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The evolution of faster pairings: 3 bags of tricks
This work

The evolution of faster pairings: 3 bags of tricks

1. Tricks “inside” the Miller iterations

optimal group choices → avoiding irrelevant operations -
denominator elimination

avoiding costly inversions - homogenization

minimize additions - low Hamming weight loop parameter

operations over smaller fields - employ twisted curve

Goal 1

Minimize the number (cost) of field operations throughout each
Miller iteration
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The evolution of faster pairings: 3 bags of tricks

2. Pairing-friendly curves

An array of constructions (FST - taxonomy)

For a ‘small’ k, we want group size r , field size q, trace t,
(n = #E = q + 1− t)

Not-in-family, ‘individual’ curve constructions (Cocks-Pinch,
DEM, supersingular curves, etc)

Families of curves (MNT, GMV, Freeman, cyclotomic families,
Scott-Barreto families, KSS curves, BN curves, etc)

Pairing-friendly fields

Goal 2

ρ = log q/ log r close to 1
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The evolution of faster pairings: 3 bags of tricks

3. Loop shortening techniques

Exploiting efficiently computable endomorphisms on CM
(complex multiplication) curves e.g. Scott’s NSS curves

ηT -pairing

ate pairing

ate pairing variants (optimized ate pairing, atei pairings,
R-ate pairing)

Goal 3

Minimize the loop length
(Vercauteren’s conjecture ≈ log2(r)/ϕ(k))
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The evolution of faster pairings: 3 bags of tricks
This work

Where does this work fit in?

We work on a special j-invariant zero (CM discriminant D = 3) curve

1: Minimize the number of field operations throughout each Miller iteration

This curve allows new faster formulas in the Miller loop that reduce the
operation count throughout each iteration

2: Low embedding degree k and ρ = log q/ log r close to 1

For the majority of embedding degrees k ≤ 50, this curve can be
constructed with the best (currently known) ρ-value

3: Minimize the loop length (≈ log2(r)/ϕ(k))

... more on this later
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What are we looking for?
Alternative doublings

Computations in a Miller iteration

Doubling stage

i. Double: R ← [2]R
ii. Compute lines l and v for doubling R = (xR , yR)
iii. f ← f 2 · l(Q)/v(Q)

Addition stage (if necessary)

i. Add: R ← R + P
ii. Compute lines l and v for adding R = (xR , yR) and

P = (xP , yP)
iii. f ← f · l(Q)/v(Q)
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What are we looking for?
Alternative doublings

Attractive doublings: a good place to start

Standard doubling of [2](x1, y1) = (x3, y3) on y2 = x3 + ax + b

x3 = λ2 − 2x1, y3 = λ(x1 − x3)− y1

with λ = (3x2
1 + a)/(2y1).

Let a function f = g/h. Define degTOTAL(f ) = deg(g) + deg(h).

Key observation: curve constant b is a square in Fq, (b = c2,
c ∈ Fq), we can write

x3 = x1(µ− µ2) + a σ, y3 = (y1 − c)µ3 + a δ − c

with

µ = (y1 + 3c)/(2y1), σ = (a− 3x2
1 )/(2y1)2

δ = (3x1(y1 − 3c)(y1 + 3c)− a(9x2
1 + a))/(2y1)3

At first glance latter formulas look worse... but total degrees less
(Monaghan/Pearce simplification algorithm)
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What are we looking for?
Alternative doublings

The special j-invariant zero curve

Doubling of [2](x1, y1) = (x3, y3) on y2 = x3 + c2 simplifies to

µ = (y1 + 3c )/(2y1)

x3 = x1(µ− µ2)

y3 = (y1 − c)µ3 − c

The curve v2 = u3 + c2 is isomorphic over Fq to y2 = cx3 + 1 with
the isomorphism σ : (x , y) 7→ (u, v) = (cx , cy) and σ(O) 7→ O.
Affine doubling on y2 = cx3 + 1

µ = (y1 + 3 )/(2y1)

x3 = x1(µ− µ2)

y3 = (y1 − 1)µ3 − 1

Affine (almost schoolbook) addition on y2 = cx3 + 1

µ = (y1 − y2)/(x1 − x2)

x3 = c
−1
λ2 − x1 − x2

y3 = λ(x1 − x3)− y1
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The Miller lines
Results

The affine Miller lines

Tate pairing e(P,Q): P ∈ E (Fq), xQ ∈ Fqd (proper subfield)

Only factors we need to carry through contain yQ ∈ Fqk

Addition line

gadd =
ladd (Q)

vadd (Q)
= c

λ(x2 − xQ)− y2 + yQ

c(x1 + x2 + xQ)− λ2

becomes

g ′add = (y1 − y2)(x2 − xQ)− (x1 − x2)(y2 − yQ)

Doubling line

gdbl =
ldbl (Q)

vdbl (Q)
=

2cy1(x1 − xQ)2

x2
1 (3cxQ)− y2

1 + 3 + 2y1yQ

becomes

g ′dbl = x2
1 (3cxQ)− y2

1 + 3− 2y1yQ
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The Miller lines
Results

Homogeneous projective coordinates

Represent (x , y) on the curve y2 = cx3 + 1 as (X : Y : Z ) on
Y 2Z = cX 3 + Z 3 where (x , y) = (X/Z ,Y /Z ).

Doubling [2](X1 : Y1 : Z1) = (X3 : Y3 : Z3) gives

X3 = 2X1Y1(Y 2
1 − 9Z2

1 )

Y3 = (Y1 − Z1)(Y1 + 3Z1)3 − 8Y 3
1 Z1

Z3 = 8Y 3
1 Z1

with line equation

g ′′dbl = X 2
1 (3cxQ)− Y 2

1 + 3Z2
1 − 2Y1Z1yQ

Point doubling here costs 4m+3s

Line computation only costs an extra km+1s (xQ ∈ Fqk/2 , yQ ∈ Fqk )

Total doubling stage cost = (k+3)m+5s
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Results

Results

Comparison of doubling and addition stages in the Miller loop
against best previous j-invariant zero (CM discriminant
D = 3) formulas

Tate pairing DBL mADD ADD
Arène et al. 3m + 8s 6m + 6s 9m + 6s
This work 3m + 5s 10m + 2s + 1c 13m + 2s + 1c

km (common for all) removed from above table

These formulas offer a saving of 3s at each doubling stage

Addition stages slower by approximately 4 m/s trade-offs

The formulas in this work only apply to special j-invariant
zero curves of the form y2 = cx3 + 1
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Generating the curve y 2 = cx3 + 1

Construction 6.6 in FST - “A taxonomy of pairing-friendly
elliptic curves” will always generate families of j-invariant
zero curves for arbitrary embedding degrees k - 18.

Most embedding degrees give optimal ρ-value construction on
a j-invariant zero (D=3) curves (all k ≤ 50, except
k = 6, 16, 22, 28, 40, 46)

We want to generate y2 = cx3 + 1 which always has the point
(x , y) = (0, 1) of order 3

If construction 6.6 (or any j-invariant construction) gives a
curve with order divisible by 3, faster formulas apply. Most of
the embedding degrees facilitate this...
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Example curves

k= 12, ρ ≈ 3/2, c = 1
q = 5889490407496391077863993523923693237754321026389/

51098413116844771387913 (239 bits)
r = 1461501669025015507443564621194276547766154173393 (161 bits)
t = 1099511633738 (41 bits)

ρ-value is much worse than what is achieved with BN curves (ρ = 1).

k=24, ρ ≈ 5/4, c = 3
q = 5489399840838040611293290643917562610638922954990/

22387041217 (199 bits)
r = 1490450500267642163962910277522470312138493750001 (161 bits)
t = 1051151 (21 bits)

ρ-value is current record for families of this embedding degree

k = 8, no curve (at least not with construction 6.6)
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Tying up a couple of loose ends

1 Scalar multiplication in Jacobian coordinates

The EFD reports 2m+5s for point doubling in Jacobian
coordinates for j-invariant zero curves.
Protocols should only switch to homogeneous projective
coordinates for the pairing.
Mapping (X : Y : Z ) ∈ J to (XZ : Y : cZ 3) ∈ P costs
2m+1s+1c.

2 Supersingular scenario

Can’t just use the distorsion map φ to define
ê(P,Q) = e(P, φ(Q))
Define ẽ(P,Q) = e(P, θ(Q)) where θ(Q) = φ(Q)− πp(φ(Q))
so that θ(Q) is in the trace-zero subgroup

3 Many methods of curve construction

KSS curves, Brezing and Weng curves, etc
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Summary (so far)

So long as a j-invariant zero curve has a point of order 3, the
formulas presented are applicable will give a solidly faster Tate
pairing

3: Minimize the loop length (≈ log2(r)/ϕ(k))

... more on this later NOW!

Can we apply this work to the Ate pairing?
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The ate pairing on y 2 = cx3 + 1... or not?

Raw ate pairing aT (Q,P) on curves not facilitating twists will
always work

When quadratic and sextic twists are applied to compute
aT (Q ′,P), the original curve E : v2 = u3 + B and the

twisted curve E ′ : v2 = u3 + βB (β 6= z2) can’t both be

written in the form y2 = cx3 + 1

The formulas in this paper won’t work since they assume that
both points are on a curve of the form y2 = cx3 + 1

For degree three twists, the formulas will work

e.g. The (quadratic, sextic) twist of a BN curve (k=12) has
order divisible by 3, but we can only twist Q onto this curve
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Current/near future work

Faster formulas that work for all j-invariant zero curves

Ate-like pairing (quadratic and sextic twists) with both points
on the curve y2 = cx3 + 1

Speeding up ate pairings on BN curves, KSS curves, etc
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Conclusion

Tate pairing on j-invariant zero curves can save approximately
3s in each Miller iteration if the curve has order divisible by 3

In the Tate pairing, the relative speed-up becomes less at
larger embedding degrees

Ate pairing will soon enjoy similar savings on these curves...
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