
Faster Pairing Computations on Curves with
High-Degree Twists

Craig Costello

craig.costello@qut.edu.au
Queensland University of Technology

PKC 2010

Joint work with Tanja Lange and Michael Naehrig

Craig Costello Faster Pairing Computations on Curves with High-Degree Twists



Applications of Pairings

The power of pairings: P ∈ G1 and Q ∈ G2

e(aP, bQ) = e(P,Q)ab = e(bP, aQ) ∈ GT

Bilinearity has brought us...

ID-based encryption

ID-based key agreement

short signatures

group signatures

ring signatures

certificateless encryption

hierarchical ID-based encryption

attribute-based encryption

searchable encryption

non-interactive proof systems

... + many more (e.g. see the proceedings)

Craig Costello Faster Pairings Computations



Motivation

Elliptic curves: many high-level optimizations thoroughly explored

loop shortening, endomorphism rings, group choices and
representations, friendly curves, and many more tricks...

AS FOR THIS WORK...

Standard (Weierstrass) representation E : y2 = x3 + ax + b

Optimal curve constructions produce curves with a = 0 or
b = 0 (high-degree twists also demand either constraint)

Want to minimize field operations for pairing computations on
these special shaped curves

Tate and ate formulas haven’t always been compatible

Previously: special curve models don’t necessarily allow for
ate pairing computation (Edwards, y2 = x3 + c2, etc)

Improve and collect all required explicit formulae (records)
together

Craig Costello Faster Pairings Computations



Group choices as Frobenius eigenspaces

The embedding degree k

Must form a degree k field extension of Fq to find two order r
subgroups

G1 = E [r ] ∩ ker(φq − [1]) = E (Fq)[r ], (the base field)

G2 = E [r ] ∩ ker(φq − [q]) ⊆ E (Fqk )[r ], (the full extension field)

The elements of G2 are much bigger than the elements of G1 (e.g. k = 12)

P ∈ G1: (341746248540, 710032105147)

Q ∈ G2: (502478767360 ∗ t11 + 1034075074191 ∗ t10 + 342970860051 ∗ t9 + 225764301423 ∗ t8 +

205398279920 ∗ t7 + 182600014119 ∗ t6 + 860891557473 ∗ t5 + 435210764901 ∗ t4 + 1043922075477 ∗ t3 +

566889113793 ∗ t2 + 150949917087 ∗ t + 21392569319, 654337640030 ∗ t11 + 744622505639 ∗ t10 +

1092264803801 ∗ t9 + 895826335783 ∗ t8 + 529466169391 ∗ t7 + 550511036767 ∗ t6 + 985244799144 ∗ t5 +

554170865706 ∗ t4 + 194564971321 ∗ t3 + 969736450831 ∗ t2 + 579122687888 ∗ t + 581111086076)

Craig Costello Faster Pairings Computations



The twisted curve

Original curve is E (Fq) : y2 = x3 + ax + b

Twisted curve is E ′(Fqk/d ): y2 = x3 + aω4x + bω6, ω ∈ Fqk

Possible degrees of twists are d ∈ {2, 3, 4, 6}
d > 2 requires a = 0 or b = 0

Twist Ψ : E ′ → E : (x ′, y ′)→ (x ′/ω2, y ′/ω3) induces
G′2 = E ′(Fqk/d )[r ] so that Ψ : G′2 → G2

Instead of working with Q ∈ G2, a lot of work can be done
with Q ′ ∈ G′2 defined over subfield Fqe = Fqk/d

P ∈ G1: (341746248540, 710032105147)

Q ∈ G′2 = Ψ−1(G2):
((917087150949 ∗ t + 25693192139) · ω2, (878885791226 ∗ t + 860765811110) · ω3)

Craig Costello Faster Pairings Computations



Tate vs. ate pairings

Tate pairing

er : G1 ×G2 → µr , (P,Q) 7→ fr ,P(Q)
qk−1

r .

Ate pairing

aT : G2 ×G1 → µr , (Q,P) 7→ fT ,Q(P)
qk−1

r .

Pairings require the computation of Miller functions fm,R(S)

Function fm,R is of degree m

Constructions require blog2 mc iterations of Miller’s algorithm

Most of the work is done in the first argument

Tate needs blog2 rc iters, ate needs blog2 T c iters, T � r

Trade-off is that more work in ate is done in larger field (G′2)

Craig Costello Faster Pairings Computations



Miller’s algorithm to compute fm,R(S)

m = (ml−1, . . . ,m1,m0)2 initialize: U = R, f = 1

1 for i = l − 2 to 0 do
a. i. Compute fDBL(U) in the doubling of U

ii. U ← [2]U //(DBL)
iii. f ← f 2 · fDBL(U)(S)

b. if mi = 1 then
i. Compute fADD(U,R) in the addition of U + R
ii. U ← U + R //(ADD)
iii. f ← f · fADD(U,R)(S)

2 f ← f (qk−1)/r .

Craig Costello Faster Pairings Computations



Weierstrass curves for fast pairings

Want to minimize effort of computing doubling U ← [2]U and
fDBL(U) together (analogous for addition)

Miller functions fDBL = lDBL/vDBL and fADD = lADD/vADD

are inherent in doubling and addition formulae

Weierstrass (cubic) elliptic curves give natural combination of
point operations and line computations

Craig Costello Faster Pairings Computations



Roles of arguments in Miller’s algorithm

1 for i = l − 2 to 0 do

a. i. Compute fDBL(U) in the doubling of U
ii. U ← [2]U, //(DBL)
iii. f ← f 2 · fDBL(U)(S),

b. if mi = 1 then
i. Compute fADD(U,R) in the addition of U + R
ii. U ← U + R //(ADD)
iii. f ← f · fADD(U,R)(S)

2 f ← f (qk−1)/r .

Step (iii): same complexity regardless of Tate or ate pairing.
Operations are in full extension field (costly) Fqk

Steps (i) and (ii): depend entirely on first argument R

R ∈ Fq for Tate... large k means (iii) dominates complexity

R ∈ Fqe for ate... complexities of (i) and (ii) grow at same rate as
(iii) as k grows

Craig Costello Faster Pairings Computations



Compatible Tate and ate formulas

Tate pairing keeps U on the same curve throughout entire
computation

Ate pairing twists U back and forth U ↔ U ′ between E and E ′

Formulas for pairing computation derived assuming same
curve equation... okay if E and E ′ both covered by curve
equation

Not okay if E and E ′ don’t both agree with equation
(Edwards, y2 = x3 + c2, etc)

a. i. Compute fDBL(U′) in the doubling of U ′ U ′ ∈ G′2 ⊂ E ′

ii. U ′ ← [2]U ′, U ′ ∈ G′2 ⊂ E ′

iii. f ← f 2 · fDBL(U)(S) S ∈ E , U = Ψ(U ′) ∈ G2 ⊂ E

b. if mi = 1 then

i. Compute fADD(U′,R) in the addition of U ′ + R U ′ ∈ G′2 ⊂ E ′

ii. U ′ ← U ′ + R U ′ ∈ G′2 ⊂ E ′

iii. f ← f · fADD(U,R)(S) S ∈ E , U = Ψ(U ′) ∈ G2 ⊂ E

Craig Costello Faster Pairings Computations



Ate pairing entirely on the twist

Thm 1+ Corr 2: Compute aT (Q ′,P ′) instead of aT (Ψ(Q ′),P)

(make twisted curve E ′ the curve under which the formulas are derived)

a. i. Compute fDBL(U′) in the doubling of U ′ U ′ ∈ G′2 ⊂ E ′

ii. U ′ ← [2]U ′, U ′ ∈ G′2 ⊂ E ′

iii. f ← f 2 · fDBL(U′)(S
′) U ′,S ′ ∈ G′2 ⊂ E ′

b. if mi = 1 then

i. Compute fADD(U′,R′) in the addition of U + R U ′ ∈ G′2 ⊂ E ′

ii. U ′ ← U ′ + R ′ U ′ ∈ G′2 ⊂ E ′

iii. f ← f · fADD(U′,R′)(S
′) U ′,S ′ ∈ G′2 ⊂ E ′

Consequences...

Computationally no different but allows Tate formulas (derived over
one curve) to be applied to ate pairing

Ate pairing now available on Edwards curves, y2 = x3 + c2, etc.

Analogous Tate-ate operation counts simplified on all curve shapes

Craig Costello Faster Pairings Computations



Curve shapes and twists

Fastest explicit formulas involves looking for best coordinates
(curve representation and projection)

Simplest (computable) expressions for projectified
combination of point operations and line computations

Prioritize doublings !!! (additions are rare)

Different degree twists require curves of different shapes

i. d = 2 quadratic twists: y2 = x3 + ax + b, but a = 0 or b = 0
are almost always optimal constructions anyway (compatible
with d = 4, 6 formulas)

ii. d = 3 cubic twists: y2 = x3 + b (Section 6)

iii. d = 4 quartic twists: y2 = x3 + ax (Section 4)

iv. d = 6 sextic twists: y2 = x3 + b (Section 5)

Craig Costello Faster Pairings Computations



Quartic twists and y 2 = x3 + ax

Affine formulas for (x3, y3) = [2]U = [2](x1, y1) simplify to

x3 = λ2 − 2x1,
y3 = λ(x1 − x3)− y1, where λ = (3x2

1 + a)/(2y1).

Success with weight-(1,2) coordinates: (x , y)=(X/Z , Y /Z 2)
Projective doubling (X3 : Y3 : Z3) = [2](X1 : Y1 : Z1)

X3 = (X 2
1 − aZ 2

1 )2,
Y3 = 2Y1(X 2

1 − aZ 2
1 )((X 2

1 + aZ 2
1 )2 + 4aZ 2

1 X 2
1 ),

Z3 = 4Y 2
1 .

Costs 1m + 6s + 1da (Current fastest in the EFD!!)
Formulas for line computation

f ′DBL(U)(S) = −2(3X 2
1 Z1 +aZ 3

1 ) ·xS + (4Y1Z1) ·yS + 2(X 3
1 −aZ 2

1 X1).

Additional cost of 1m + 2s

NEW RECORD: 2m + 8s + 1da

Previous record: 1m + 11s + 1da (Jacobian coorindates),
Ionica and Joux + Arene et al.

Craig Costello Faster Pairings Computations



Sextic twists and y 2 = x3 + b

Affine formulas for (x3, y3) = [2]U = [2](x1, y1) simplify to

x3 = λ2 − 2x1,
y3 = λ(x1 − x3)− y1, where λ = 3x2

1/(2y1).

Success with homogeneous projective coordinates

Projective doubling (X3 : Y3 : Z3) = [2](X1 : Y1 : Z1)

X3 = 2X1Y1(Y 2
1 − 9bZ 2

1 ),
Y3 = Y 4

1 + 18bY 2
1 Z 2

1 − 27b2Z 4
1 ,

Z3 = 8Y 3
1 Z1.

Formulas for line computation

f ′DBL(U)(S) = 3X 2
1 · xS − 2Y1Z1 · yS + 3bZ 2

1 − Y 2
1 .

NEW RECORD: 2m + 7s + 1db

Previous record: 3m + 8s + 1db (Jacobian coordinates), Arene et
al.

Craig Costello Faster Pairings Computations



Cubic twists and y 2 = x3 + b

Cubic twists require special treatment (denominator
elimination non-standard)

Affine line must be multiplied
f ′ADD(U,R)(S) = lADD(U,R)(S) · (x2

S + xSxU+R + x2
U+R)

Success with homogeneous projective coordinates

f ′′DBL(U)(S) = X 2
1 (Y 2

1 − 9bZ 2
1 ) · xS + 4X1Y

2
1 Z1 · x2

S

−6X 3
1 Y1 · yS + (Y 2

1 − bZ 2
1 )(Y 2

1 + 9bZ 2
1 ).

NEW RECORD: km1 + 6m + 7s + 1db

Previous record: 2km1 + 8m + 9s + 1db (also homog.
projective), El Mrabet. et al.

Craig Costello Faster Pairings Computations



Comparisons with previous best formulas...

Curve Best DBL Prev. DBL
Curve order Coord. ADD best ADD
Twist deg. mADD Coord. mADD

y2 = x3 + ax This work (2k/d)m1 + 2m + 8s + 1da Ionica & Joux (2k/d)m1 + 1m + 11s + 1da
- (2k/d)m1 + 12m + 7s + Arene et al. (2k/d)m1 + 10m + 6s

d = 2, 4 weight-1,2 (2k/d)m1 + 9m + 5s Jacobian (2k/d)m1 + 7m + 6s

y2 = x3 + c2 This work (2k/d)m1 + 3m + 5s Costello et al. (2k/d)m1 + 3m + 5s
3 | #E + prev (2k/d)m1 + 14m + 2s + 1dc (2k/d)m1 + 14m + 2s + 1dc
d = 2, 6 homog. (2k/d)m1 + 10m + 2s + 1dc homog. (2k/d)m1 + 11m + 2s + 1dc

y2 = x3 + b This work (2k/d)m1 + 2m + 7s + 1db Arene et al. (2k/d)m1 + 3m + 8s
3 - #E + prev (2k/d)m1 + 14m + 2s (2k/d)m1 + 10m + 6s
d = 2, 6 homog. (2k/d)m1 + 10m + 2s Jacobian (2k/d)m1 + 7m + 6s

y2 = x3 + b This work km1 + 6m + 7s + 1db El Mrabet et al. 2km1 + 8m + 9s + 1db
- km1 + 16m + 3s ADD/mADD

d = 3 homog. km1 + 13m + 3s homog. not reported

Also mk + sk in each doubling entry (mk for addition)

Cubic twists faster by over 4 field operations per standard
iteration

Quartic twists faster by 2 field operations per standard
iteration

Sextic twists faster by 2 field operations per standard iteration

Craig Costello Faster Pairings Computations



Tate and ate operation counts...

k Const. ϕ(k) ρ d mopt : Te : r Tate : ate Tate : ate amopt vs. ηTe
(log) s = m s = 0.8m

4 6.4 2 2.000 4 1 : 1 : 2 30 : 30 26.6 : 26.6 Even
6 6.6 2 2.000 6 1 : 1 : 2 40 : 41 36 : 36.6 ηTe (1.02)

8 6.10 4 1.500 4 3 : 3 : 4 68 : 88 61 : 77.8 ηTe (1.3)

9 6.6 6 1.333 3 1 : 3 : 6 72 : 124 65.6 : 112 amopt (1.7)

12 6.8 4 1.000 6 1 : 2 : 4 103 : 121 92.6 : 107.8 amopt (1.7)

16 6.11 8 1.250 4 1 : 4 : 8 180 : 260 162.2 : 229.4 amopt (2.8)

18 6.12 6 1.333 6 1 : 3 : 6 165 : 196 148.6 : 176 amopt (2.5)

24 6.6 8 1.250 6 1 : 4 : 8 286 : 359 258 : 319.4 amopt (3.2)

27 6.6 18 1.111 3 1 : 9 : 18 290 : 602 263.6 : 542 amopt (4.4)

32 6.13 16 1.125 4 1 : 8 : 16 512 : 772 461.8 : 680.2 amopt (5.3)

36 6.14 12 1.167 6 1 : 6 : 12 471 : 597 424.6 : 531 amopt (4.7)

48 6.6 16 1.125 6 1 : 8 : 16 834 : 1069 752 : 950.2 amopt (6.2)

Number of base field Fq multiplications per iteration

Optimal loop lengths assumed to give Tate/ate comparison
for Miller loop

Tate speedup is only significant for small embedding degrees

Faster formulas improve ate by speedup consistently for all k

Craig Costello Faster Pairings Computations


