Faster Pairing Computations on Curves with High-Degree Twists

Craig Costello
craig.costello@qut.edu.au
Queensland University of Technology

PKC 2010

Joint work with Tanja Lange and Michael Naehrig

Applications of Pairings

The power of pairings: $P \in \mathbb{G}_{1}$ and $Q \in \mathbb{G}_{2}$

$$
e(a P, b Q)=e(P, Q)^{a b}=e(b P, a Q) \in \mathbb{G}_{T}
$$

Bilinearity has brought us...

- ID-based encryption
- ID-based key agreement
- short signatures
- group signatures
- ring signatures
- certificateless encryption
- hierarchical ID-based encryption
- attribute-based encryption
- searchable encryption
- non-interactive proof systems
- ... + many more (e.g. see the proceedings)

Motivation

Elliptic curves: many high-level optimizations thoroughly explored

loop shortening, endomorphism rings, group choices and representations, friendly curves, and many more tricks...

AS FOR THIS WORK...

- Standard (Weierstrass) representation $E: y^{2}=x^{3}+a x+b$
- Optimal curve constructions produce curves with $a=0$ or $b=0$ (high-degree twists also demand either constraint)
- Want to minimize field operations for pairing computations on these special shaped curves
- Tate and ate formulas haven't always been compatible
- Previously: special curve models don't necessarily allow for ate pairing computation (Edwards, $y^{2}=x^{3}+c^{2}$, etc)
- Improve and collect all required explicit formulae (records) together

Group choices as Frobenius eigenspaces

The embedding degree k

Must form a degree k field extension of \mathbb{F}_{q} to find two order r subgroups
$\mathbb{G}_{1}=E[r] \cap \operatorname{ker}\left(\phi_{q}-[1]\right)=E\left(\mathbb{F}_{q}\right)[r], \quad$ (the base field)
$\mathbb{G}_{2}=E[r] \cap \operatorname{ker}\left(\phi_{q}-[q]\right) \subseteq E\left(\mathbb{F}_{q^{k}}\right)[r], \quad$ (the full extension field)
The elements of \mathbb{G}_{2} are much bigger than the elements of \mathbb{G}_{1} (e.g. $k=12$)
$P \in \mathbb{G}_{1}:(341746248540,710032105147)$
$Q \in \mathbb{G}_{2}:\left(502478767360 * t^{11}+1034075074191 * t^{10}+342970860051 * t^{9}+225764301423 * t^{8}+\right.$ $205398279920 * t^{7}+182600014119 * t^{6}+860891557473 * t^{5}+435210764901 * t^{4}+1043922075477 * t^{3}+$
$566889113793 * t^{2}+150949917087 * t+21392569319,654337640030 * t^{11}+744622505639 * t^{10}+$
$1092264803801 * t^{9}+895826335783 * t^{8}+529466169391 * t^{7}+550511036767 * t^{6}+985244799144 * t^{5}+$
$554170865706 * t^{4}+194564971321 * t^{3}+969736450831 * t^{2}+579122687888 * t+581111086076$)

- Original curve is $E\left(\mathbb{F}_{q}\right): y^{2}=x^{3}+a x+b$
- Twisted curve is $E^{\prime}\left(\mathbb{F}_{q^{k / d}}\right): y^{2}=x^{3}+a \omega^{4} x+b \omega^{6}, \omega \in \mathbb{F}_{q^{k}}$
- Possible degrees of twists are $d \in\{2,3,4,6\}$
- $d>2$ requires $a=0$ or $b=0$
- Twist $\Psi: E^{\prime} \rightarrow E:\left(x^{\prime}, y^{\prime}\right) \rightarrow\left(x^{\prime} / \omega^{2}, y^{\prime} / \omega^{3}\right)$ induces $\mathbb{G}_{2}^{\prime}=E^{\prime}\left(\mathbb{F}_{q^{k / d}}\right)[r]$ so that $\Psi: \mathbb{G}_{2}^{\prime} \rightarrow \mathbb{G}_{2}$
- Instead of working with $Q \in \mathbb{G}_{2}$, a lot of work can be done with $Q^{\prime} \in \mathbb{G}_{2}^{\prime}$ defined over subfield $\mathbb{F}_{q^{e}}=\mathbb{F}_{q^{k / d}}$
$P \in \mathbb{G}_{1}:(341746245540,710032105147)$
$Q \in \mathbb{G}_{2}^{\prime}=\Psi^{-1}\left(\mathbb{G}_{2}\right):$
$\left((917087150949 * t+25693192139) \cdot \omega^{2},(878885791226 * t+860755811110) \cdot \omega^{3}\right)$

Tate vs. ate pairings

Tate pairing

$$
e_{r}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mu_{r},(P, Q) \mapsto f_{r, P}(Q)^{\frac{q^{k}-1}{r}} .
$$

Ate pairing

$$
a_{T}: \mathbb{G}_{2} \times \mathbb{G}_{1} \rightarrow \mu_{r},(Q, P) \mapsto f_{T, Q}(P)^{\frac{q^{k}-1}{r}} .
$$

- Pairings require the computation of Miller functions $f_{m, R}(S)$
- Function $f_{m, R}$ is of degree m
- Constructions require $\left\lfloor\log _{2} m\right\rfloor$ iterations of Miller's algorithm
- Most of the work is done in the first argument
- Tate needs $\left\lfloor\log _{2} r\right\rfloor$ iters, ate needs $\left\lfloor\log _{2} T\right\rfloor$ iters, $T \ll r$
- Trade-off is that more work in ate is done in larger field $\left(\mathbb{G}_{2}^{\prime}\right)$

Miller's algorithm to compute $f_{m, R}(S)$

$m=\left(m_{l-1}, \ldots, m_{1}, m_{0}\right)_{2}$ initialize: $U=R, f=1$
(1) for $i=I-2$ to 0 do
a. i. Compute $f_{\mathrm{DBL}(U)}$ in the doubling of U
ii. $U \leftarrow[2] U$
iii. $f \leftarrow f^{2} \cdot f_{\operatorname{DBL}(U)}(S)$
b. if $m_{i}=1$ then
i. Compute $f_{\mathrm{ADD}(U, R)}$ in the addition of $U+R$
ii. $U \leftarrow U+R$
iii. $f \leftarrow f \cdot f_{\mathrm{ADD}(U, R)}(S)$
(2) $f \leftarrow f^{\left(q^{k}-1\right) / r}$.

Weierstrass curves for fast pairings

- Want to minimize effort of computing doubling $U \leftarrow[2] U$ and $f_{\mathrm{DBL}(U)}$ together (analogous for addition)
- Miller functions $f_{\mathrm{DBL}}=l_{\mathrm{DBL}} / v_{\mathrm{DBL}}$ and $f_{\mathrm{ADD}}=l_{\mathrm{ADD}} / v_{\mathrm{ADD}}$ are inherent in doubling and addition formulae
- Weierstrass (cubic) elliptic curves give natural combination of point operations and line computations

Roles of arguments in Miller's algorithm

(1) for $i=1-2$ to 0 do
a. i. Compute $f_{\operatorname{DBL}(U)}$ in the doubling of U
ii. $U \leftarrow[2] U$,
//(DBL)
iii. $f \leftarrow f^{2} \cdot f_{\mathrm{DBL}(U)}(S)$,
b. if $m_{i}=1$ then
i. Compute $f_{\mathrm{ADD}(U, R)}$ in the addition of $U+R$
ii. $U \leftarrow U+R$
iii. $f \leftarrow f \cdot f_{\operatorname{ADD}(U, R)}(S)$
(2) $f \leftarrow f^{\left(q^{k}-1\right) / r}$.

- Step (iii): same complexity regardless of Tate or ate pairing. Operations are in full extension field (costly) $\mathbb{F}_{q^{k}}$
- Steps (i) and (ii): depend entirely on first argument R
- $R \in \mathbb{F}_{q}$ for Tate... large k means (iii) dominates complexity
- $R \in \mathbb{F}_{q^{e}}$ for ate... complexities of (i) and (ii) grow at same rate as (iii) as k grows

Compatible Tate and ate formulas

- Tate pairing keeps U on the same curve throughout entire computation
- Ate pairing twists U back and forth $U \leftrightarrow U^{\prime}$ between E and E^{\prime}
- Formulas for pairing computation derived assuming same curve equation... okay if E and E^{\prime} both covered by curve equation
- Not okay if E and E^{\prime} don't both agree with equation (Edwards, $y^{2}=x^{3}+c^{2}$, etc)
a. i. Compute $f_{\mathrm{DBL}\left(U^{\prime}\right)}$ in the doubling of U^{\prime}
$U^{\prime} \in \mathbb{G}_{2}^{\prime} \subset E^{\prime}$
ii. $U^{\prime} \leftarrow[2] U^{\prime}, \quad U^{\prime} \in \mathbb{G}_{2}^{\prime} \subset E^{\prime}$
iii. $f \leftarrow f^{2} \cdot f_{\operatorname{DBL}(U)}(S) \quad S \in E, U=\Psi\left(U^{\prime}\right) \in \mathbb{G}_{2} \subset E$
b. if $m_{i}=1$ then
i. Compute $f_{\mathrm{ADD}\left(U^{\prime}, R\right)}$ in the addition of $U^{\prime}+R \quad U^{\prime} \in \mathbb{G}_{2}^{\prime} \subset E^{\prime}$
ii. $U^{\prime} \leftarrow U^{\prime}+R$
$U^{\prime} \in \mathbb{G}_{2}^{\prime} \subset E^{\prime}$
iii. $f \leftarrow f \cdot f_{\operatorname{ADD}(U, R)}(S)$
$S \in E, U=\Psi\left(U^{\prime}\right) \in \mathbb{G}_{2} \subset E$

Ate pairing entirely on the twist

Thm 1+Corr 2: Compute $a_{T}\left(Q^{\prime}, P^{\prime}\right)$ instead of $a_{T}\left(\Psi\left(Q^{\prime}\right), P\right)$ (make twisted curve E^{\prime} the curve under which the formulas are derived)
a. i. Compute $f_{\mathrm{DBL}\left(U^{\prime}\right)}$ in the doubling of U^{\prime}
ii. $U^{\prime} \leftarrow[2] U^{\prime}$,
iii. $f \leftarrow f^{2} \cdot f_{\operatorname{DBL}\left(U^{\prime}\right)}\left(S^{\prime}\right)$
b. if $m_{i}=1$ then
i. Compute $f_{\operatorname{ADD}\left(U^{\prime}, R^{\prime}\right)}$ in the addition of $U+R$
ii. $U^{\prime} \leftarrow U^{\prime}+R^{\prime}$
iii. $f \leftarrow f \cdot f_{\mathrm{ADD}\left(U^{\prime}, R^{\prime}\right)}\left(S^{\prime}\right)$

$$
\begin{aligned}
U^{\prime} & \in \mathbb{G}_{2}^{\prime} \subset E^{\prime} \\
U^{\prime} & \in \mathbb{G}_{2}^{\prime} \subset E^{\prime} \\
U^{\prime}, S^{\prime} & \in \mathbb{G}_{2}^{\prime} \subset E^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
U^{\prime} & \in \mathbb{G}_{2}^{\prime} \subset E^{\prime} \\
U^{\prime} & \in \mathbb{G}_{2}^{\prime} \subset E^{\prime} \\
U^{\prime}, S^{\prime} & \in \mathbb{G}_{2}^{\prime} \subset E^{\prime}
\end{aligned}
$$

Consequences...

- Computationally no different but allows Tate formulas (derived over one curve) to be applied to ate pairing
- Ate pairing now available on Edwards curves, $y^{2}=x^{3}+c^{2}$, etc.
- Analogous Tate-ate operation counts simplified on all curve shapes

Curve shapes and twists

- Fastest explicit formulas involves looking for best coordinates (curve representation and projection)
- Simplest (computable) expressions for projectified combination of point operations and line computations
- Prioritize doublings !!! (additions are rare)
- Different degree twists require curves of different shapes
i. $d=2$ quadratic twists: $y^{2}=x^{3}+a x+b$, but $a=0$ or $b=0$ are almost always optimal constructions anyway (compatible with $d=4,6$ formulas)
ii. $d=3$ cubic twists: $y^{2}=x^{3}+b$ (Section 6)
iii. $d=4$ quartic twists: $y^{2}=x^{3}+a x$ (Section 4)
iv. $d=6$ sextic twists: $y^{2}=x^{3}+b($ Section 5$)$

Quartic twists and $y^{2}=x^{3}+a x$

- Affine formulas for $\left(x_{3}, y_{3}\right)=[2] U=[2]\left(x_{1}, y_{1}\right)$ simplify to

$$
\begin{aligned}
& x_{3}=\lambda^{2}-2 x_{1}, \\
& y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}, \quad \text { where } \lambda=\left(3 x_{1}^{2}+a\right) /\left(2 y_{1}\right) .
\end{aligned}
$$

- Success with weight- $(1,2)$ coordinates: $(x, y)=\left(X / Z, Y / Z^{2}\right)$
- Projective doubling $\left(X_{3}: Y_{3}: Z_{3}\right)=[2]\left(X_{1}: Y_{1}: Z_{1}\right)$
$X_{3}=\left(X_{1}^{2}-a Z_{1}^{2}\right)^{2}$,
$Y_{3}=2 Y_{1}\left(X_{1}^{2}-a Z_{1}^{2}\right)\left(\left(X_{1}^{2}+a Z_{1}^{2}\right)^{2}+4 a Z_{1}^{2} X_{1}^{2}\right)$,
$Z_{3}=4 Y_{1}^{2}$.
Costs $\mathbf{1 m}+6 \mathbf{s}+1 \mathbf{d}_{a}$ (Current fastest in the EFD!!)
- Formulas for line computation
$f_{\mathrm{DBL}(U)}^{\prime}(S)=-2\left(3 X_{1}^{2} Z_{1}+a Z_{1}^{3}\right) \cdot x_{S}+\left(4 Y_{1} Z_{1}\right) \cdot y_{S}+2\left(X_{1}^{3}-a Z_{1}^{2} X_{1}\right)$.
Additional cost of $\mathbf{1 m}+2 \mathbf{s}$
- NEW RECORD: $2 \mathbf{m}+8 \mathbf{s}+1 \mathbf{d}_{a}$
- Previous record: $1 \mathbf{m}+11 \mathbf{s}+1 \mathbf{d}_{a}$ (Jacobian coorindates),
lonica and Joux + Arene et al.

Sextic twists and $y^{2}=x^{3}+b$

- Affine formulas for $\left(x_{3}, y_{3}\right)=[2] U=[2]\left(x_{1}, y_{1}\right)$ simplify to

$$
\begin{aligned}
& x_{3}=\lambda^{2}-2 x_{1}, \\
& y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}, \quad \text { where } \lambda=3 x_{1}^{2} /\left(2 y_{1}\right) .
\end{aligned}
$$

- Success with homogeneous projective coordinates
- Projective doubling $\left(X_{3}: Y_{3}: Z_{3}\right)=[2]\left(X_{1}: Y_{1}: Z_{1}\right)$

$$
\begin{aligned}
& X_{3}=2 X_{1} Y_{1}\left(Y_{1}^{2}-9 b Z_{1}^{2}\right), \\
& Y_{3}=Y_{1}^{4}+18 b Y_{1}^{2} Z_{1}^{2}-27 b^{2} Z_{1}^{4}, \\
& Z_{3}=8 Y_{1}^{3} Z_{1} .
\end{aligned}
$$

- Formulas for line computation

$$
f_{\mathrm{DBL}(U)}^{\prime}(S)=3 X_{1}^{2} \cdot x_{S}-2 Y_{1} Z_{1} \cdot y_{S}+3 b Z_{1}^{2}-Y_{1}^{2} .
$$

- NEW RECORD: $2 \mathbf{m}+7 \mathbf{s}+1 \mathbf{d}_{b}$
- Previous record: $3 \mathbf{m}+8 \mathbf{s}+1 \mathbf{d}_{b}$ (Jacobian coordinates), Arene et al.

Cubic twists and $y^{2}=x^{3}+b$

- Cubic twists require special treatment (denominator elimination non-standard)
- Affine line must be multiplied $f_{\mathrm{ADD}(U, R)}^{\prime}(S)=I_{\mathrm{ADD}(U, R)}(S) \cdot\left(x_{S}^{2}+x_{S} x_{U+R}+x_{U+R}^{2}\right)$
- Success with homogeneous projective coordinates
- $f_{\mathrm{DBL}(U)}^{\prime \prime}(S)=X_{1}^{2}\left(Y_{1}^{2}-9 b Z_{1}^{2}\right) \cdot x_{S}+4 X_{1} Y_{1}^{2} Z_{1} \cdot x_{S}^{2}$

$$
-6 X_{1}^{3} Y_{1} \cdot y_{S}+\left(Y_{1}^{2}-b Z_{1}^{2}\right)\left(Y_{1}^{2}+9 b Z_{1}^{2}\right)
$$

- NEW RECORD: $k \mathbf{m}_{1}+6 \mathbf{m}+7 \mathbf{s}+1 \mathbf{d}_{b}$
- Previous record: $2 k \mathbf{m}_{1}+8 \mathbf{m}+9 \mathbf{s}+1 \mathbf{d}_{b}$ (also homog. projective), El Mrabet. et al.

Comparisons with previous best formulas...

Curve Curve order Twist deg.	Best Coord.	DBL ADD mADD	Prev. best Coord.	$\begin{gathered} \mathrm{DBL} \\ \mathrm{ADD} \\ \mathrm{mADD} \end{gathered}$
$\begin{gathered} y^{2}=x^{3}+a x \\ - \\ d=2,4 \end{gathered}$	This work weight-1,2	$\begin{gathered} (2 k / d) \mathbf{m}_{1}+2 \mathbf{m}+8 \mathbf{s}+1 \mathbf{d}_{a} \\ (2 k / d) \mathbf{m}_{1}+12 \mathbf{m}+7 \mathbf{s} \\ (2 k / d) \mathbf{m}_{1}+9 \mathbf{m}+5 \mathbf{s} \\ \hline \end{gathered}$	Ionica \& Joux + Arene et al. Jacobian	$\begin{gathered} (2 k / d) \mathbf{m}_{1}+1 \mathbf{m}+11 \mathbf{s}+1 \mathbf{d}_{a} \\ (2 k / d) \mathbf{m}_{1}+10 \mathbf{m}+6 \mathbf{s} \\ (2 k / d) \mathbf{m}_{1}+7 \mathbf{m}+6 \mathbf{s} \\ \hline \end{gathered}$
$\begin{gathered} y^{2}=x^{3}+c^{2} \\ 3 \mid \# E \\ d=2,6 \end{gathered}$	This work + prev homog.	$\begin{gathered} (2 k / d) \mathbf{m}_{1}+3 \mathbf{m}+5 \mathbf{s} \\ (2 k / d) \mathbf{m}_{1}+14 \mathbf{m}+2 \mathbf{s}+1 \mathbf{d}_{c} \\ (2 k / d) \mathbf{m}_{1}+10 \mathbf{m}+2 \mathbf{s}+1 \mathbf{d}_{c} \end{gathered}$	Costello et al. homog.	$\begin{gathered} (2 k / d) \mathbf{m}_{1}+3 \mathbf{m}+5 \mathbf{s} \\ (2 k / d) \mathbf{m}_{1}+14 \mathbf{m}+2 \mathbf{s}+1 \mathbf{d}_{c} \\ (2 k / d) \mathbf{m}_{1}+11 \mathbf{m}+2 \mathbf{s}+1 \mathbf{d}_{c} \end{gathered}$
$\begin{gathered} y^{2}=x^{3}+b \\ 3 \nmid \# E \\ d=2,6 \end{gathered}$	This work + prev homog.	$\begin{gathered} (2 k / d) \mathbf{m}_{1}+2 \boldsymbol{m}+7 \mathbf{s}+1 \mathbf{d}_{b} \\ (2 k / d) \mathbf{m}_{1}+14 \mathbf{m}+2 \mathbf{s} \\ (2 k / d) \mathbf{m}_{1}+10 \boldsymbol{m}+2 \mathbf{s} \end{gathered}$	Arene et al. Jacobian	$\begin{gathered} (2 k / d) \mathbf{m}_{1}+3 \mathbf{m}+8 \mathbf{s} \\ (2 k / d) \mathbf{m}_{1}+10 \mathbf{m}+6 s \\ (2 k / d) \mathbf{m}_{1}+7 \mathbf{m}+6 \mathbf{s} \\ \hline \end{gathered}$
$\begin{gathered} y^{2}=x^{3}+b \\ - \\ d=3 \\ \hline \end{gathered}$	This work homog.	$\begin{gathered} k \mathbf{m}_{1}+6 \mathbf{m}+7 \mathbf{s}+1 \mathbf{d}_{b} \\ k \mathbf{m}_{1}+16 \mathbf{m}+3 \mathbf{s} \\ k \mathbf{m}_{1}+13 \mathbf{m}+3 \mathbf{s} \\ \hline \end{gathered}$	El Mrabet et al. homog.	$\begin{gathered} 2 k \mathbf{m}_{1}+8 \mathbf{m}+9 \mathrm{~s}+1 \mathbf{d}_{b} \\ A D D / m A D D \\ \text { not reported } \\ \hline \end{gathered}$

- Also $\mathbf{m}_{k}+\mathbf{s}_{k}$ in each doubling entry (\mathbf{m}_{k} for addition)
- Cubic twists faster by over 4 field operations per standard iteration
- Quartic twists faster by 2 field operations per standard iteration
- Sextic twists faster by 2 field operations per standard iteration

k	Const.	$\varphi(k)$	ρ	d	$\begin{gathered} m_{o p t}: T_{e}: r \\ (\log) \end{gathered}$	$\begin{gathered} \text { Tate : ate } \\ \mathbf{s}=\mathbf{m} \end{gathered}$	Tate : ate $\mathbf{s}=0.8 \mathbf{m}$	$a_{m_{o p t}}$ vs. $\eta_{T_{e}}$
4	6.4	2	2.000	4	1:1:2	30:30	26.6:26.6	Even
6	6.6	2	2.000	6	1:1:2	40: 41	36:36.6	$\eta_{T_{e}}$ (1.02)
8	6.10	4	1.500	4	3:3:4	68:88	61:77.8	$\eta_{T_{e}}$ (1.3)
9	6.6	6	1.333	3	1:3:6	72: 124	65.6: 112	$a_{m_{\text {opt }}}$ (1.7)
12	6.8	4	1.000	6	1:2:4	103: 121	92.6 : 107.8	$a_{m_{\text {opt }}}$ (1.7)
16	6.11	8	1.250	4	1:4:8	180 : 260	162.2 : 229.4	$a_{m_{\text {opt }}}(2.8)$
18	6.12	6	1.333	6	1:3:6	165: 196	148.6 : 176	$a_{m_{\text {opt }}}$ (2.5)
24	6.6	8	1.250	6	1:4:8	286:359	258:319.4	$a_{m_{\text {opt }}}$ (3.2)
27	6.6	18	1.111	3	1:9:18	290: 602	263.6:542	$a_{m_{\text {opt }}}$ (4.4)
32	6.13	16	1.125	4	1:8:16	512: 772	461.8: 680.2	$a_{m_{\text {opt }}}$ (5.3)
36	6.14	12	1.167	6	1:6:12	471:597	424.6 : 531	$a_{m_{\text {opt }}}$ (4.7)
48	6.6	16	1.125	6	1:8:16	834:1069	752:950.2	$a_{m_{\text {opt }}}$ (6.2)

- Number of base field \mathbb{F}_{q} multiplications per iteration
- Optimal loop lengths assumed to give Tate/ate comparison for Miller loop
- Tate speedup is only significant for small embedding degrees
- Faster formulas improve ate by speedup consistently for all k

