Avoiding Full Extension Field Arithmetic in Pairing Computations

Craig Costello

craig.costello@qut.edu.au
Queensland University of Technology

AfricaCrypt 2010

Joint work with Colin Boyd, Juanma Gonzalez-Nieto, Kenneth Koon-Ho Wong

Motivation

Faster pairings mean more efficient...

- ID-based encryption (IBE)
- ID-based key agreement
- short signatures
- group signatures
- ring signatures
- certificateless encryption
- hierarchical encryption
- attribute-based encryption
- ...

Table of contents

(1) Introduction

- Pairings and Miller's algorithm
- The evolution of Miller's algorithm: state-of-the-art pairings
(2) Motivation
(3) Miller 2^{n}-tupling
(4) Results
(5) Related Work

Pairings on ordinary elliptic curves over large prime fields

- Need two linearly independent points R and S of large prime order r on $E\left(\mathbb{F}_{p}\right)$, i.e. need two subgroups of $E[r]$
- $E\left(\mathbb{F}_{p^{k}}\right)$ is the smallest extension that contains two such subgroups (all $r+1$ subgroups in fact)
- k is the embedding degree, first value such that $r \mid p^{k}-1$
- Need a function f_{R} with $\operatorname{divisor} \operatorname{div}\left(f_{R}\right)=r(R)-r(\mathcal{O})$

Weil pairing methodology

$$
e(R, S)=f_{R}(S) / f_{S}(R) \in \mathbb{F}_{p^{k}}
$$

Tate pairing methodology

$$
e(R, S)=f_{R}(S)^{p^{k}-1} \in \mathbb{F}_{p^{k}}
$$

The pairing evaluation functions

What do the functions $f_{R}(S)$ and $f_{S}(R)$ look like?

- $\operatorname{div}\left(f_{R}\right)=r(R)-r(\mathcal{O})$, i.e. a zero of order r at R, and a pole of order r at infinity (\mathcal{O}).
- Indeterminate f_{R}, f_{S} are of degree r (at least in affine form)
- If $R \in E\left(\mathbb{F}_{p}\right)$ and $S \in E\left(\mathbb{F}_{p^{k}}\right)$, then
- $f_{R}(S)$ will have coefficients in \mathbb{F}_{p}, evaluated at elements in $\mathbb{F}_{p^{k}}$
- $f_{S}(R)$ will have coefficients in $\mathbb{F}_{p^{k}}$, evaluated at elements in \mathbb{F}_{p}
- Too much to store f_{R} explicitly before evaluating at S
- Therefore, evaluate at S as you build the function and vice versa.

Miller's algorithm

Input: $\quad R, S$ and $r=\left(r_{\lfloor\log (r)\rfloor}, \ldots, r_{0}\right)_{2}$
Output: $f_{R}(S)$

- $f \leftarrow 1, T \leftarrow R$
- for i from $\lfloor\log (r)\rfloor-1$ to 0 do
(1) Compute $g=I / v$ in the chord-and-tangent doubling of T
(2) $T \leftarrow[2] T$
(3) $f \leftarrow f^{2} \cdot g(S)$
(4) if $r_{i}=1$ then
i. Compute $g=I / v$ in the chord-and-tangent addition of $T+R$
ii. $T \leftarrow T+R$
iii. $f \leftarrow f \cdot g(S)$
end if
end for: return f

Miller's algorithm for the Weil pairing methodology

Initially: run twice to compute $e(R, S)=f_{R}(S) / f_{S}(R)$
Input: $\quad R, S$ and $r=\left(r_{\lfloor\log (r)\rfloor}, \ldots, r_{0}\right)_{2}$
Output: $f_{R}(S)$ (first time) and $f_{S}(R)$ (second time)

- $f \leftarrow 1, T \leftarrow R$
- for i from $\lfloor\log (r)\rfloor-1$ to 0 do
(1) Compute $g=I / v$ in the chord-and-tangent doubling of T
(2) $T \leftarrow[2] T$
(3) $f \leftarrow f^{2} \cdot g(S)$
(4) if $r_{i}=1$ then
i. Compute $g=I / v$ in the chord-and-tangent addition of $T+R$
ii. $T \leftarrow T+R$
iii. $f \leftarrow f \cdot g(S)$
end if
end for: return f

Miller's algorithm for the Tate pairing methodology

Idea: run once and exponentiate $e(R, S)=f_{R}(S)^{p^{k}-1}$
Input: $\quad R, S$ and $r=\left(r_{\lfloor\log (r)\rfloor}, \ldots, r_{0}\right)_{2}$
Output:

- $f \leftarrow 1, T \leftarrow R$
- for i from $\lfloor\log (r)\rfloor-1$ to 0 do
(1) Compute $g=I / v$ in the chord-and-tangent doubling of T
(2) $T \leftarrow[2] T$
(3) $f \leftarrow f^{2} \cdot g(S)$
(4) if $r_{i}=1$ then
i. Compute $g=I / v$ in the chord-and-tangent addition of $T+R$
ii. $T \leftarrow T+R$
iii. $f \leftarrow f \cdot g(S)$
end if
end for: return $f \leftarrow f^{\left(p^{k}-1\right)}$

Miller's algorithm with no inversions

Ideas: v's are in subfields so discard + projective coords

Input: $\quad R, S$ and $r=\left(r_{\lfloor\log (r)\rfloor}, \ldots, r_{0}\right)_{2}$
Output: $f_{R}(S)$

- $f \leftarrow 1, T \leftarrow R$
- for i from $\lfloor\log (r)\rfloor-1$ to 0 do
(1) Compute $g=I / v$ in the chord-and-tangent doubling of T
(2) $T \leftarrow[2] T$
(3) $f \leftarrow f^{2} \cdot g(S)$
(4) if $r_{i}=1$ then
i. Compute $g=I / v$ in the chord-and-tangent addition of $T+R$
ii. $T \leftarrow T+R$
iii. $f \leftarrow f \cdot g(S)$
end if
end for: return $f \leftarrow f^{\left(p^{k}-1\right)}$

Miller's algorithm with optimal loop length

Idea: Minimize loop length + low Hamming-weight

Input: $\quad R, S$ and $m_{\text {opt }}=\left(m_{\left\lfloor\log \left(m_{\text {opt }}\right)\right\rfloor}, \ldots, m_{0}\right)_{2}$
Output: $f_{R}(S)$

- $f \leftarrow 1, T \leftarrow R$
- for i from $\left\lfloor\log \left(m_{\text {opt }}\right)\right\rfloor-1$ to 0 do
(1) Compute $g=l$ in the chord-and-tangent doubling of T
(2) $T \leftarrow[2] T$
(3) $f \leftarrow f^{2} \cdot g(S)$
(9) if $r_{i}=1$ then
i. Compute $g=I$ in the chord-and-tangent addition of $T+R$
ii. $T \leftarrow T+R$
iii. $f \leftarrow f \cdot g(S)$
end if
end for: return $f \leftarrow f^{\left(p^{k}-1\right)}$

The state-of-the-art

Input: $\quad R, S$ and $m_{\text {opt }}=\left(m_{\left\lfloor\log \left(m_{\text {opt }}\right)\right\rfloor}, \ldots, m_{0}\right)_{2}$
Output: $f_{R}(S)$

- $f \leftarrow 1, T \leftarrow R$
- for i from $\left\lfloor\log \left(m_{\text {opt }}\right)\right\rfloor-1$ to 0 do
(1) Compute $g=l$ in the chord-and-tangent doubling of T
(2) $T \leftarrow[2] T$
(3) $f \leftarrow f^{2} \cdot g(S)$
end for: \quad return $f \leftarrow f^{\left(p^{k}-1\right)}$

Tate vs. ate groups

- $\mathbb{G}_{1}=E[r] \cap \operatorname{ker}\left(\pi_{p}-[1]\right)$ and $\mathbb{G}_{2}=E[r] \cap \operatorname{ker}\left(\pi_{p}-[p]\right)$, i.e. $\mathbb{G}_{1} \in E\left(\mathbb{F}_{p}\right)$ (base field) and $\mathbb{G}_{2} \in E\left(\mathbb{F}_{p^{k}}\right)$ (full ext. field)
- Use twisted curve $E^{\prime} \cong E$ to define $\mathbb{G}_{2}^{\prime} \cong \mathbb{G}_{2}$ but $\mathbb{G}_{2}^{\prime} \in E\left(\mathbb{F}_{p^{k / d}}\right)$ (twisted subfield)

Tate-like pairings

1st argument: $R \in \mathbb{G}_{1} \quad$ 2nd argument $S \in \mathbb{G}_{2}^{\prime}$

Ate-like pairings

1st argument: $R \in \mathbb{G}_{2}^{\prime} \quad$ 2nd argument $S \in \mathbb{G}_{1}$

What else can we do?

Red stuff: Optimized or exhausted or given enough attention
Input: $\quad R, S$ and $m_{\text {opt }}=\left(m_{\left\lfloor\log \left(m_{\text {opt }}\right)\right\rfloor}, \ldots, m_{0}\right)_{2}$
Output: $f_{R}(S)$

- $f \leftarrow 1, T \leftarrow R$
- for i from $\left\lfloor\log \left(m_{\text {opt }}\right)\right\rfloor-1$ to 0 do
(1) Compute $g=l$ in the chord-and-tangent doubling of T
(2) $T \leftarrow[2] T$
(3) $f \leftarrow f^{2} \cdot g(S)$

end for

- return $f \leftarrow f^{\left(p^{k}-1\right)}$

A closer look at the Miller update step

Complexity of operations
i. $f \leftarrow f^{2}$
ii. Evaluate g at S
iii. $f \leftarrow f \cdot g$
i. f is a general element of $\mathbb{F}_{p^{k}}$ (can't do much here)
ii. Indeterminate g takes form $g(x, y)=g_{x} \cdot x+g_{y} \cdot y+g_{0}$, and is evaluated as $g\left(S_{x}, S_{y}\right)$

- ate: $g_{x}, g_{y}, g_{0} \in \mathbb{F}_{p^{k / d}}$ and $S_{x}, S_{y} \in \mathbb{F}_{p}$
- Tate: $g_{x}, g_{y}, g_{0} \in \mathbb{F}_{p}$ and $S_{x}, S_{y} \in \mathbb{F}_{p^{k / d}}$
iii. KEY: If degree of twist $d=4$ or $d=6$, then $g(S)$ is not a general element of $\mathbb{F}_{p^{k}}$ (i.e. $f \cdot g$ is not a full extension field multiplication!)

The multiplication $f \cdot g$

- An example of $f \cdot g$ (sextic twist)

$$
\begin{aligned}
& f=\left(f_{2,1} \cdot \alpha+f_{2,0}\right) \cdot \beta^{2}+\left(f_{1,1} \cdot \alpha+f_{1,0}\right) \cdot \beta+\left(f_{0,1} \cdot \alpha+f_{0,0}\right) \in \mathbb{F}_{p^{k},}, \\
& g\left(S_{x}, S_{y}\right)=\left(g_{x} \hat{S}_{x}\right) \cdot \beta+\left(g_{y} \hat{S}_{y}\right) \cdot \alpha+g_{0} \in \mathbb{F}_{p^{k}},
\end{aligned}
$$

where the $f_{i, j}$'s and both $g_{x} \hat{S}_{x}$ and $g_{y} \hat{S}_{y}$ are contained in $\mathbb{F}_{p^{e}}$.

- NOT a full extension field multiplication!
- Repetitively multiplying full elements (the f 's) by sparse elements (the g 's) is potentially bad, because
- We're not making full use of finite field optimizations (Karatsuba, Toom-Cook multiplication etc)
- We're "touching" the full extension field element before we need to
- ... what can we do instead?

Keeping the f 's and g 's separate

for $i=\left\lfloor\log _{2}(m)\right\rfloor-1$ to 0 do
Compute $g=l$ in the chord-and-tangent doubling of T
$T \leftarrow[2] T$
$f \leftarrow f^{2} \cdot g(S)$
end for

- What happens if we keep the f 's and g 's separate for n iterations in a row?
- T would be doubled n times
- The f would be squared n times in a row
- The n consecutive g 's would no longer be absorbed into f

Combining n iterations: Miller 2^{n}-tupling

for $i=\left\lfloor\log _{2^{n}}(m)\right\rfloor-1$ to 0 do
Compute $g_{\text {prod }}=g_{1}^{2^{n-1}} g_{2}^{2^{n-2}} \ldots g_{n-1}^{2^{1}} g_{n}$ in the 2^{n}-tupling of T
$T \leftarrow\left[2^{n}\right] T$

$$
f \leftarrow f^{2^{n}} \cdot g_{\text {prod }}(S)
$$

end for

- Green comps: was $n \mathbf{s}_{k}+n \tilde{\mathbf{m}}_{k} \rightarrow$ now $n \mathbf{s}_{k}+\mathbf{m}_{k}$
- Red comps: Used to be n degree 1 functions, now is one (much more complicated) 2^{n}-degree function
- How can we win?: if the extra computations incurred computing $g_{\text {prod }}$ are redeemed by the saving of $(n-1) \mathbf{m}_{k}$.
- Will win if $\mathbb{F}_{p^{k}}$ is much bigger than \mathbb{F}_{p} (Tate) or $\mathbb{F}_{p^{k / d}}$ (ate)

How to get $g_{\text {prod }}$

Compute $g_{\text {prod }}=g_{1}^{2^{n-1}} g_{2}^{2^{n-2}} \ldots g_{n-1}^{2^{1}} g_{n}$ in the 2^{n}-tupling of T
$T \leftarrow\left[2^{n}\right] T$

- $T_{n}=[2] T_{n-1}=\ldots=\left[2^{n-1}\right] T$
- Degrees of formulas for T_{n} and g_{n} in terms of $T=\left(x_{1}, y_{1}\right)$ grow exponentially in n
- Paper explores $n=2$ (quadrupling) and $n=3$ (octupling)
- Paper explores two curve shapes
- $y^{2}=x^{3}+b \quad d=2,6$ twists \quad Homogeneous projective
- $y^{2}=x^{3}+a x \quad d=2,4$ twists \quad Weight- $(1,2)$
- Formulas are reduced using Gröbner basis reduction

An example: Quadrupling on $y^{2}=x^{3}+b$

$$
\begin{gathered}
g_{\text {prod }}=\prod_{i=1}^{2}\left(g_{\left[2^{i-1}\right] T,\left[2^{i-1}\right] T}\right)^{2^{2-i}}=\left(g_{T, T}\right)^{2} \cdot\left(g_{[2] T,[2] T}\right), \\
g^{*}=\alpha \cdot\left(L_{1,0} \cdot x_{S}+L_{2,0} \cdot x_{S}^{2}+L_{0,1} \cdot y_{S}+L_{1,1} \cdot x_{S} y_{S}+L_{0,0}\right), \\
L_{2,0}=-6 X_{1}^{2} Z_{1}\left(5 Y_{1}^{4}+54 b Y_{1}^{2} Z_{1}^{2}-27 b^{2} Z_{1}^{4}\right), \\
L_{0,1}=8 X_{1} Y_{1} Z_{1}\left(5 Y_{1}^{4}+27 b^{2} Z_{1}^{4}\right), \\
L_{1,1}=8 Y_{1} Z_{1}^{2}\left(Y_{1}^{4}+18 b Y_{1}^{2} Z_{1}^{2}-27 b^{2} Z_{1}^{4}\right), \quad \text { First } \\
L_{0,0}=2 X_{1}\left(Y_{1}^{6}-75 b Y_{1}^{4} Z_{1}^{2}+27 b^{2} Y_{1}^{2} Z_{1}^{4}-81 b^{3} Z_{1}^{6}\right), \quad \text { Computations } \\
L_{1,0}=-4 Z_{1}\left(5 Y_{1}^{6}-75 b Z_{1}^{2} Y_{1}^{4}+135 Y_{1}^{2} b^{2} Z_{1}^{4}-81 b^{3} Z_{1}^{6}\right) . \\
X_{D^{1}}=4 X_{1} Y_{1}\left(Y_{1}^{2}-9 b Z_{1}^{2}\right), \quad Y_{D^{1}}=2 Y_{1}^{4}+36 b Y_{1}^{2} Z_{1}^{2}-54 b^{2} Z_{1}^{4}, \quad Z_{D^{1}}=16 Y_{1}^{3} Z_{1} \\
\left(X_{D^{2}}: Y_{D^{2}}: Z_{D^{2}}\right)=[2]\left(X_{D^{1}}: Y_{D^{1}}: Z_{D^{1}}\right)
\end{gathered}
$$

Quadrupling on $y^{2}=x^{3}+b$ cont.

$$
\begin{aligned}
& A=Y_{1}^{2}, B=Z_{1}^{2}, C=A^{2}, D=B^{2}, E=\left(Y_{1}+Z_{1}\right)^{2}-A-B, F=E^{2}, G=X_{1}^{2}, H=\left(X_{1}+Y_{1}\right)^{2}-A-G, \\
& I=\left(X_{1}+E\right)^{2}-F-G, J=(A+E)^{2}-C-F, K=\left(Y_{1}+B\right)^{2}-A-D, L=27 b^{2} D, M=9 b F, N=A \cdot C, \\
& R=A \cdot L, S=b B, T=S \cdot L, U=S \cdot C, X_{D^{1}}=2 H \cdot(A-9 S), Y_{D^{1}}=2 C+M-2 L, Z_{D^{1}}=4 J, \\
& L_{1,0}=-4 Z_{1} \cdot(5 N+5 R-3 T-75 U), L_{2,0}=-3 G \cdot Z_{1} \cdot(10 C+3 M-2 L), L_{0,1}=2 I \cdot(5 C+L), \\
& L_{1,1}=2 K \cdot Y_{D^{1}}, L_{0,0}=2 X_{1} \cdot(N+R-3 T-75 U) . \\
& F^{*}=L_{1,0} \cdot x_{S}+L_{2,0} \cdot x_{S}^{2}+L_{0,1} \cdot y S+L_{1,1} \cdot x_{S} y S+L_{0,0}, A_{2}=Y_{D^{1}}^{2}, B_{2}=Z_{D^{1}}^{2}, C_{2}=3 b B_{2}, \\
& D_{2}=2 X_{D^{1}} \cdot Y_{D^{1}}, E_{2}=\left(Y_{D^{1}}+Z_{D^{1}}\right)^{2}-A_{2}-B_{2}, F_{2}=3 C_{2}, X_{D^{2}}=D_{2} \cdot\left(A_{2}-F_{2}\right), \\
& Y_{D^{2}}=\left(A_{2}+F_{2}\right)^{2}-12 C_{2}^{2}, Z_{D^{2}}=4 A_{2} \cdot E_{2} .
\end{aligned}
$$

The above sequence of operations costs $14 \mathbf{m}+16 \mathbf{s}+4 e \mathbf{m}_{1}$.

Addition in Miller 2^{n}-tupling

- We are now writing the loop parameter in base 2^{n}
- Instead of $T \leftarrow T+R$ in standard routine, we must now account for $T \leftarrow T+[w] R$, where $w<2^{n}$.
- Precompute and store the (small number of) values $[w] R$ in the 2^{n}-ary expansion of m
- Must now multiply Miller function with addition update f^{+}, where $\operatorname{div}\left(f^{+}\right)=w(R)+([v] R)-([v] R+[w] R)-w(\mathcal{O})$

$$
\begin{aligned}
\text { - } f^{+} & =\prod_{i=0}^{w-1} g_{[v] R+[i] R, R} \\
\text { - } f^{+} & =f_{w, R} \cdot g_{[v] R,[w] R}
\end{aligned}
$$

- Since $[w] R$ is precomputed, and $f_{w, R}$ can also be precomputed, this is at most two multiplications
- ... also possible that less addition steps occur in 2^{n}-ary implementation

Algorithm summary: a typical iteration

- Compute function $g_{\text {prod }}$ in the 2^{n}-tupling of T
- $T \leftarrow\left[2^{n}\right] T$
- $f \leftarrow f^{2^{n}} \cdot g_{\text {prod }}$
- if $m_{i} \neq 0$ then
- Compute function $f^{+}=f_{w, R} \cdot g_{T,[m ;] R}$
- $T \leftarrow T+\left[m_{i}\right] R$
- $f \leftarrow f \cdot f^{+}$
end if

Results

- $j(E)=0: \quad$ Curves of the form $y^{2}=x^{3}+b$
- $j(E)=1728: \quad$ Curves of the form $y^{2}=x^{3}+a x$

$j(E)$	Doubling: $n=1$ $(6$ loops $)$	Quadrupling: $n=2$ $(3$ loops $)$	Octupling: $n=3$ (2 loops)
0	$12 \mathbf{m}+42 \mathbf{s}+12 \mathbf{e m}_{1}$	$42 \mathbf{m}+48 \mathbf{s}+12 \mathbf{m}_{1}$	$80 \mathbf{m}+64 \mathbf{s}+16 e \mathbf{m}_{1}$
$+6 \mathbf{M}+6 \mathbf{S}$	$+3 \mathbf{M}+6 \mathbf{S}$	$+2 \mathbf{M}+6 \mathbf{S}$	
1728	$12 \mathbf{m}+48 \mathbf{s}+12 \mathbf{e m}_{1}$	$33 \mathbf{m}+60 \mathbf{s}+12 \mathbf{e m}_{1}$	$64 \mathbf{m}+114 \mathbf{s}+16 e \mathbf{m}_{1}$
	$+6 \mathbf{M}+6 \mathbf{S}$	$+3 \mathbf{M}+6 \mathbf{S}$	$+2 \mathbf{M}+6 \mathbf{S}$

Table: Operation counts for the equivalent number of iterations of 2^{n}-tuple and add for $n=1,2,3$.

Results cont...

		Pairings on $\mathbb{G}_{1} \times \mathbb{G}_{2}$ (Tate, twisted ate)			Pairings on $\mathbb{G}_{2} \times \mathbb{G}_{1}$ (ate, R-ate)		
k	$j(E)$	$n=1$ $(6$ loops $)$	$n=2$ $(3$ loops $)$	$n=3$ $(2$ loops $)$	$n=1$ $(6$ loops $)$	$n=2$ $(3$ loops $)$	$n=3$ $(2$ loops $)$
4	1728	159.6	163.2	232.4	159.6	163.2	232.4
6	0	219.6	209.4	249.2	219.6	209.4	249.2
8	1728	366	315.6	370.8	466.8	477.6	681.2
12	0	555.6	455.4	469.2	646.8	616.2	731.6
16	1728	973.2	760.8	770	1376.4	1408.8	2011.6
18	0	891.6	701.4	689.2	1074	1023	1214
24	0	1551.6	1181.4	1113.2	1916.4	1824.6	2162.8
32	1728	2770.8	2072.4	1935.6	4081.2	4178.4	5970.8
36	0	2547.6	1907.4	1757.6	3186	3033	3594
48	0	4515.6	3335.4	3013.2	5701.2	5425.8	6424.4

Table: Total base field operation count for the equivalent of 6 standard double-and-add loops.

Related Work

- WAIFI2010 paper
- Higher integrability into existing pairing code
- Only slightly slower than these techniques
- No cumbersome explicit formulas
- Other paper (to appear soon on ePrint archive)
- Many pairing-based protocols have one argument fixed (long term key etc)
- A heap of precomputation can be done
- Much faster implementations possible here

QUESTIONS?

