# Faster Pairing Computations on Curves with High-Degree Twists

### Craig Costello

#### craig.costello@qut.edu.au Queensland University of Technology

#### PKC 2010

#### Joint work with Tanja Lange and Michael Naehrig

# Applications of Pairings

#### The power of pairings: $P \in \mathbb{G}_1$ and $Q \in \mathbb{G}_2$

$$e(aP, bQ) = e(P, Q)^{ab} = e(bP, aQ) \in \mathbb{G}_T$$

Bilinearity has brought us...

- ID-based encryption
- ID-based key agreement
- short signatures
- group signatures
- ring signatures
- certificateless encryption
- hierarchical ID-based encryption
- attribute-based encryption
- searchable encryption
- non-interactive proof systems
- ... + many more (e.g. see the proceedings)

### Elliptic curves: many high-level optimizations thoroughly explored

loop shortening, endomorphism rings, group choices and representations, friendly curves, and many more tricks...

AS FOR THIS WORK ...

- Standard (Weierstrass) representation  $E: y^2 = x^3 + ax + b$
- Optimal curve constructions produce curves with a = 0 or b = 0 (high-degree twists also demand either constraint)
- Want to minimize field operations for pairing computations on these special shaped curves
- Tate and ate formulas haven't always been compatible
- Previously: special curve models don't necessarily allow for ate pairing computation (Edwards,  $y^2 = x^3 + c^2$ , etc)
- Improve and collect all required explicit formulae (records) together

#### The embedding degree k

Must form a degree k field extension of  $\mathbb{F}_q$  to find two order r subgroups

$$\mathbb{G}_1 = E[r] \cap \ker(\phi_q - [1]) = E(\mathbb{F}_q)[r],$$
 (the base field)

 $\mathbb{G}_2 = E[r] \cap \ker(\phi_q - [q]) \subseteq E(\mathbb{F}_{q^k})[r], \quad \text{(the full extension field)}$ 

The elements of  $\mathbb{G}_2$  are much bigger than the elements of  $\mathbb{G}_1$  (e.g. k = 12)

$$P \in \mathbb{G}_1: (341746248540, 710032105147)$$

$$Q \in \mathbb{G}_2: (502478767360 * t^{11} + 1034075074191 * t^{10} + 342970860051 * t^9 + 225764301423 * t^8 + 205398279920 * t^7 + 182600014119 * t^6 + 860891557473 * t^5 + 435210764901 * t^4 + 1043922075477 * t^3 + 566889113793 * t^2 + 150949917087 * t + 21392569319, 654337640030 * t^{11} + 744622505639 * t^{10} + 1092264803801 * t^9 + 895826335783 * t^8 + 529466169391 * t^7 + 550511036767 * t^6 + 985244799144 * t^5 + 554170865706 * t^4 + 194564971321 * t^3 + 969736450831 * t^2 + 579122687888 * t + 581111086076)$$

### The twisted curve

- Original curve is  $E(\mathbb{F}_q): y^2 = x^3 + ax + b$
- Twisted curve is  $E'(\mathbb{F}_{q^{k/d}})$ :  $y^2 = x^3 + a\omega^4 x + b\omega^6$ ,  $\omega \in \mathbb{F}_{q^k}$
- Possible degrees of twists are  $d \in \{2, 3, 4, 6\}$
- d > 2 requires a = 0 or b = 0
- Twist  $\Psi: E' \to E: (x', y') \to (x'/\omega^2, y'/\omega^3)$  induces  $\mathbb{G}'_2 = E'(\mathbb{F}_{q^{k/d}})[r]$  so that  $\Psi: \mathbb{G}'_2 \to \mathbb{G}_2$
- Instead of working with  $Q \in \mathbb{G}_2$ , a lot of work can be done with  $Q' \in \mathbb{G}'_2$  defined over subfield  $\mathbb{F}_{q^e} = \mathbb{F}_{q^{k/d}}$

 $P \in \mathbb{G}_1$ : (341746248540, 710032105147) $Q \in \mathbb{G}_2' = \Psi^{-1}(\mathbb{G}_2)$ :

 $((917087150949 * t + 25693192139) \cdot \omega^2, (878885791226 * t + 860765811110) \cdot \omega^3)$ 

### Tate vs. ate pairings

#### Tate pairing

$$e_r: \mathbb{G}_1 \times \mathbb{G}_2 \to \mu_r, \ (P, Q) \mapsto f_{r,P}(Q)^{\frac{q^k-1}{r}}.$$

#### Ate pairing

$$a_T: \mathbb{G}_2 \times \mathbb{G}_1 \to \mu_r, \ (Q, P) \mapsto f_{T,Q}(P)^{\frac{q^k-1}{r}}.$$

- Pairings require the computation of Miller functions  $f_{m,R}(S)$
- Function  $f_{m,R}$  is of degree m
- Constructions require  $\lfloor \log_2 m \rfloor$  iterations of Miller's algorithm
- Most of the work is done in the first argument
- Tate needs  $\lfloor \log_2 r \rfloor$  iters, ate needs  $\lfloor \log_2 T \rfloor$  iters,  $T \ll r$
- Trade-off is that more work in ate is done in larger field ( $\mathbb{G}_2'$ )

# Miller's algorithm to compute $f_{m,R}(S)$

$$m = (m_{l-1}, \dots, m_1, m_0)_2 \text{ initialize: } U = R, f = 1$$
for  $i = l - 2$  to 0 do
a.
i. Compute  $f_{DBL(U)}$  in the doubling of  $U$ 
ii.  $U \leftarrow [2]U$ 
iii.  $f \leftarrow f^2 \cdot f_{DBL(U)}(S)$ 
b. if  $m_i = 1$  then
i. Compute  $f_{ADD(U,R)}$  in the addition of  $U + R$ 
ii.  $U \leftarrow U + R$ 
iii.  $f \leftarrow f \cdot f_{ADD(U,R)}(S)$ 
f  $\leftarrow f^{(q^k-1)/r}$ .

### Weierstrass curves for fast pairings

- Want to minimize effort of computing doubling  $U \leftarrow [2]U$  and  $f_{\text{DBL}(U)}$  together (analogous for addition)
- Miller functions  $f_{\rm DBL} = l_{\rm DBL}/v_{\rm DBL}$  and  $f_{\rm ADD} = l_{\rm ADD}/v_{\rm ADD}$ are inherent in doubling and addition formulae
- Weierstrass (cubic) elliptic curves give natural combination of point operations and **line** computations



## Roles of arguments in Miller's algorithm

• for i = l - 2 to 0 do

a. i. Compute 
$$f_{DBL(U)}$$
 in the doubling of  $U$   
ii.  $U \leftarrow [2]U$ , //(DBL)  
iii.  $f \leftarrow f^2 \cdot f_{DBL(U)}(S)$ ,  
b. if  $m_i = 1$  then  
i. Compute  $f_{ADD(U,R)}$  in the addition of  $U + R$   
ii.  $U \leftarrow U + R$  //(ADD)  
iii.  $f \leftarrow f \cdot f_{ADD(U,R)}(S)$ 

$$\ 2 \ f \leftarrow f^{(q^k-1)/r}.$$

- Step (iii): same complexity regardless of Tate or ate pairing. Operations are in full extension field (costly) F<sub>q<sup>k</sup></sub>
- Steps (i) and (ii): depend entirely on first argument R
- $R \in \mathbb{F}_q$  for Tate... large k means (iii) dominates complexity
- $R \in \mathbb{F}_{q^e}$  for ate... complexities of (i) and (ii) grow at same rate as (iii) as k grows

## Compatible Tate and ate formulas

- Tate pairing keeps *U* on the same curve throughout entire computation
- Ate pairing twists U back and forth  $U \leftrightarrow U'$  between E and E'
- Formulas for pairing computation derived assuming same curve equation... okay if *E* and *E'* both covered by curve equation
- Not okay if E and E' don't both agree with equation (Edwards,  $y^2 = x^3 + c^2$ , etc)
- a. i. Compute  $f_{\text{DBL}(U')}$  in the doubling of U'  $U' \in \mathbb{G}'_2 \subset E'$ ii.  $U' \leftarrow [2]U'$ ,  $U' \in \mathbb{G}'_2 \subset E'$ iii.  $f \leftarrow f^2 \cdot f_{\text{DBL}(U)}(S)$   $S \in E, U = \Psi(U') \in \mathbb{G}_2 \subset E$

b. if  $m_i = 1$  then

i. Compute  $f_{ADD(U',R)}$  in the addition of U' + R  $U' \in \mathbb{G}'_2 \subset E'$ ii.  $U' \leftarrow U' + R$   $U' \in \mathbb{G}'_2 \subset E'$ iii.  $f \leftarrow f \cdot f_{ADD(U,R)}(S)$   $S \in E, U = \Psi(U') \in \mathbb{G}_2 \subset E$ 

### Ate pairing entirely on the twist

Thm 1+ Corr 2: Compute  $a_T(Q', P')$  instead of  $a_T(\Psi(Q'), P)$  (make twisted curve E' the curve under which the formulas are derived)

- a. i. Compute  $f_{\text{DBL}(U')}$  in the doubling of U'ii.  $U' \leftarrow [2]U'$ , iii.  $f \leftarrow f^2 \cdot f_{\text{DBL}(U')}(S')$   $U' \in \mathbb{G}'_2 \subset E'$  $U', S' \in \mathbb{G}'_2 \subset E'$
- b. if  $m_i = 1$  then
  - i. Compute  $f_{ADD(U',R')}$  in the addition of U + Rii.  $U' \leftarrow U' + R'$ iii.  $f \leftarrow f \cdot f_{ADD(U',R')}(S')$   $U' \in \mathbb{G}'_2 \subset E'$  $U', S' \in \mathbb{G}'_2 \subset E'$

Consequences...

- Computationally no different but allows Tate formulas (derived over one curve) to be applied to ate pairing
- Ate pairing now available on Edwards curves,  $y^2 = x^3 + c^2$ , etc.
- Analogous Tate-ate operation counts simplified on all curve shapes

### Curve shapes and twists

- Fastest explicit formulas involves looking for best coordinates (curve representation and projection)
- Simplest (computable) expressions for projectified combination of point operations and line computations
- Prioritize doublings !!! (additions are rare)
- Different degree twists require curves of different shapes

- i. d = 2 quadratic twists:  $y^2 = x^3 + ax + b$ , but a = 0 or b = 0 are almost always optimal constructions anyway (compatible with d = 4, 6 formulas)
- ii. d = 3 cubic twists:  $y^2 = x^3 + b$  (Section 6)

iii. 
$$d = 4$$
 quartic twists:  $y^2 = x^3 + ax$  (Section 4)

iv. 
$$d = 6$$
 sextic twists:  $y^2 = x^3 + b$  (Section 5)

## Quartic twists and $y^2 = x^3 + ax$

• Affine formulas for  $(x_3, y_3) = [2]U = [2](x_1, y_1)$  simplify to

 $\begin{aligned} x_3 &= \lambda^2 - 2x_1, \\ y_3 &= \lambda(x_1 - x_3) - y_1, \end{aligned} \qquad \text{where } \lambda &= (3x_1^2 + a)/(2y_1). \end{aligned}$ 

- Success with weight-(1,2) coordinates:  $(x, y) = (X/Z, Y/Z^2)$
- Projective doubling  $(X_3 : Y_3 : Z_3) = [2](X_1 : Y_1 : Z_1)$

$$\begin{split} &X_3 = (X_1^2 - aZ_1^2)^2, \\ &Y_3 = 2Y_1(X_1^2 - aZ_1^2)((X_1^2 + aZ_1^2)^2 + 4aZ_1^2X_1^2), \\ &Z_3 = 4Y_1^2. \end{split}$$

Costs  $1\mathbf{m} + 6\mathbf{s} + 1\mathbf{d}_a$  (Current fastest in the EFD!!)

• Formulas for line computation

 $\begin{aligned} f'_{\text{DBL}(U)}(S) &= -2(3X_1^2Z_1 + aZ_1^3) \cdot x_S + (4Y_1Z_1) \cdot y_S + 2(X_1^3 - aZ_1^2X_1). \\ \text{Additional cost of } 1\mathbf{m} + 2\mathbf{s} \end{aligned}$ 

- NEW RECORD:  $2m + 8s + 1d_a$
- Previous record: 1m + 11s + 1d<sub>a</sub> (Jacobian coorindates), lonica and Joux + Arene *et al.*

# Sextic twists and $y^2 = x^3 + b$

• Affine formulas for  $(x_3, y_3) = [2]U = [2](x_1, y_1)$  simplify to

$$x_3 = \lambda^2 - 2x_1,$$
  
 $y_3 = \lambda(x_1 - x_3) - y_1,$  where  $\lambda = 3x_1^2/(2y_1).$ 

- Success with homogeneous projective coordinates
- Projective doubling  $(X_3 : Y_3 : Z_3) = [2](X_1 : Y_1 : Z_1)$

 $\begin{array}{l} X_3 = 2X_1Y_1(Y_1^2 - 9bZ_1^2), \\ Y_3 = Y_1^4 + 18bY_1^2Z_1^2 - 27b^2Z_1^4, \\ Z_3 = 8Y_1^3Z_1. \end{array}$ 

• Formulas for line computation

 $f_{\text{DBL}(U)}'(S) = 3X_1^2 \cdot x_S - 2Y_1Z_1 \cdot y_S + 3bZ_1^2 - Y_1^2.$ 

- NEW RECORD:  $2m + 7s + 1d_b$
- Previous record: 3m + 8s + 1d<sub>b</sub> (Jacobian coordinates), Arene *et al.*

- Cubic twists require special treatment (denominator elimination non-standard)
- Affine line must be multiplied  $f'_{ADD(U,R)}(S) = I_{ADD(U,R)}(S) \cdot (x_S^2 + x_S x_{U+R} + x_{U+R}^2)$
- Success with homogeneous projective coordinates
- $f_{\text{DBL}(U)}''(S) = X_1^2(Y_1^2 9bZ_1^2) \cdot x_S + 4X_1Y_1^2Z_1 \cdot x_S^2 6X_1^3Y_1 \cdot y_S + (Y_1^2 bZ_1^2)(Y_1^2 + 9bZ_1^2).$
- NEW RECORD:  $km_1 + 6m + 7s + 1d_b$
- Previous record: 2km<sub>1</sub> + 8m + 9s + 1d<sub>b</sub> (also homog. projective), El Mrabet. et al.

### Comparisons with previous best formulas...

| Curve             | Best       | DBL                                                         | Prev.            | DBL                                                          |  |  |
|-------------------|------------|-------------------------------------------------------------|------------------|--------------------------------------------------------------|--|--|
| Curve order       | Coord.     | ADD                                                         | best             | ADD                                                          |  |  |
| Twist deg.        |            | mADD                                                        | Coord.           | mADD                                                         |  |  |
| $y^2 = x^3 + ax$  | This work  | $(2k/d)m_1 + 2m + 8s + 1d_a$                                | Ionica & Joux    | $(2k/d)m_1 + 1m + 11s + 1d_a$                                |  |  |
| -                 |            | $(2k/d)m_1 + 12m + 7s$                                      | + Arene et al.   | $(2k/d)m_1 + 10m + 6s$                                       |  |  |
| d = 2, 4          | weight-1,2 | $(2k/d)m_1 + 9m + 5s$                                       | Jacobian         | $(2k/d)m_1 + 7m + 6s$                                        |  |  |
| $y^2 = x^3 + c^2$ | This work  | $(2k/d)m_1 + 3m + 5s$                                       | Costello et al.  | $(2k/d)m_1 + 3m + 5s$                                        |  |  |
| 3   #E            | + prev     | $(2k/d)m_1 + 14m + 2s + 1d_c$                               |                  | $(2k/d)m_1 + 14m + 2s + 1d_c$                                |  |  |
| d = 2,6           | homog.     | $(2k/d)m_1 + 10m + 2s + 1d_c$                               | homog.           | $(2k/d)m_1 + 11m + 2s + 1d_c$                                |  |  |
| $y^2 = x^3 + b$   | This work  | $(2k/d)m_1 + 2m + 7s + 1d_b$                                | Arene et al.     | $(2k/d)m_1 + 3m + 8s$                                        |  |  |
| 3 ∤ #E            | + prev     | $(2k/d)m_1 + 14m + 2s$                                      |                  | $(2k/d)m_1 + 10m + 6s$                                       |  |  |
| d = 2, 6          | homog.     | $(2k/d)m_1 + 10m + 2s$                                      | Jacobian         | (2k/d) <b>m</b> <sub>1</sub> + 7 <b>m</b> + 6 <b>s</b>       |  |  |
| $y^2 = x^3 + b$   | This work  | $k\mathbf{m}_1 + \mathbf{6m} + \mathbf{7s} + \mathbf{1d}_b$ | El Mrabet et al. | $2k\mathbf{m}_1 + 8\mathbf{m} + 9\mathbf{s} + 1\mathbf{d}_b$ |  |  |
| -                 |            | $km_1 + 16m + 3s$                                           |                  | ADD/mADD                                                     |  |  |
| d = 3             | homog.     | $km_1 + 13m + 3s$                                           | homog.           | not reported                                                 |  |  |

- Also  $\mathbf{m}_k + \mathbf{s}_k$  in each doubling entry ( $\mathbf{m}_k$  for addition)
- Cubic twists faster by over 4 field operations per standard iteration
- Quartic twists faster by 2 field operations per standard iteration
- Sextic twists faster by 2 field operations per standard iteration

| k  | Const. | $\varphi(k)$ | ρ     | d | m <sub>opt</sub> : T <sub>e</sub> : r | Tate : ate | Tate : ate    | a <sub>mopt</sub> vs. η <sub>Te</sub> |
|----|--------|--------------|-------|---|---------------------------------------|------------|---------------|---------------------------------------|
|    |        |              |       |   | (log)                                 | s = m      | s = 0.8m      |                                       |
| 4  | 6.4    | 2            | 2.000 | 4 | 1:1:2                                 | 30:30      | 26.6 : 26.6   | Even                                  |
| 6  | 6.6    | 2            | 2.000 | 6 | 1:1:2                                 | 40:41      | 36:36.6       | $\eta_{T_e}$ (1.02)                   |
| 8  | 6.10   | 4            | 1.500 | 4 | 3:3:4                                 | 68 : 88    | 61:77.8       | $\eta_{T_e}$ (1.3)                    |
| 9  | 6.6    | 6            | 1.333 | 3 | 1:3:6                                 | 72 : 124   | 65.6 : 112    | a <sub>mopt</sub> (1.7)               |
| 12 | 6.8    | 4            | 1.000 | 6 | 1:2:4                                 | 103 : 121  | 92.6 : 107.8  | a <sub>mopt</sub> (1.7)               |
| 16 | 6.11   | 8            | 1.250 | 4 | 1:4:8                                 | 180 : 260  | 162.2 : 229.4 | a <sub>mopt</sub> (2.8)               |
| 18 | 6.12   | 6            | 1.333 | 6 | 1:3:6                                 | 165 : 196  | 148.6 : 176   | a <sub>mopt</sub> (2.5)               |
| 24 | 6.6    | 8            | 1.250 | 6 | 1:4:8                                 | 286 : 359  | 258:319.4     | a <sub>mopt</sub> (3.2)               |
| 27 | 6.6    | 18           | 1.111 | 3 | 1:9:18                                | 290 : 602  | 263.6 : 542   | a <sub>mopt</sub> (4.4)               |
| 32 | 6.13   | 16           | 1.125 | 4 | 1:8:16                                | 512 : 772  | 461.8 : 680.2 | a <sub>mopt</sub> (5.3)               |
| 36 | 6.14   | 12           | 1.167 | 6 | 1:6:12                                | 471 : 597  | 424.6 : 531   | a <sub>mopt</sub> (4.7)               |
| 48 | 6.6    | 16           | 1.125 | 6 | 1:8:16                                | 834 : 1069 | 752:950.2     | a <sub>mopt</sub> (6.2)               |

- Number of base field  $\mathbb{F}_q$  multiplications per iteration
- Optimal loop lengths assumed to give Tate/ate comparison for Miller loop
- Tate speedup is only significant for small embedding degrees
- Faster formulas improve ate by speedup consistently for all k