Faster Pairings on Special Weierstrass Curves

Craig Costello

craig.costello@qut.edu.au Queensland University of Technology

Pairing 2009

Joint work with Huseyin Hisil, Colin Boyd, Juanma Gonzalez-Nieto, Kenneth Koon-Ho Wong

Table of contents

- The evolution of faster pairings: 3 bags of tricks
- This work
- 2 Searching for a fast curve model
 - What are we looking for?
 - Alternative doublings
- 3 Tate pairing computation on $y^2 = cx^3 + 1$
 - The Miller lines
 - Results
- Generating the curve
- 5 Summary and future work

Searching for a fast curve model Tate pairing computation on $y^2 = cx^3 + 1$ Generating the curve Summary and future work

The evolution of faster pairings: 3 bags of tricks This work

The evolution of faster pairings: 3 bags of tricks

1. Tricks "inside" the Miller iterations

- \bullet optimal group choices \rightarrow avoiding irrelevant operations denominator elimination
- avoiding costly inversions homogenization
- minimize additions low Hamming weight loop parameter
- operations over smaller fields employ twisted curve

Goal 1

Minimize the number (cost) of field operations throughout each Miller iteration

Searching for a fast curve model Tate pairing computation on $y^2 = \alpha^3 + 1$ Generating the curve Summary and future work

The evolution of faster pairings: 3 bags of tricks This work

The evolution of faster pairings: 3 bags of tricks

2. Pairing-friendly curves

- An array of constructions (FST taxonomy)
- For a 'small' k, we want group size r, field size q, trace t, (n = #E = q + 1 - t)
- Not-in-family, 'individual' curve constructions (Cocks-Pinch, DEM, supersingular curves, etc)
- Families of curves (MNT, GMV, Freeman, cyclotomic families, Scott-Barreto families, KSS curves, BN curves, etc)
- Pairing-friendly fields

Goal 2 $\rho = \log q / \log r \text{ close to } 1$

Searching for a fast curve model Tate pairing computation on $y^2 = cx^3 + 1$ Generating the curve Summary and future work

The evolution of faster pairings: 3 bags of tricks This work

The evolution of faster pairings: 3 bags of tricks

3. Loop shortening techniques

- Exploiting efficiently computable endomorphisms on CM (complex multiplication) curves e.g. Scott's NSS curves
- η_T -pairing
- ate pairing
- ate pairing variants (optimized ate pairing, ate; pairings, *R*-ate pairing)

Goal 3

Minimize the loop length (Vercauteren's conjecture $\approx \log_2(r)/\varphi(k)$)

Searching for a fast curve model Tate pairing computation on $y^2 = cx^3 + 1$ Generating the curve Summary and future work

The evolution of faster pairings: 3 bags of tricks This work

Where does this work fit in?

We work on a special *j*-invariant zero (CM discriminant D = 3) curve

1: Minimize the number of field operations throughout each Miller iteration

This curve allows new faster formulas in the Miller loop that reduce the operation count throughout each iteration

2: Low embedding degree k and $\rho = \log q / \log r$ close to 1

For the majority of embedding degrees $k \le 50$, this curve can be constructed with the best (currently known) ρ -value

3: Minimize the loop length ($\approx \log_2(r)/\varphi(k)$)

... more on this later

What are we looking for? Alternative doublings

Computations in a Miller iteration

Doubling stage

- i. Double: $R \leftarrow [2]R$
- ii. Compute lines *I* and *v* for doubling $R = (x_R, y_R)$

iii.
$$f \leftarrow f^2 \cdot l(Q)/v(Q)$$

• Addition stage (if necessary)

- i. Add: $R \leftarrow R + P$
- ii. Compute lines *I* and *v* for adding $R = (x_R, y_R)$ and $P = (x_P, y_P)$ iii. $f \leftarrow f \cdot I(Q)/v(Q)$

What are we looking for? Alternative doublings

Attractive doublings: a good place to start

• Standard doubling of $[2](x_1, y_1) = (x_3, y_3)$ on $y^2 = x^3 + ax + b$

$$x_3 = \lambda^2 - 2x_1,$$
 $y_3 = \lambda(x_1 - x_3) - y_1$

with $\lambda = (3x_1^2 + a)/(2y_1).$

- Let a function f = g/h. Define $deg_{TOTAL}(f) = deg(g) + deg(h)$.
- Key observation: curve constant b is a square in \mathbb{F}_q , $(b = c^2, c \in \mathbb{F}_q)$, we can write

$$x_3 = x_1(\mu - \mu^2) + a\sigma, \qquad y_3 = (y_1 - c)\mu^3 + a\delta - c$$

with

$$\begin{array}{lll} \mu & = & (y_1 + 3c)/(2y_1), & \sigma & = & (a - 3x_1^2)/(2y_1)^2 \\ \delta & = & (3x_1(y_1 - 3c)(y_1 + 3c) - a(9x_1^2 + a))/(2y_1)^3 \end{array}$$

• At first glance latter formulas look worse... but total degrees less (Monaghan/Pearce simplification algorithm)

What are we looking for? Alternative doublings

The special *j*-invariant zero curve

• Doubling of $[2](x_1, y_1) = (x_3, y_3)$ on $y^2 = x^3 + c^2$ simplifies to

$$\mu = (y_1 + 3c)/(2y_1)$$

$$x_3 = x_1(\mu - \mu^2)$$

$$y_3 = (y_1 - c)\mu^3 - c$$

- The curve $v^2 = u^3 + c^2$ is isomorphic over \mathbb{F}_q to $y^2 = cx^3 + 1$ with the isomorphism $\sigma : (x, y) \mapsto (u, v) = (cx, cy)$ and $\sigma(\mathcal{O}) \mapsto \mathcal{O}$.
- Affine doubling on $y^2 = cx^3 + 1$

$$\mu = (y_1 + 3)/(2y_1)$$

$$x_3 = x_1(\mu - \mu^2)$$

$$y_3 = (y_1 - 1)\mu^3 - 1$$

• Affine (almost schoolbook) addition on $y^2 = cx^3 + 1$

$$\mu = (y_1 - y_2)/(x_1 - x_2)$$

$$x_3 = \mathbf{c}^{-1}\lambda^2 - x_1 - x_2$$

$$y_3 = \lambda(x_1 - x_3) - y_1$$
Traig Costello Faster Pairings on Special Weierstrass Curve

The Miller lines Results

The affine Miller lines

- Tate pairing e(P,Q): $P \in E(\mathbb{F}_q)$, $x_Q \in \mathbb{F}_{q^d}$ (proper subfield)
- Only factors we need to carry through contain $y_Q \in \mathbb{F}_{q^k}$
- Addition line

$$g_{add} = \frac{I_{add}(Q)}{v_{add}(Q)} = c \frac{\lambda(x_2 - x_Q) - y_2 + y_Q}{c(x_1 + x_2 + x_Q) - \lambda^2}$$

becomes

$$g'_{add} = (y_1 - y_2)(x_2 - x_Q) - (x_1 - x_2)(y_2 - y_Q)$$

Doubling line

$$g_{dbl} = \frac{I_{dbl}(Q)}{v_{dbl}(Q)} = \frac{2cy_1(x_1 - x_Q)^2}{x_1^2(3cx_Q) - y_1^2 + 3 + 2y_1y_Q}$$

becomes

$$g'_{dbl} = x_1^2(3cx_Q) - y_1^2 + 3 - 2y_1y_Q$$

The Miller lines Results

Homogeneous projective coordinates

- Represent (x, y) on the curve $y^2 = cx^3 + 1$ as (X : Y : Z) on $Y^2Z = cX^3 + Z^3$ where (x, y) = (X/Z, Y/Z).
- Doubling $[2](X_1 : Y_1 : Z_1) = (X_3 : Y_3 : Z_3)$ gives

$$X_3 = 2X_1Y_1(Y_1^2 - 9Z_1^2)$$

$$Y_3 = (Y_1 - Z_1)(Y_1 + 3Z_1)^3 - 8Y_1^3Z_1$$

$$Z_3 = 8Y_1^3Z_1$$

with line equation

$$g_{dbl}^{\prime\prime} = X_1^2 (3cx_Q) - Y_1^2 + 3Z_1^2 - 2Y_1Z_1y_Q$$

- Point doubling here costs 4m+3s
- Line computation only costs an extra k $\mathbf{m}+1\mathbf{s}$ $(x_Q \in \mathbb{F}_{q^{k/2}}, y_Q \in \mathbb{F}_{q^k})$
- Total doubling stage cost = (k+3)m+5s

The Miller lines Results

Results

• Comparison of doubling and addition stages in the Miller loop against best previous *j*-invariant zero (CM discriminant D = 3) formulas

Tate pairing	DBL	mADD	ADD
Arène et al.	3 m + 8 s	6 m + 6 s	9 m + 6 s
This work	3 m + 5 s	10m + 2s + 1c	13m + 2s + 1c

- km (common for all) removed from above table
- These formulas offer a saving of 3s at each doubling stage
- $\bullet\,$ Addition stages slower by approximately 4 m/s trade-offs
- The formulas in this work only apply to special *j*-invariant zero curves of the form $y^2 = cx^3 + 1$

Generating the curve $y^2 = cx^3 + 1$

- Construction 6.6 in FST "A taxonomy of pairing-friendly elliptic curves" will always generate **families** of *j*-invariant zero curves for arbitrary embedding degrees k ∤ 18.
- Most embedding degrees give optimal ρ-value construction on a j-invariant zero (D=3) curves (all k ≤ 50, except k = 6, 16, 22, 28, 40, 46)
- We want to generate y² = cx³ + 1 which always has the point (x, y) = (0, 1) of order 3
- If construction 6.6 (or any *j*-invariant construction) gives a curve with order divisible by 3, faster formulas apply. Most of the embedding degrees facilitate this...

Summary and future work

Example curves

- k= 12, $ho \approx 3/2$, c = 1
 - $\label{eq:q} \begin{array}{l} q = 5889490407496391077863993523923693237754321026389 / \\ 51098413116844771387913 \mbox{ (239 bits)} \end{array}$
 - r = 1461501669025015507443564621194276547766154173393 (161 bits)
 - t = 1099511633738 (41 bits)
- ρ-value is much worse than what is achieved with BN curves (ρ = 1).
- k=24, $\rho \approx 5/4$, c = 3
 - $\begin{array}{l} q = 5489399840838040611293290643917562610638922954990 / \\ 22387041217 \ (199 \ bits) \end{array}$
 - r = 1490450500267642163962910277522470312138493750001 (161 bits)
 - t = 1051151 (21 bits)
- ρ-value is current record for families of this embedding degree
- k = 8, no curve (at least not with construction 6.6)

Tying up a couple of loose ends

Scalar multiplication in Jacobian coordinates

- The EFD reports 2m+5s for point doubling in Jacobian coordinates for *j*-invariant zero curves.
- Protocols should only switch to homogeneous projective coordinates for the pairing.
- Mapping $(X : Y : Z) \in \mathcal{J}$ to $(XZ : Y : cZ^3) \in \mathcal{P}$ costs $2\mathbf{m}+1\mathbf{s}+1\mathbf{c}$.
- ② Supersingular scenario
 - Can't just use the distorsion map ϕ to define $\hat{e}(P,Q) = e(P,\phi(Q))$
 - Define $\tilde{e}(P, Q) = e(P, \theta(Q))$ where $\theta(Q) = \phi(Q) \pi_p(\phi(Q))$ so that $\theta(Q)$ is in the trace-zero subgroup
- Many methods of curve construction
 - KSS curves, Brezing and Weng curves, etc

Summary (so far)

- So long as a *j*-invariant zero curve has a point of order 3, the formulas presented are applicable will give a solidly faster Tate pairing
- 3: Minimize the loop length ($\approx \log_2(r)/arphi(k)$)

... more on this later NOW!

• Can we apply this work to the Ate pairing?

The ate pairing on $y^2 = cx^3 + 1...$ or not?

- Raw ate pairing $a_T(Q, P)$ on curves not facilitating twists will always work
- When quadratic and sextic twists are applied to compute a_T(Q', P), the original curve E : v² = u³ + B and the twisted curve E' : v² = u³ + βB (β ≠ z²) can't both be written in the form y² = cx³ + 1
- The formulas in this paper won't work since they assume that both points are on a curve of the form $y^2 = cx^3 + 1$
- For degree three twists, the formulas will work
- e.g. The (quadratic, sextic) twist of a BN curve (k=12) has order divisible by 3, but we can only twist Q onto this curve

Current/near future work

- Faster formulas that work for all *j*-invariant zero curves
- Ate-like pairing (quadratic and sextic twists) with both points on the curve $y^2 = cx^3 + 1$
- Speeding up ate pairings on BN curves, KSS curves, etc

- Tate pairing on *j*-invariant zero curves can save approximately 3s in each Miller iteration if the curve has order divisible by 3
- In the Tate pairing, the relative speed-up becomes less at larger embedding degrees
- Ate pairing will soon enjoy similar savings on these curves...

Thanks to Professor Tanja Lange and the anonymous referees for their valuable guidance