Avoiding Full Extension Field Arithmetic in Pairing Computations

Craig Costello

craig.costello@qut.edu.au Queensland University of Technology

AfricaCrypt 2010

Joint work with Colin Boyd, Juanma Gonzalez-Nieto, Kenneth Koon-Ho Wong

Motivation

Faster pairings mean more efficient...

- ID-based encryption (IBE)
- ID-based key agreement
- short signatures
- group signatures
- ring signatures
- certificateless encryption
- hierarchical encryption
- attribute-based encryption

• ...

Table of contents

- Pairings and Miller's algorithm
- The evolution of Miller's algorithm: state-of-the-art pairings

2 Motivation

3 Miller 2ⁿ-tupling

5 Related Work

Pairings and Miller's algorithm The evolution of Miller's algorithm: state-of-the-art pairings

Pairings on ordinary elliptic curves over large prime fields

- Need two linearly independent points R and S of large prime order r on E(𝔽_p), i.e. need two subgroups of E[r]
- E(F_{p^k}) is the smallest extension that contains two such subgroups (all r + 1 subgroups in fact)
- k is the embedding degree, first value such that $r|p^k 1$
- Need a function f_R with divisor $\operatorname{div}(f_R) = r(R) r(\mathcal{O})$

Weil pairing methodology

$$e(R,S) = f_R(S)/f_S(R) \in \mathbb{F}_{p^k}$$

Tate pairing methodology

$$e(R,S) = f_R(S)^{p^k-1} \in \mathbb{F}_{p^k}$$

Pairings and Miller's algorithm The evolution of Miller's algorithm: state-of-the-art pairings

The pairing evaluation functions

What do the functions $f_R(S)$ and $f_S(R)$ look like?

- $\operatorname{div}(f_R) = r(R) r(\mathcal{O})$, i.e. a zero of order r at R, and a pole of order r at infinity (\mathcal{O}).
- Indeterminate f_R , f_S are of degree r (at least in affine form)
- If $R \in E(\mathbb{F}_p)$ and $S \in E(\mathbb{F}_{p^k})$, then
 - $f_R(S)$ will have coefficients in \mathbb{F}_p , evaluated at elements in \mathbb{F}_{p^k}
 - $f_S(R)$ will have coefficients in \mathbb{F}_{p^k} , evaluated at elements in \mathbb{F}_p
- Too much to store f_R explicitly before evaluating at S
- Therefore, evaluate at S as you build the function and vice versa.

Introduction

Motivation Miller 2ⁿ-tupling Results Related Work

Pairings and Miller's algorithm The evolution of Miller's algorithm: state-of-the-art pairings

Miller's algorithm

Input: R, S and $r = (r_{\lfloor \log(r) \rfloor}, ..., r_0)_2$ Output: $f_R(S)$

•
$$f \leftarrow 1, T \leftarrow R$$

• for
$$i$$
 from $\lfloor \log(r) \rfloor - 1$ to 0 do

• Compute g = I/v in the chord-and-tangent doubling of T• $T \leftarrow [2]T$

$$f \leftarrow f^2 \cdot g(S)$$

• if $r_i = 1$ then

i. Compute g = I/v in the chord-and-tangent addition of T + Rii. $T \leftarrow T + R$

iii.
$$f \leftarrow f \cdot g(S)$$

end if

end for: return f

Pairings and Miller's algorithm The evolution of Miller's algorithm: state-of-the-art pairings

Miller's algorithm for the Weil pairing methodology

Initially: run twice to compute $e(R, S) = f_R(S)/f_S(R)$

Input: R, S and $r = (r_{\lfloor \log(r) \rfloor}, ..., r_0)_2$ Output: $f_R(S)$ (first time) and $f_S(R)$ (second time)

•
$$f \leftarrow 1, T \leftarrow R$$

for i from [log(r)] - 1 to 0 do
Compute g = l/v in the chord-and-tangent doubling of T
T ← [2]T
f ← f² ⋅ g(S)
if r_i = 1 then

i. Compute g = l/v in the chord-and-tangent addition of T + R
ii. T ← T + R
iii. f ← f ⋅ g(S)
end if

Pairings and Miller's algorithm The evolution of Miller's algorithm: state-of-the-art pairings

Miller's algorithm for the Tate pairing methodology

Idea: run once and exponentiate $e(R, S) = f_R(S)^{p^k-1}$

Input: R, S and $r = (r_{\lfloor \log(r) \rfloor}, ..., r_0)_2$ Output: $f_R(S)$

•
$$f \leftarrow 1, T \leftarrow R$$

for *i* from ⌊log(*r*)⌋ - 1 to 0 do
Compute *g* = *l*/*v* in the chord-and-tangent doubling of *T T* ← [2]*T f* ← *f*² · *g*(*S*)
if *r_i* = 1 then

Compute *g* = *l*/*v* in the chord-and-tangent addition of *T* + *R T* ← *T* + *R f* ← *f* · *g*(*S*)

end if
end for: return *f* ← *f*(*p^k*-1)

Pairings and Miller's algorithm The evolution of Miller's algorithm: state-of-the-art pairings

Miller's algorithm with no inversions

Ideas: v's are in subfields so discard + projective coords

Input: R, S and $r = (r_{\lfloor \log(r) \rfloor}, ..., r_0)_2$ Output: $f_R(S)$

•
$$f \leftarrow 1, T \leftarrow R$$

for *i* from ⌊log(r)⌋ - 1 to 0 do
Compute g = l/v in the chord-and-tangent doubling of T
T ← [2]T
f ← f² ⋅ g(S)
if r_i = 1 then

i. Compute g = l/v in the chord-and-tangent addition of T + R
ii. T ← T + R
iii. f ← f ⋅ g(S)
end if

Pairings and Miller's algorithm The evolution of Miller's algorithm: state-of-the-art pairings

Miller's algorithm with optimal loop length

Idea: Minimize loop length + low Hamming-weight

Input: R, S and $m_{opt} = (m_{\lfloor \log(m_{opt}) \rfloor}, ..., m_0)_2$ Output: $f_R(S)$

•
$$f \leftarrow 1, T \leftarrow R$$

• for *i* from $\lfloor \log(m_{opt}) \rfloor - 1$ to 0 do

Compute g = l in the chord-and-tangent doubling of T
 T ← [2]T
 f ← f² ⋅ g(S)

(4) if
$$r_i = 1$$
 then

i. Compute g = l in the chord-and-tangent addition of T + Rii. $T \leftarrow T + R$ iii. $f \leftarrow f \cdot g(S)$

end if

end for: return $f \leftarrow f^{(p^k-1)}$

Introduction

Motivation Miller 2ⁿ-tupling Results Related Work

Pairings and Miller's algorithm The evolution of Miller's algorithm: state-of-the-art pairings

The state-of-the-art

Introduction

Motivation Miller 2ⁿ-tupling Results Related Work

Pairings and Miller's algorithm The evolution of Miller's algorithm: state-of-the-art pairings

Tate vs. ate groups

- $\mathbb{G}_1 = E[r] \cap \ker(\pi_p [1])$ and $\mathbb{G}_2 = E[r] \cap \ker(\pi_p [p])$, i.e. $\mathbb{G}_1 \in E(\mathbb{F}_p)$ (base field) and $\mathbb{G}_2 \in E(\mathbb{F}_{p^k})$ (full ext. field)
- Use twisted curve $E' \cong E$ to define $\mathbb{G}'_2 \cong \mathbb{G}_2$ but $\mathbb{G}'_2 \in E(\mathbb{F}_{p^{k/d}})$ (twisted subfield)

Tate-like pairings

1st argument: $R \in \mathbb{G}_1$

2nd argument $S \in \mathbb{G}_2'$

Ate-like pairings

1st argument: $R \in \mathbb{G}_2'$

2nd argument $S\in \mathbb{G}_1$

What else can we do?

Red stuff : Optimized or exhausted or given enough attention

A closer look at the Miller update step

Complexity of operationsi. $f \leftarrow f^2$ ii. Evaluate g at Siii. $f \leftarrow f \cdot g$ m_k ?

- i. f is a general element of \mathbb{F}_{p^k} (can't do much here)
- ii. Indeterminate g takes form $g(x, y) = g_x \cdot x + g_y \cdot y + g_0$, and is evaluated as $g(S_x, S_y)$
 - ate: $g_x, g_y, g_0 \in \mathbb{F}_{p^{k/d}}$ and $S_x, S_y \in \mathbb{F}_p$
 - Tate: $g_x, g_y, g_0 \in \mathbb{F}_p$ and $S_x, S_y \in \mathbb{F}_{p^{k/d}}$
- iii. **KEY:** If degree of twist d = 4 or d = 6, then g(S) is not a general element of \mathbb{F}_{p^k} (i.e. $f \cdot g$ is not a full extension field multiplication!)

The multiplication $f \cdot g$

• An example of $f \cdot g$ (sextic twist)

$$\begin{split} f &= (f_{2,1} \cdot \alpha + f_{2,0}) \cdot \beta^2 + (f_{1,1} \cdot \alpha + f_{1,0}) \cdot \beta + (f_{0,1} \cdot \alpha + f_{0,0}) \in \mathbb{F}_{p^k}, \\ g(S_x, S_y) &= (g_x \hat{S}_x) \cdot \beta + (g_y \hat{S}_y) \cdot \alpha + g_0 \in \mathbb{F}_{p^k}, \end{split}$$

where the $f_{i,j}$'s and both $g_X \hat{S}_X$ and $g_Y \hat{S}_Y$ are contained in \mathbb{F}_{p^e} .

- NOT a full extension field multiplication!
- Repetitively multiplying full elements (the *f*'s) by sparse elements (the *g*'s) is potentially bad, because
 - We're not making full use of finite field optimizations (Karatsuba, Toom-Cook multiplication etc)
 - We're "touching" the full extension field element before we need to
- ... what can we do instead?

Keeping the f's and g's separate

for
$$i = \lfloor \log_2(m) \rfloor - 1$$
 to 0 do
Compute $g = I$ in the chord-and-tangent doubling of T
 $T \leftarrow [2]T$
 $f \leftarrow f^2 \cdot g(S)$

end for

- What happens if we keep the f's and g's separate for n iterations in a row?
- T would be doubled n times
- The f would be squared n times in a row
- The *n* consecutive g's would no longer be absorbed into f

Combining *n* iterations: Miller 2^{*n*}-tupling

for $i = \lfloor \log_{2^n}(m) \rfloor - 1$ to 0 do Compute $g_{\text{prod}} = g_1^{2^{n-1}} g_2^{2^{n-2}} \dots g_{n-1}^{2^1} g_n$ in the 2ⁿ-tupling of T $T \leftarrow [2^n] T$ $f \leftarrow f^{2^n} \cdot g_{\text{prod}}(S)$

end for

- Green comps: was $n\mathbf{s}_k + n\mathbf{\tilde{m}}_k \rightarrow now n\mathbf{s}_k + \mathbf{m}_k$
- Red comps: Used to be n degree 1 functions, now is one (much more complicated) 2ⁿ-degree function
- How can we win?: if the extra computations incurred computing g_{prod} are redeemed by the saving of (n − 1)m_k.
- Will win if \mathbb{F}_{p^k} is much bigger than \mathbb{F}_p (Tate) or $\mathbb{F}_{p^{k/d}}$ (ate)

How to get $g_{\rm prod}$

Compute
$$g_{\text{prod}} = g_1^{2^{n-1}} g_2^{2^{n-2}} \dots g_{n-1}^{2^1} g_n$$
 in the 2ⁿ-tupling of T
 $T \leftarrow [2^n] T$

•
$$T_n = [2] T_{n-1} = \dots = [2^{n-1}] T$$

- Degrees of formulas for T_n and g_n in terms of $T = (x_1, y_1)$ grow exponentially in n
- Paper explores n = 2 (quadrupling) and n = 3 (octupling)
- Paper explores two curve shapes

•
$$y^2 = x^3 + b$$
 $d = 2,6$ twists Homogeneous projective
• $y^2 = x^3 + ax$ $d = 2,4$ twists Weight-(1,2)

• Formulas are reduced using Gröbner basis reduction

An example: Quadrupling on $y^2 = x^3 + b$

$$g_{\text{prod}} = \prod_{i=1}^{2} (g_{[2^{i-1}]T, [2^{i-1}]T})^{2^{2-i}} = (g_{T,T})^2 \cdot (g_{[2]T, [2]T}),$$

$$g^* = \alpha \cdot (L_{1,0} \cdot x_5 + L_{2,0} \cdot x_5^2 + L_{0,1} \cdot y_5 + L_{1,1} \cdot x_5 y_5 + L_{0,0}),$$

$$\begin{split} & L_{2,0} = -6X_1^2 Z_1(5Y_1^4 + 54bY_1^2 Z_1^2 - 27b^2 Z_1^4), \\ & L_{0,1} = 8X_1 Y_1 Z_1(5Y_1^4 + 27b^2 Z_1^4), \\ & L_{1,1} = 8Y_1 Z_1^2 (Y_1^4 + 18bY_1^2 Z_1^2 - 27b^2 Z_1^4), \\ & L_{0,0} = 2X_1 (Y_1^6 - 75bY_1^4 Z_1^2 + 27b^2 Y_1^2 Z_1^4 - 81b^3 Z_1^6), \\ & L_{1,0} = -4Z_1 (5Y_1^6 - 75bZ_1^2 Y_1^4 + 135Y_1^2 b^2 Z_1^4 - 81b^3 Z_1^6). \end{split}$$

 $X_{D^1} = 4X_1Y_1(Y_1^2 - 9bZ_1^2), \quad Y_{D^1} = 2Y_1^4 + 36bY_1^2Z_1^2 - 54b^2Z_1^4, \quad Z_{D^1} = 16Y_1^3Z_1$

 $(X_{D^2}: Y_{D^2}: Z_{D^2}) = [2](X_{D^1}: Y_{D^1}: Z_{D^1})$

Quadrupling on $y^2 = x^3 + b$ cont.

$$\begin{split} &A = Y_1^2, \ B = Z_1^2, \ C = A^2, \ D = B^2, \ E = (Y_1 + Z_1)^2 - A - B, \ F = E^2, \ G = X_1^2, \ H = (X_1 + Y_1)^2 - A - G, \\ &I = (X_1 + E)^2 - F - G, \ J = (A + E)^2 - C - F, \ K = (Y_1 + B)^2 - A - D, \ L = 27b^2D, \ M = 9bF, \ N = A \cdot C, \\ &R = A \cdot L, \ S = bB, \ T = S \cdot L, \ U = S \cdot C, \ X_{D1} = 2H \cdot (A - 9S), \ Y_{D1} = 2C + M - 2L, \ Z_{D1} = 4J, \\ &L_{1,0} = -4Z_1 \cdot (5N + 5R - 3T - 75U), \ L_{2,0} = -3G \cdot Z_1 \cdot (10C + 3M - 2L), \ L_{0,1} = 2I \cdot (5C + L), \\ &L_{1,1} = 2K \cdot Y_{D1}, \ L_{0,0} = 2X_1 \cdot (N + R - 3T - 75U). \\ &F^* = L_{1,0} \cdot x_5 + L_{2,0} \cdot x_5^2 + L_{0,1} \cdot y_5 + L_{1,1} \cdot x_5y_5 + L_{0,0}, A_2 = Y_{D1}^2, \ B_2 = Z_{D1}^2, \ C_2 = 3bB_2, \\ &D_2 = 2X_{D1} \cdot Y_{D1}, \ E_2 = (Y_{D1} + Z_{D1})^2 - A_2 - B_2, \ F_2 = 3C_2, \ X_{D2} = D_2 \cdot (A_2 - F_2), \\ &Y_{D2} = (A_2 + F_2)^2 - 12C_2^2, \ Z_{D2} = 4A_2 \cdot E_2. \end{split}$$

The above sequence of operations costs $14m + 16s + 4em_1$.

Addition in Miller 2ⁿ-tupling

- We are now writing the loop parameter in base 2ⁿ
- Instead of $T \leftarrow T + R$ in standard routine, we must now account for $T \leftarrow T + [w]R$, where $w < 2^n$.
- Precompute and store the (small number of) values [w]R in the 2ⁿ-ary expansion of m
- Must now multiply Miller function with addition update f^+ , where $\operatorname{div}(f^+) = w(R) + ([v]R) ([v]R + [w]R) w(\mathcal{O})$
 - $f^+ = \prod_{i=0}^{w-1} g_{[v]R+[i]R,R}$...BAD • $f^+ = f_{w,R} \cdot g_{[v]R,[w]R}$...GOOD
- Since [w]R is precomputed, and $f_{w,R}$ can also be precomputed, this is at most two multiplications
- ... also possible that less addition steps occur in 2ⁿ-ary implementation

Algorithm summary: a typical iteration

- \bullet Compute function $g_{\rm prod}$ in the 2^n-tupling of ${\cal T}$
- $T \leftarrow [2^n]T$
- $f \leftarrow f^{2^n} \cdot g_{\text{prod}}$
- if $m_i \neq 0$ then
 - Compute function $f^+ = f_{w,R} \cdot g_{T,[m_i]R}$

•
$$T \leftarrow T + [m_i]R$$

• $f \leftarrow f \cdot f^+$

end if

Results

•
$$j(E) = 0$$
: Curves of the form $y^2 = x^3 + b$
• $j(E) = 1728$: Curves of the form $y^2 = x^3 + ax$

j(E)	Doubling: $n = 1$	Quadrupling: $n = 2$	Octupling: $n = 3$	
	(6 loops)	(3 loops)	(2 loops)	
0	$12m + 42s + 12em_1$	$42m + 48s + 12em_1$	$80m + 64s + 16em_1$	
	+6 M + 6 S	+ 3M + 6 S	+2 M + 6 S	
1728	+6M + 6S 12m + 48s + 12em ₁	$\frac{+3\mathbf{M}+6\mathbf{S}}{33\mathbf{m}+60\mathbf{s}+12e\mathbf{m}_1}$	+2M + 6S 64m + 114s + 16em ₁	

Table: Operation counts for the equivalent number of iterations of 2^{n} -tuple and add for n = 1, 2, 3.

Results cont...

		Pairings on $\mathbb{G}_1 \times \mathbb{G}_2$			Pairings on $\mathbb{G}_2 \times \mathbb{G}_1$		
		(Tate, twisted ate)			(ate, R-ate)		
k	j(E)	n = 1	n = 2	n = 3	n = 1	n = 2	n = 3
		(6 loops)	(3 loops)	(2 loops)	(6 loops)	(3 loops)	(2 loops)
4	1728	159.6	163.2	232.4	159.6	163.2	232.4
6	0	219.6	209.4	249.2	219.6	209.4	249.2
8	1728	366	315.6	370.8	466.8	477.6	681.2
12	0	555.6	455.4	469.2	646.8	616.2	731.6
16	1728	973.2	760.8	770	1376.4	1408.8	2011.6
18	0	891.6	701.4	689.2	1074	1023	1214
24	0	1551.6	1181.4	1113.2	1916.4	1824.6	2162.8
32	1728	2770.8	2072.4	1935.6	4081.2	4178.4	5970.8
36	0	2547.6	1907.4	1757.6	3186	3033	3594
48	0	4515.6	3335.4	3013.2	5701.2	5425.8	6424.4

Table: Total base field operation count for the equivalent of 6 standard double-and-add loops.

Related Work

- WAIFI2010 paper
 - Higher integrability into existing pairing code
 - Only slightly slower than these techniques
 - No cumbersome explicit formulas
- Other paper (to appear soon on ePrint archive)
 - Many pairing-based protocols have one argument fixed (long term key etc)
 - A heap of precomputation can be done
 - Much faster implementations possible here

QUESTIONS?