F}_{q^k}$, with $g_1, g_2 \in \mathbb{F}_{q^e}$ and $g_0 \in \mathbb{F}_q$ \rightarrow a bit awkward (g is usually sparse, f is not)... what to do???

What to do with f and g

• An example of f and g for a d = 6 sextic twist is used $f = (f_{2,1} \cdot \alpha + f_{2,0}) \cdot \beta^2 + (f_{1,1} \cdot \alpha + f_{1,0}) \cdot \beta + (f_{0,1} \cdot \alpha + f_{0,0}) \in \mathbb{F}_{n^k},$

 $g = \hat{g}_2 \cdot eta + \hat{g}_1 \cdot lpha + g_0 \in \mathbb{F}_{q^k}$,

where $f_{i,j}$'s and g_i 's are in $\mathbb{F}_{q^{12}}$, α and β are algebraic (define extensions).

- Could just multiply adjust full extension field multiplication routine (and op count) accordingly
- Intuitively, we lose some of the "magic" of Karatsuba and Toom-Cook like techniques (difference between trivial coordinate-wise multiplication not so impressive)

Idea: What about not multiplying f by g in this iteration, and waiting for the next g' first before "touching" f

Perhaps $f \cdot (g \cdot g')$ will beat $(f \cdot g) \cdot g'$???

What to do with f and g... cont

- Not actually as simple as f · (g · g') vs. (f · g) · g' since g would have been absorbed into f and squared
- Should actually be $f \cdot (g^2 \cdot g')$ vs. $(f \cdot g) \cdot g'$ which doesn't look as good!
- We've only touched $f \in \mathbb{F}_{q^k}$ once, but we have to do more to compute $g^2 \cdot g'$

Idea: Why don't we keep g as indeterminate... that way we don't even have to touch the \mathbb{F}_{q^e} elements before $(g^2 \cdot g')$ is formed

All the work in forming the indeterminate $g^2 \cdot g'$ product will then be done is the base field \mathbb{F}_q

• Trade off: spending a lot more computations in \mathbb{F}_q to avoid a computation in \mathbb{F}_{q^k} ... potentially favorable, particularly for large k

Merging *n* iterations at a time

- If it is favorable to delay evaluation of g at Q and to delay the multiplication of f by g(Q), why should we stop at delaying only once?
- The general case (merging *n* iterations at a time) looks like

for
$$i = \lfloor \log_{2^n}(r) \rfloor - 1$$
 to 0 do
Compute $g_{\text{prod}} = g_1^{2^{n-1}} g_2^{2^{n-2}} \dots g_{n-1}^{2^1} g_n$
 $T \leftarrow [2^n] T$ (double *n* times)
Evaluate g_{prod} at Q
 $f \leftarrow f^{2^n} \cdot g_{\text{prod}}(Q)$
end for

No more orange!!!

- Essentially, all we are doing is:
 - Loop unrolling Miller's algorithm (Granger, Page, Stam 2006) - supersingular characteristic 3 pairings
 - OR Miller's algorithm with window size *n*
 - OR loop parameter is written in 2^{*n*}-ary form, rather than binary form

• for
$$i = \lfloor \log_{2^n}(r) \rfloor - 1$$
 to 0 do
Compute $g_{\text{prod}} = g_1^{2^{n-1}} g_2^{2^{n-2}} \dots g_{n-1}^{2^1} g_n$
 $T \leftarrow [2^n] T$ (double *n* times)
Evaluate g_{prod} at Q
 $f \leftarrow f^{2^n} \cdot g_{\text{prod}}(Q)$

end for

- This work (1) vs. AfricaCrypt paper (2) difference is the way $g_{\rm prod}$ is computed
 - (2) presents lengthy reduced explicit formulas
 - potentially cumbersome to implement
 - $\bullet\,$ Herein we choose not to reduce $\rightarrow\,$ only slightly slower, but easier to implement

• For
$$n = 2$$
: $g_{\text{prod}} = (g_2 \cdot x + g_1 \cdot y + g_0)^2 \cdot (g'_2 \cdot x + g'_1 \cdot y + g'_0)$

- Just expand g_{prod} in the trivial sense
- In the paper we generalize above product to an inderterminant product of n powers of lines: g_{prod}(x, y) = (g₂·x+g₁·y+g₀)^{2ⁿ}·(ĝ₂·x+ĝ₁·y+ĝ₀)^{2ⁿ⁻¹}·...·(g'₂·x+g'₁·y+g'₀)
- Expand and reduce modulo $y^2 = x^3 + ax + b$ to give $g_{\text{prod}} = h(x) + \hat{h}(x) \cdot y$
- Carefully keep track of optimal operation count to evaluate expanded version... assuming inputs of (g₂, g₁, g₀) ∈ 𝔽_p tuples

• Cost to get from
$$g_{\text{prod}}$$
 to next
 $g'_{\text{prod}} = g_{\text{prod}}^2 \cdot (g_2 \cdot x + g_1 \cdot y + g_0)$ and generalize...

$$cost_n = [6(2^n - 1) + 2]em_1 + [(n + 1)(m + s\Omega) + 3n(\Omega - 6) + 3(2^n - 1)((2^{n+1} - 3)\Omega + 12)]m_1 + (1 + (n + 1)\Omega)m_k,$$

- Plug in paramters (k, e, Ω) and minimize over n
- If $cost_{n>0}$ significantly better than $cost_0$ then speedup
- k = 2ⁱ ⋅ 3^j → m_k = 3ⁱ ⋅ 5^jm₁ (all in terms of base field operations)

Operation counts and optimal *n*

			$\Omega = 1 \ (\mathbf{s} = \mathbf{m})$		$\Omega = 0.8 \ (s = 0.8 \ m)$		
k	D	m, s	$\mathbb{F}_{p^{u}} \subseteq \mathbb{F}_{p^{e}} \subset \mathbb{F}_{p^{k}}$	N = 0	Optimal N	N = 0	Optimal N
			,	count	count		count
12	3	2, 7	$\mathbb{F}_p \subset \mathbb{F}_{p^2} \subset \mathbb{F}_{p^{12}}$	103	1 96.5	92.6	1 85.5
14	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{7}}^{p} \subset \mathbb{F}_{p^{14}}^{p}$	155	1 148	140.4	1 132.8
16	1	2, 8	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{4}} \subset \mathbb{F}_{p^{16}}$	180	1 159.5	162.2	1 141.1
18	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{3}}^{r} \subset \mathbb{F}_{p^{18}}^{r}$	165	1 145.5	148.6	1 128.5
20	1	2, 8	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{10}} \subset \mathbb{F}_{p^{20}}$	254	1 217.5	229	1 191.9
22	1	2, 8	$\mathbb{F}_p \subset \mathbb{F}_{p^{11}} \subset \mathbb{F}_{p^{22}}$	428	1 363	386.8	1 321.2
24	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{4}} \subset \mathbb{F}_{p^{24}}$	287	1 239.5	258.6	1 210.5
26	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{13}} \subset \mathbb{F}_{p^{26}}$	581	1 482.5	525	1 425.9
28	1	2, 8	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{7}} \subset \mathbb{F}_{p^{28}}$	420	1 347	378.8	1 305.2
30	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{10}} \subset \mathbb{F}_{p^{30}}$	409	1 333.5	368.6	1 292.5
32	1	2, 8	$\mathbb{F}_p \subset \mathbb{F}_{p^8} \subset \mathbb{F}_{p^{32}}$	512	1 418.5	461.8	1 367.7
34	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{17}} \subset \mathbb{F}_{p^{34}}$	961	2 775.3	867.8	2 678.7
36	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p6} \subset \mathbb{F}_{p36}$	471	1 382.5	424.6	1 335.5
38	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{19}}^{P} \subset \mathbb{F}_{p^{38}}^{P}$	1187	2 936.7	1071.6	2 817.9
40	1	2, 8	$\mathbb{F}_{\rho} \subset \mathbb{F}_{\rho^{10}} \subset \mathbb{F}_{\rho^{40}}$	732	2 585.6	660.2	2 510.5
42	3	2, 7	$\mathbb{F}_p \subset \mathbb{F}_{p^7} \subset \mathbb{F}_{p^{42}}$	683	2 536.7	615.6	2 465.9
44	1	2, 8	$\mathbb{F}_{\rho} \subset \mathbb{F}_{\rho^{11}} \subset \mathbb{F}_{\rho^{44}}$	1220	2 916.3	1099.6	2 792.5
46	1	2, 8	$\mathbb{F}_p \subset \mathbb{F}_{p^{23}}^{r} \subset \mathbb{F}_{p^{46}}^{r}$	1712	2 1308.3	1544.8	2 1137.7
48	3	2, 7	$\mathbb{F}_p \subset \mathbb{F}_{p^8} \subset \mathbb{F}_{p^{48}}$	835	2 643.3	752.6	2 557.5
50	3	2, 7	$\mathbb{F}_{p} \subset \mathbb{F}_{p^{25}} \subset \mathbb{F}_{p^{50}}$	1073	1 881.5	970.2	1 778.1

Simple algorithm description

for $i = l_n - 2$ to 0 (loop parameter is base 2^n) Initialize $G(x, y) = h(x) + \hat{h}(x) \cdot y = 1$ for i = 1 to n Compute $[(g_{n,2}, g_{n,1}, g_{n,0}), T] =$ MillerDBL(T)Compute $G(x, y)^2 \cdot (g_{n,2} \cdot x + g_{n,1} \cdot y + g_{n,0})$ $f \leftarrow f^2$ end for Evaluate $G(x_0, y_0)$ $f \leftarrow f \cdot G$ if $m_i \neq 0$ Compute $[g, T] = MillerADD(T, [m_i]R)$ $f \leftarrow f \cdot f_{[m_i]R} \cdot g$ end if end for return f

- MillerDBL(T) and MillerADD(T) same as always
- Often code is minor amendment to standard DBL and ADD routines

- An alternative to the explicit formulas in AfricaCrypt paper
- Only slight speed loss, but implementation is much easier
- Old code could be modified with injection of conceptually simple subroutine

- Minor add on to results: Miller-lite (Tate-like) pairings still in use for Type 1,2,4 pairings. Compression not always available so (x_Q, y_Q) are full extension field elements \rightarrow future ePrint version
- Technique most powerful in context of fixed argument pairings, where P is a long-term secret key and precomputation is available in affine coordinate (http://eprint.iacr.org/2010/342 - "Fixed Argument Pairings")
- Actual implementations coming in future

Thanks