Avoiding Full Extension Field Arithmetic in Pairing
Computations

Craig Costello

craig.costello@qut.edu.au
Queensland University of Technology

AfricaCrypt 2010

Joint work with Colin Boyd, Juanma Gonzalez-Nieto, Kenneth Koon-Ho Wong

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Motivation

Faster pairings mean more efficient...

ID-based encryption (IBE)
ID-based key agreement
short signatures

group signatures

ring signatures
certificateless encryption
hierarchical encryption

attribute-based encryption

Craig Costello

Avoiding Full Extension Field Arithmetic in Pairing Computatic

Table of contents

@ Introduction
@ Pairings and Miller’s algorithm
@ The evolution of Miller's algorithm: state-of-the-art pairings

© Motivation
© Miller 2"-tupling
@ Results

© Related Work

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Introduction

Pairings and Miller’s algorithm
The evolution of Miller's algorithm: state-of-the-art pairings

Pairings on ordinary elliptic curves over large prime fields

@ Need two linearly independent points R and S of large prime
order r on E(Fp), i.e. need two subgroups of E[r]

o E(F,) is the smallest extension that contains two such
subgroups (all r + 1 subgroups in fact)

o k is the embedding degree, first value such that r|pk — 1
@ Need a function fg with divisor div(fgr) = r(R) — r(O)

Weil pairing methodology

e(R,S) = fr(S)/fs(R) € F

Tate pairing methodology
e(R,S) = fr(S)P L € F

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Introduction

Pairings and Miller’s algorithm
The evolution of Miller's algorithm: state-of-the-art pairings

The pairing evaluation functions

What do the functions fz(S) and fs(R) look like?

e div(fgr) = r(R) — r(0O), i.e. a zero of order r at R, and a pole
of order r at infinity (O).

@ Indeterminate fg, fs are of degree r (at least in affine form)
o If Re E(Fp) and S € E(F), then

o fr(S) will have coefﬁaents in IFp,, evaluated at elements in [
o fs(R) will have coefficients in F,x, evaluated at elements in IF,

@ Too much to store fg explicitly before evaluating at S

@ Therefore, evaluate at S as you build the function and vice
versa.

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Introduction

Pairings and Miller’s algorithm
The evolution of Miller’s algorithm: state-of-the-art pairings

Miller's algorithm

Input: R, S and r = (r[iog(
Output: fg(S)
oef—1, T+ R
e for i from [log(r)] —1 to 0 do
© Compute g = //v in the chord-and-tangent doubling of T
QT —[2T

Q f—f? -g(S)
Q if , =1 then
i. Compute g =//v in the chord-and-tangent addition of T + R
i. T« T+R
ii. f—f-g(S)
end if
end for: return f

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Introduction

Pairings and Miller’s algorithm
The evolution of Miller’s algorithm: state-of-the-art pairings

Miller's algorithm for the Weil pairing methodology

Initially: run twice to compute e(R,S) = fr(S)/fs(R)

Input: R, S and r = (iog(r)] -+ 10)2
Output: fg(S) (first time) and fs(R) (second time)
e f«—1, T+ R
e for j from |log(r)| — 1 to 0 do
© Compute g = //v in the chord-and-tangent doubling of T
Q T — [2]T
Q f—1-g(S)

Q if =1 then
i. Compute g =//v in the chord-and-tangent addition of T + R

ii. T—<T+R
ii. £f—f-g(S)

end if
end for: return f

Craig Costello

Avoiding Full Extension Field Arithmetic in Pairing Computatic

Introduction

Pairings and Miller’s algorithm
The evolution of Miller’s algorithm: state-of-the-art pairings

Miller's algorithm for the Tate pairing methodology

Idea: run once and exponentiate e(R,S) = fz(S)P* !

Input: R, S and r = (iog(r)] -+ 10)2

Output:

oef«—1,T«+—R
e for j from |log(r)| — 1 to 0 do
© Compute g = //v in the chord-and-tangent doubling of T
Q T — [2]T
Q f—rf2.g(5)
Q if =1 then
i. Compute g =//v in the chord-and-tangent addition of T + R
ii. T—T+R
ii. £f—f-g(S)
end if
end for: return f — (P~

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Introduction

Pairings and Miller’s algorithm
The evolution of Miller’s algorithm: state-of-the-art pairings

Miller's algorithm with no inversions

Ideas: v’s are in subfields so discard + projective coords

Input: R, S and r = (r[iog(r)]> -+ 10)2

Output: fr(S)

o f+—1, TR

e for / from |log(r)| — 1 to 0 do
@ Compute g = //v in the chord-and-tangent doubling of T
QT —[2T

Q f—f? -g(S)
Q if =1 then
i. Compute g = //v in the chord-and-tangent addition of T + R
i. T—T+R
ii. f—f-g(S)
end if
end for: return f — f(P

k_l)

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Introduction

Pairings and Miller’s algorithm
The evolution of Miller’s algorithm: state-of-the-art pairings

Miller's algorithm with optimal loop length

Idea: Minimize loop length + low Hamming-weight

Input: R, S and Mopt = (M{1og(mepe)]s -+ M0)2

Output: fr(S)

o f+—1, TR

o for i from [log(mgy:)| — 1 to 0 do
© Compute g =/ in the chord-and-tangent doubling of T
Q T «— [2]T

Q f—f? -g(S)
Q if =1 then
i. Compute g =/ in the chord-and-tangent addition of T + R
i. T—T+R
ii. f—f-g(S)
end if
end for: return f — f(P

k_l)

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Introduction

Pairings and Miller’s algorithm
The evolution of Miller’s algorithm: state-of-the-art pairings

The state-of-the-art

Input: R, S and mgp = (leog(mopt)jv vy MQ)2
Output: fg(S)

o f«—1, T+ R

e for j from [log(mgpt)] — 1 to O do

© Compute g =/ in the chord-and-tangent doubling of T
Q T — [2] T
Q f—f? -g(S)

end for: return f — f(P

k—l)

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Introduction

Pairings and Miller’s algorithm
The evolution of Miller’s algorithm: state-of-the-art pairings

Tate vs. ate groups

o Gy = E[r] nker(mp — [1]) and G2 = E[r] Nker(mp — [p]).
i.e. Gy € E(Fp) (base field) and G € E(F) (full ext. field)

@ Use twisted curve E’ = E to define G}, = G but
G, € E(F i/a) (twisted subfield)

Tate-like pairings

1st argument: R € Gy 2nd argument S € G

Ate-like pairings

1st argument: R € G} 2nd argument S € Gy

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Motivation

What else can we do?

Red stuff: Optimized or exhausted or given enough attention

Input: R, S and Mopt = (M1og(mepy)]s > M0)2

Output: 1g(S)
o f«1, T+ R

o for i from |log(mept)| — 1 to 0 do

Q@ Compute g =/ in the chord-and-tangent doubling of T
Q T —[2IT
Q f—f2.g(5)

end for

o return f — f(P*-1)

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Motivation

A closer look at the Miller update step

Complexity of operations

i f« f2 Sk
ii. Evaluate g at S 2k/d - my
i. fef-g my?

i. fis a general element of F« (can't do much here)
ii. Indeterminate g takes form g(x,y) = g« - x+ gy -y + g0, and
is evaluated as g(Sx, Sy)
o ate: 8x, 8y, 80 € Fprsa and 54, S, € Fp,
o Tate: gy, 8,80 € Fpand S5, S, € Fa
iii. KEY: If degree of twist d =4 or d = 6, then g(S) is not a
general element of IF« (i.e. f - g is not a full extension field
multiplication!)

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Motivation

The multiplication f - g

@ An example of f - g (sextic twist)
f=(h1a+ho) B2+ (fi-a+ho) B+ (fo1-a+fho) € Fu,
g(5S)) = (gXSAX) B+ (gygy) o+ go € Fpx,
where the f; ;'s and both gX§X and gy§y are contained in [Fpe.
@ NOT a full extension field multiplication!
@ Repetitively multiplying full elements (the f's) by sparse
elements (the g's) is potentially bad, because

e We're not making full use of finite field optimizations
(Karatsuba, Toom-Cook multiplication etc)

o We're “touching” the full extension field element before we
need to

@ ... what can we do instead?

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Miller 2"-tupling

Keeping the f's and g's separate

for i = |log,(m)] — 1 to 0 do
Compute g = [in the chord-and-tangent doubling of T

T —[2]T
f — f2-g(5)

end for

@ What happens if we keep the f's and g's separate for n
iterations in a row?

@ T would be doubled n times
@ The f would be squared n times in a row

@ The n consecutive g's would no longer be absorbed into f

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Miller 2"-tupling

Combining n iterations: Miller 2"-tupling

for i = |log,,(m)] —1 to 0 do

Compute gproa = &2 g2 ..-82 18n in the 2"-tupling of T
T [T
f — f%" - 8prod(S)

end for

o Green comps: was nsig 4+ nm; — now nsi + myg
o |Red comps:| Used to be n degree 1 functions, now is one
(much more complicated) 2"-degree function

@ How can we win?: if the extra computations incurred
computing gproq are redeemed by the saving of (n — 1)my.

o Will win if F« is much bigger than F,, (Tate) or F /a (ate)

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Miller 2"-tupling

How to get gprod

n—1 on—2

Compute gprod = gt g ...gﬁilg,, in the 2"-tupling of T
T —[2"|T

o T,=[2]Tp1=..=[2""4T
@ Degrees of formulas for T, and g, in terms of T = (x1,y1)
grow exponentially in n

e Paper explores n = 2 (quadrupling) and n = 3 (octupling)

@ Paper explores two curve shapes
o y2=x3+b d = 2,6 twists Homogeneous projective
o y2 =x3+ax d = 2,4 twists Weight-(1,2)

@ Formulas are reduced using Grobner basis reduction

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Miller 2"-tupling

An example: Quadrupling on y? = x>+ b

2

8prod = H(g[2f—1]T,[2i—1]T)
i=1

22—i

= (gT,T)z‘ (g[z] T,[2]T)a

g =a-(Lio-xs+Lag-x¢+ Lot ys+ Li1-xsys+ Loo),

Lo = —6X2Z1(5Y} + 54bY2Z} — 27b%Z}),

Loy =8X1V1Z1(5Y1 +27b°Z}), First

L1 = 8Y1Z2(Y{ + 18bY2Z2 — 27b%7}), Argument
Loo = 2X1 (YL — 75bY{Z2 4 2762 Y2 ZE — 81b°ZF), Computations
Lio=—4Z1(5Y — 75bZ2 Y} + 135Y2p2Z} — 81b3ZP).

Xpt = 4X1 Y1(YE — 9bZ3), Yp1 = 2Y} +36bY2ZE —54b2ZF, Zp = 16Y3Zy

(Xp2 : Yp2 : Zp2) = [2](Xp1 = Yp1 : Zp1)

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Miller 2"-tupling

Quadrupling on y? = x3 + b con

A=Y}, B=Z}, C=A, D=B*, E=(M+21)° —A—-B, F=E*, G=X}, H=(X,+ Y1)’ —A—G,
=X +E2? —F—G, J=(A+E> —C—F, K=(V1+B)? —A—D, L =27’D, M=9bF, N=A-C,
R=A-L, S=bB, T=5-L, U=5-C, Xp1 =2H-(A—095), Yp1 =2C+M —2L, Zp; = 4J,

Lo =—4Z - (5N +5R — 3T — 75U), Lpg = —3G - Z; - (10C +3M —2L), Lo =2/ - (5C + L),

L11=2K- Yp1, Loo=2X - (N+R—3T —75U).

F* =110 xs+L20 x5 +Lo1-ys+L11-xsys+Loo, Az = Yéb 322251, G2 = 3bBy,

Dy =2Xp1 - Yp1, B2 = (Yp1 +Zp1)> — A — By, P2 =3Cp, Xpo = D2+ (A — F2),

2 2
Yp2 = (A2 + F2)? — 12C3, Zppp = 44y - 5.

The above sequence of operations costs 14m + 16s + 4em; .

Costello i Full Extension Field Arithmeti

Miller 2"-tupling

Addition in Miller 2"-tupling

@ We are now writing the loop parameter in base 2"

@ Instead of T <+ T + R in standard routine, we must now
account for T < T + [w]R, where w < 2".
@ Precompute and store the (small number of) values [w]R in
the 2™-ary expansion of m
@ Must now multiply Miller function with addition update T,
where div(fT) = w(R) + ([v]R) — ([V]R + [w]R) — w(O)
o fT= H;'N:BI 8VIR+[IR,R ...BAD
o T ="1ur &R WR ...GOOD
@ Since [w]R is precomputed, and f,, g can also be
precomputed, this is at most two multiplications
@ ... also possible that less addition steps occur in 2"-ary
implementation

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Miller 2"-tupling

Algorithm summary: a typical iteration

Compute function gyroq in the 27-tupling of T
T —[2"|T
fe f2n * 8prod
if m; # 0 then
o Compute function ™ =f, g - g1 [mr

o T— T+ [m]R
o f—f-fT

end if

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computatic

Results

Results

o j(E)=0 Curves of the form y2 = x3 + b
j(E) =1728: Curves of the form y? = x3 + ax
J(E) Doubling: n=1 Quadrupling: n =2 Octupling: n=3
(6 loops) (3 loops) (2 loops)
0 12m + 42s + 12em; | 42m + 48s + 12em; | 80m + 64s + 16em;
+6M + 6S +3M + 6S +2M + 6S
1728 | 12m + 48s + 12em; | 33m + 60s + 12em; | 64m + 114s + 16emy
+6M + 6S +3M + 6S +2M + 6S

Table: Operation counts for the equivalent number of iterations of

2"-tuple and add for n =1,2,3.

Craig Costello

Avoiding Full Extension Field Arithmetic in Pairing Computatic

Results

Pairings on G X G Pairings on G x Gp
(Tate, twisted ate) (ate, R-ate)

k J(E) n=1 n=2 n=3 n=1 n=2 n=3

(6 loops) (3 loops) (2 loops) (6 loops) (3 loops) (2 loops)
4 1728 159.6 163.2 232.4 159.6 163.2 232.4
6 0 219.6 209.4 249.2 219.6 209.4 249.2
8 1728 366 315.6 370.8 466.8 477.6 681.2
12 0 555.6 455.4 469.2 646.8 616.2 731.6
16 1728 973.2 760.8 770 1376.4 1408.8 2011.6
18 0 891.6 701.4 689.2 1074 1023 1214
24 0 1551.6 1181.4 1113.2 1916.4 1824.6 2162.8
32 1728 2770.8 2072.4 1935.6 4081.2 4178.4 5970.8
36 0 2547.6 1907.4 1757.6 3186 3033 3594
48 0 4515.6 3335.4 3013.2 5701.2 5425.8 6424.4

Table: Total base field operation count for the equivalent of 6 standard
double-and-add loops.

Costello i Full Extension Field Arithmeti

Related Work

Related Work

o WAIFI2010 paper
o Higher integrability into existing pairing code
e Only slightly slower than these techniques
e No cumbersome explicit formulas
@ Other paper (to appear soon on ePrint archive)
e Many pairing-based protocols have one argument fixed (long
term key etc)
e A heap of precomputation can be done
e Much faster implementations possible here

Avoiding Full Extension Field Arithmetic in Pairing Computatic

Craig Costello

Related Work

QUESTIONS?

Costello i Full Extension Field Arithmeti

	Introduction
	Pairings and Miller's algorithm
	The evolution of Miller's algorithm: state-of-the-art pairings

	Motivation
	Miller 2n-tupling
	Results
	Related Work

