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Motivation

Faster pairings mean more efficient...

ID-based encryption (IBE)

ID-based key agreement

short signatures

group signatures

ring signatures

certificateless encryption

hierarchical encryption

attribute-based encryption

...
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Pairings and Miller’s algorithm
The evolution of Miller’s algorithm: state-of-the-art pairings

Pairings on ordinary elliptic curves over large prime fields

Need two linearly independent points R and S of large prime
order r on E (Fp), i.e. need two subgroups of E [r ]

E (Fpk ) is the smallest extension that contains two such
subgroups (all r + 1 subgroups in fact)

k is the embedding degree, first value such that r |pk − 1

Need a function fR with divisor div(fR) = r(R)− r(O)

Weil pairing methodology

e(R, S) = fR(S)/fS(R) ∈ Fpk

Tate pairing methodology

e(R, S) = fR(S)pk−1 ∈ Fpk
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The pairing evaluation functions

What do the functions fR(S) and fS(R) look like?

div(fR) = r(R)− r(O), i.e. a zero of order r at R, and a pole
of order r at infinity (O).

Indeterminate fR , fS are of degree r (at least in affine form)

If R ∈ E (Fp) and S ∈ E (Fpk ), then

fR(S) will have coefficients in Fp, evaluated at elements in Fpk

fS(R) will have coefficients in Fpk , evaluated at elements in Fp

Too much to store fR explicitly before evaluating at S

Therefore, evaluate at S as you build the function and vice
versa.
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Miller’s algorithm

Input: R, S and r = (rblog(r)c, ..., r0)2

Output: fR(S)

f ← 1, T ← R

for i from blog(r)c − 1 to 0 do
1 Compute g = l/v in the chord-and-tangent doubling of T
2 T ← [2]T
3 f ← f 2 · g(S)
4 if ri = 1 then

i. Compute g = l/v in the chord-and-tangent addition of T + R
ii. T ← T + R
iii. f ← f · g(S)

end if

end for: return f
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Miller’s algorithm for the Weil pairing methodology

Initially: run twice to compute e(R, S) = fR(S)/fS(R)

Input: R, S and r = (rblog(r)c, ..., r0)2

Output: fR(S) (first time) and fS(R) (second time)

f ← 1, T ← R

for i from blog(r)c − 1 to 0 do
1 Compute g = l/v in the chord-and-tangent doubling of T
2 T ← [2]T
3 f ← f 2 · g(S)
4 if ri = 1 then

i. Compute g = l/v in the chord-and-tangent addition of T + R
ii. T ← T + R
iii. f ← f · g(S)

end if

end for: return f
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Miller’s algorithm for the Tate pairing methodology

Idea: run once and exponentiate e(R,S) = fR(S)pk−1

Input: R, S and r = (rblog(r)c, ..., r0)2

Output: fR(S)

f ← 1, T ← R

for i from blog(r)c − 1 to 0 do
1 Compute g = l/v in the chord-and-tangent doubling of T
2 T ← [2]T
3 f ← f 2 · g(S)
4 if ri = 1 then

i. Compute g = l/v in the chord-and-tangent addition of T + R
ii. T ← T + R
iii. f ← f · g(S)

end if

end for: return f ← f (pk−1)
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Miller’s algorithm with no inversions

Ideas: v ’s are in subfields so discard + projective coords

Input: R, S and r = (rblog(r)c, ..., r0)2

Output: fR(S)

f ← 1, T ← R

for i from blog(r)c − 1 to 0 do
1 Compute g = l/v in the chord-and-tangent doubling of T
2 T ← [2]T
3 f ← f 2 · g(S)
4 if ri = 1 then

i. Compute g = l/v in the chord-and-tangent addition of T + R
ii. T ← T + R
iii. f ← f · g(S)

end if

end for: return f ← f (pk−1)
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Miller’s algorithm with optimal loop length

Idea: Minimize loop length + low Hamming-weight

Input: R, S and mopt = (mblog(mopt)c, ...,m0)2

Output: fR(S)

f ← 1, T ← R

for i from blog(mopt)c − 1 to 0 do
1 Compute g = l in the chord-and-tangent doubling of T
2 T ← [2]T
3 f ← f 2 · g(S)
4 if ri = 1 then

i. Compute g = l in the chord-and-tangent addition of T + R
ii. T ← T + R
iii. f ← f · g(S)

end if

end for: return f ← f (pk−1)
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The evolution of Miller’s algorithm: state-of-the-art pairings

The state-of-the-art

Input: R, S and mopt = (mblog(mopt)c, ...,m0)2

Output: fR(S)

f ← 1, T ← R

for i from blog(mopt)c − 1 to 0 do
1 Compute g = l in the chord-and-tangent doubling of T
2 T ← [2]T
3 f ← f 2 · g(S)

end for: return f ← f (pk−1)
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The evolution of Miller’s algorithm: state-of-the-art pairings

Tate vs. ate groups

G1 = E [r ] ∩ ker(πp − [1]) and G2 = E [r ] ∩ ker(πp − [p]),
i.e. G1 ∈ E (Fp) (base field) and G2 ∈ E (Fpk ) (full ext. field)

Use twisted curve E ′ ∼= E to define G′2 ∼= G2 but
G′2 ∈ E (Fpk/d ) (twisted subfield)

Tate-like pairings

1st argument: R ∈ G1 2nd argument S ∈ G′2

Ate-like pairings

1st argument: R ∈ G′2 2nd argument S ∈ G1
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What else can we do?

Red stuff : Optimized or exhausted or given enough attention

Input: R, S and mopt = (mblog(mopt)c, ...,m0)2

Output: fR(S)

f ← 1, T ← R

for i from blog(mopt)c − 1 to 0 do

1 Compute g = l in the chord-and-tangent doubling of T

2 T ← [2]T

3 f ← f 2 · g(S)

end for

return f ← f (pk−1)
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A closer look at the Miller update step

Complexity of operations

i. f ← f 2 sk

ii. Evaluate g at S 2k/d ·m1

iii. f ← f · g mk?

i. f is a general element of Fpk (can’t do much here)
ii. Indeterminate g takes form g(x , y) = gx · x + gy · y + g0, and

is evaluated as g(Sx ,Sy )
ate: gx , gy , g0 ∈ Fpk/d and Sx ,Sy ∈ Fp

Tate: gx , gy , g0 ∈ Fp and Sx ,Sy ∈ Fpk/d

iii. KEY: If degree of twist d = 4 or d = 6, then g(S) is not a
general element of Fpk (i.e. f · g is not a full extension field
multiplication!)
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The multiplication f · g

An example of f · g (sextic twist)

f = (f2,1 ·α+ f2,0) ·β2 +(f1,1 ·α+ f1,0) ·β+(f0,1 ·α+ f0,0) ∈ Fpk ,

g(Sx ,Sy ) = (gx Ŝx) · β + (gy Ŝy ) · α + g0 ∈ Fpk ,

where the fi ,j ’s and both gx Ŝx and gy Ŝy are contained in Fpe .

NOT a full extension field multiplication!

Repetitively multiplying full elements (the f ’s) by sparse
elements (the g ’s) is potentially bad, because

We’re not making full use of finite field optimizations
(Karatsuba, Toom-Cook multiplication etc)
We’re “touching” the full extension field element before we
need to

... what can we do instead?
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Keeping the f ’s and g ’s separate

for i = blog2(m)c − 1 to 0 do

Compute g = l in the chord-and-tangent doubling of T

T ← [2]T

f ← f 2 · g(S)

end for

What happens if we keep the f ’s and g ’s separate for n
iterations in a row?

T would be doubled n times

The f would be squared n times in a row

The n consecutive g ’s would no longer be absorbed into f
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Combining n iterations: Miller 2n-tupling

for i = blog2n(m)c − 1 to 0 do

Compute gprod = g2n−1

1 g2n−2

2 ...g21

n−1gn in the 2n-tupling of T

T ← [2n]T

f ← f 2n · gprod(S)

end for

Green comps: was nsk + nm̃k → now nsk + mk

Red comps: Used to be n degree 1 functions, now is one
(much more complicated) 2n-degree function

How can we win?: if the extra computations incurred
computing gprod are redeemed by the saving of (n − 1)mk .

Will win if Fpk is much bigger than Fp (Tate) or Fpk/d (ate)
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How to get gprod

Compute gprod = g2n−1

1 g2n−2

2 ...g21

n−1gn in the 2n-tupling of T

T ← [2n]T

Tn = [2]Tn−1 = ... = [2n−1]T

Degrees of formulas for Tn and gn in terms of T = (x1, y1)
grow exponentially in n

Paper explores n = 2 (quadrupling) and n = 3 (octupling)

Paper explores two curve shapes

y2 = x3 + b d = 2, 6 twists Homogeneous projective
y2 = x3 + ax d = 2, 4 twists Weight-(1, 2)

Formulas are reduced using Gröbner basis reduction

Craig Costello Avoiding Full Extension Field Arithmetic in Pairing Computations



Introduction
Motivation

Miller 2n-tupling
Results

Related Work

An example: Quadrupling on y 2 = x3 + b

gprod =
2∏

i=1

(g[2i−1]T ,[2i−1]T )22−i
=
(
gT ,T

)2 · (g[2]T ,[2]T

)
,

g∗ = α · (L1,0 · xS + L2,0 · x2
S + L0,1 · yS + L1,1 · xSyS + L0,0),

L2,0 = −6X 2
1 Z1(5Y 4

1 + 54bY 2
1 Z2

1 − 27b2Z4
1 ),

L0,1 = 8X1Y1Z1(5Y 4
1 + 27b2Z4

1 ), First

L1,1 = 8Y1Z
2
1 (Y 4

1 + 18bY 2
1 Z2

1 − 27b2Z4
1 ), Argument

L0,0 = 2X1(Y
6
1 − 75bY 4

1 Z2
1 + 27b2Y 2

1 Z4
1 − 81b3Z6

1 ), Computations

L1,0 = −4Z1(5Y 6
1 − 75bZ2

1 Y 4
1 + 135Y 2

1 b2Z4
1 − 81b3Z6

1 ).

XD1 = 4X1Y1(Y
2
1 − 9bZ2

1 ), YD1 = 2Y 4
1 + 36bY 2

1 Z2
1 − 54b2Z4

1 , ZD1 = 16Y 3
1 Z1

(XD2 : YD2 : ZD2 ) = [2](XD1 : YD1 : ZD1 )
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Quadrupling on y 2 = x3 + b cont.

A = Y 2
1 , B = Z2

1 , C = A2
, D = B2

, E = (Y1 + Z1)2 − A − B, F = E2
, G = X 2

1 , H = (X1 + Y1)2 − A − G ,

I = (X1 + E)2 − F − G , J = (A + E)2 − C − F , K = (Y1 + B)2 − A − D, L = 27b2D, M = 9bF , N = A · C ,

R = A · L, S = bB, T = S · L, U = S · C , X
D1 = 2H · (A − 9S), Y

D1 = 2C + M − 2L, Z
D1 = 4J,

L1,0 = −4Z1 · (5N + 5R − 3T − 75U), L2,0 = −3G · Z1 · (10C + 3M − 2L), L0,1 = 2I · (5C + L),

L1,1 = 2K · Y
D1 , L0,0 = 2X1 · (N + R − 3T − 75U).

F∗ = L1,0 · xS + L2,0 · x2
S + L0,1 · yS + L1,1 · xS yS + L0,0, A2 = Y 2

D1 , B2 = Z2
D1 , C2 = 3bB2,

D2 = 2X
D1 · Y

D1 , E2 = (Y
D1 + Z

D1 )2 − A2 − B2, F2 = 3C2, X
D2 = D2 · (A2 − F2),

Y
D2 = (A2 + F2)2 − 12C2

2 , Z
D2 = 4A2 · E2.

The above sequence of operations costs 14m + 16s + 4em1.
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Addition in Miller 2n-tupling

We are now writing the loop parameter in base 2n

Instead of T ← T + R in standard routine, we must now
account for T ← T + [w ]R, where w < 2n.

Precompute and store the (small number of) values [w ]R in
the 2n-ary expansion of m

Must now multiply Miller function with addition update f +,
where div(f +) = w(R) + ([v ]R)− ([v ]R + [w ]R)− w(O)

f + =
∏w−1

i=0 g[v ]R+[i ]R,R ...BAD
f + = fw ,R · g[v ]R,[w ]R ...GOOD

Since [w ]R is precomputed, and fw ,R can also be
precomputed, this is at most two multiplications

... also possible that less addition steps occur in 2n-ary
implementation
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Algorithm summary: a typical iteration

Compute function gprod in the 2n-tupling of T

T ← [2n]T

f ← f 2n · gprod

if mi 6= 0 then
Compute function f + = fw ,R · gT ,[mi ]R

T ← T + [mi ]R
f ← f · f +

end if
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Results

j(E ) = 0: Curves of the form y2 = x3 + b

j(E ) = 1728: Curves of the form y2 = x3 + ax

j(E ) Doubling: n = 1 Quadrupling: n = 2 Octupling: n = 3
(6 loops) (3 loops) (2 loops)

0 12m + 42s + 12em1 42m + 48s + 12em1 80m + 64s + 16em1

+6M + 6S +3M + 6S +2M + 6S
1728 12m + 48s + 12em1 33m + 60s + 12em1 64m + 114s + 16em1

+6M + 6S +3M + 6S +2M + 6S

Table: Operation counts for the equivalent number of iterations of
2n-tuple and add for n = 1, 2, 3.
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Results cont...

Pairings on G1 × G2 Pairings on G2 × G1
(Tate, twisted ate) (ate, R-ate)

k j(E) n = 1 n = 2 n = 3 n = 1 n = 2 n = 3
(6 loops) (3 loops) (2 loops) (6 loops) (3 loops) (2 loops)

4 1728 159.6 163.2 232.4 159.6 163.2 232.4
6 0 219.6 209.4 249.2 219.6 209.4 249.2
8 1728 366 315.6 370.8 466.8 477.6 681.2
12 0 555.6 455.4 469.2 646.8 616.2 731.6
16 1728 973.2 760.8 770 1376.4 1408.8 2011.6
18 0 891.6 701.4 689.2 1074 1023 1214
24 0 1551.6 1181.4 1113.2 1916.4 1824.6 2162.8
32 1728 2770.8 2072.4 1935.6 4081.2 4178.4 5970.8
36 0 2547.6 1907.4 1757.6 3186 3033 3594
48 0 4515.6 3335.4 3013.2 5701.2 5425.8 6424.4

Table: Total base field operation count for the equivalent of 6 standard
double-and-add loops.
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Related Work

WAIFI2010 paper

Higher integrability into existing pairing code
Only slightly slower than these techniques
No cumbersome explicit formulas

Other paper (to appear soon on ePrint archive)

Many pairing-based protocols have one argument fixed (long
term key etc)
A heap of precomputation can be done
Much faster implementations possible here
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QUESTIONS?
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