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Part 1:

Why use curves at all?




Diffie-Hellman key exchange (circa 19/6)

g = 1606938044258990275541962092341162602522202993782792835301301
g = 123456789

g® mod q = 7846737452942265357975459631985270257549969298008577794859>

§€0048104293218128667441021342483133802626271394299410128798 = g” mod q

paper



https://ee.stanford.edu/~hellman/publications/24.pdf

Index calculus -

solve g¥=h (modp)
eg. 3*=37 (mod1217)

- factor base p; = {2,3,5,7,11,13,17,19}, #p;, =8
- Find 8 values of k where 3% splits over p;, i.e., 3% = +[[p; mod p

(mod 1217) (mod 1216) (mod 1216)
31 =3 L(2) = 216
324 = _22.7.13 1=1(3) LES% =1
325 = 5 = L(5) = 819
330 = _2. 52 25=3-L(5) L(7) = 113
234 = _3.7.19 ‘ 30 = 608 + L(2) + 2 - L(5) L(11) — 1059

54 — 34 = 608 + L(3) + L(7) + L(19) _
354 = _5.11 S L(13) = 87
371 = _17 = 608 + L(5) + L(11) L(17) = 679
387 = 13 71 =608 + L(17) L(19) = 528

87 = L(13)


https://www.ams.org/journals/mcom/1993-61-203/S0025-5718-1993-1225541-3/S0025-5718-1993-1225541-3.pdf

Index calculus

solve  g*=h (modp)
eg. 3*=37 (mod1217)

L(2) = 216 Now search for j such that g/ - h = 37 - 37 factors over p;
L3 = 19 316 .37 = 23.7.11 (mod 1217)

Dz 10s  L(37)=3-L(2) +L(7) + L(11) — 16 (mod 1216)
ST =3-216+ 113 + 1059 — 1

L(19) = 528 = 588

| | / /3. /
Subexponential complexity Lp[1/3, (64/9)1/3] — e((64/9)1 3+0(1))(ln(p))1 3.(Inln(p))?/3



Diffie-Hellman key exchange (circa 2016

58096059953699580628595025333045743706869751763628952366614861522872037309971102257373360445331184072513261577549805174439905295945400471216628856721870324010321116397
06440498844049850989051627200244765807041812394729680540024104827976584369381522292361208779044769892743225751738076979568811309579125511333093243519553784816306381580
16186020024749256844815024251530444957718760413642873858099017255157393414625583036640591500086964373205321856683254529110790372283163413859958640669032595972518744716
90595408050123102096390117507487600170953607342349457574162729948560133086169585299583046776370191815940885283450612858638982717634572948835466388795543116154464463301
99254382340016292057090751175533888161918987295591531536698701292267685465517437915790823154844634780260102891718032495396075041899485513811126977307478969074857043710
716150121315922024556759241239013152919710956468406379442914941614357107914462567329693649

g = 123456789

197496648183227193286262018614250555971909799762533760654008147994875775445667054218578105133138217497206890599554928429450667899476

a 854668595594034093493637562451078938296960313488696178848142491351687253054602202966247046105770771577248321682117174246128321195678
537631520278649403464797353691996736993577092687178385602298873558954121056430522899619761453727082217823475746223803790014235051396

(n]()d qo 799049446508224661850168149957401474638456716624401906701394472447015052569417746372185093302535739383791980070572381421729029651639
304234361268764971707763484300668923972868709121665568669830978657804740157916611563508569886847487772676671207386096152947607114559

- 706340209059103703018182635521898738094546294558035569752596676346614699327742088471255741184755866117812209895514952436160199336532
6052422101474898256696660124195726100495725510022002932814218768060112310763455404567248761396399633344901857872119208518550803791724

411604662069593306683228525653441872410777999220572079993574397237156368762038378332742471939666544968793817819321495269833613169937
986164811320795616949957400518206385310292475529284550626247132930124027703140131220968771142788394846592816111078275196955258045178
705254016469773509936925361994895894163065551105161929613139219782198757542984826465893457768888915561514505048091856159412977576049
073563225572809880970058396501719665853110101308432647427786565525121328772587167842037624190143909787938665842005691911997396726455 g
110758448552553744288464337906540312125397571803103278271979007681841394534114315726120595749993896347981789310754194864577435905673

172970033596584445206671223874399576560291954856168126236657381519414592942037018351232440467191228145585909045861278091800166330876 ( ()d>qo
4073238447199488070126873048860279221761629281961046255219584327714817248626243962413613075956770018017385724999495117779149416882188
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Difflie-Hellman key exchange (cont.)

Individual secret keys secure under Discrete Log Problem (DLP). g,g* » x
Shared secret secure under Diffie-Hellman Problem (DHP): g, g%, g° — g%?

Fundamental operation in DH is group exponentiation: g, x + g*
.. done via “square-and-multiply”, e.g., (x), = (1,0,1,1,0,0,0,1 ...)

We are working “mod q", but only with one operation: multiplication

Main reason for fields being so big: (sub-exponential) index calculus attacks!



DH key exchange (Koblitz-Miller style

T all we need is a group, why not use elliptic curve groups?

MATHEMATICS OF (07
VOl UME 4K, NUMBL
SANUARY 1487, PAtES.

Elliptic Curve Cryptosystems Use of Elliptic Curves in Cryptography

By Neal Koblitz

s i Victor 5. Miller

Thin puguer i eakcated i Danief Shanks on the excusion of his ver

Alsract. We discuss analogs based on elliptic curves ower finite Gelds of public key Exploratory Compuzer Science, I1BM Rescarch, P.0. Box 218, Yormown Heigas, NY 16538

cryplosystems which use the multiplicative group of a finite ficld. These elliptic curve

cryplosystems may be more secure. because the analog of the discrete logarithm problem on ABSTRACT

elliptic curves s bikely 1o be harder than the classical discrete logarithem problens, especially

over GFi2"). We discuss the question of primitive points on an ellipsic curve modulo p. and We discuss the use of elliptic curves in cryptography. In particular, we propose an analogue of the
give u theorem on nonsmoothness of the order of he cyclic subgroup generated by a global

Diffic-Hellmann key exchange protocol which appears to be immune from attacks of the style of

point

Western, Miller, and Adleman. With the current bounds for infeasible attack, it appears to be

1. Introduetion. The earliest public key cryptosystems using number theory were about 20% faster than the Diffic- Hellmann scheme over GF(p). As computational power grows,
based on the structure either of the multiplicative group (Z,/N Z)* or the multiplica- this disparity should get rapidly bigger.

tive group of a finite field GF{g), g = p". The subsequeni construciion of analogous
systems based on other finite Abelian groups, together with H, W, Lenstra's success
in using elliptic curves for integer factorization, make it nawral to swdy the
possibility of public key cryptography based on the structure of the group of points
of an elliptic curve over a large finite field. We first briefly recall the facts we need
about such clliptic curves (for more details, see (4] or [5]). We then deseribe elliptic
curve analogs of the Massey-Omura and ElGamal systems. We give some concrete
examples, discuss the question of primitive poinis, and conclude with a theorem
concerning the probability that the order of a cyclic subgroup is nonsmooth.

I would like to thank A. Odlyzko for valuable discussions and correspondence,
and for sending me a preprint by V. 8. Miller, who independently arrived at some
similar ideas about elliptic curves and cryptography.

2. Elliptic Curves. An elliptic curve £, defined over a field K of characteristic
# 2 or 3 is the set of solutions (x, y) € K* to the equation

{n yVi=x'tax+h  abek

(where the cubic on the right has no multiple roots). More precisely, it is the set of
such solutions together with a “point at infinity” (with homogeneous coordinates
(0,1,0): if K is the real numbers, this corresponds 1o the vertical direction which the
tangent line 1o E, approaches as x — o). One can start ouwt with a more com-
plicated general formula for £, which can easily be reduced 1o (1) by a linear
change of variables whenever char K # 2.3, If charK = 2—an important case in

Reecived October 29, 1985; revised June 5, 1986,

1980 Markemutics Swbyect Classificarion (1985 Revision), Primary 1171, $4A60: Secondary 65P25,

1YL, Y40

1967 American Mathematical Society

. Williams (Ed.): Advances in Cryprology - CRYPTO "85, LNCS 218, pp. 417-426, 1936

a e r U025 5TLR/HT SL00 + $.25 per page H.
208  Springer-Verlag Berlin Heidelberg 1086 p a p e r

Rationale: “it is extremely unlikely that an index calculus attack on the elliptic curve
method will ever be able to work” [Miller, 85


https://www.ams.org/journals/mcom/1993-61-203/S0025-5718-1993-1225541-3/S0025-5718-1993-1225541-3.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf

Elliptic curve group law is easy

Fun fact:  homomorphism between Jacobian of elliptic
curve and elliptic curve itself

Upshot.  you don't have to know what a Jacobian is to
understand/do elliptic curve cryptography



The elliptic curve group law @

R=PaQ

a line that intersects a cubic twice must intersect it again



The fundamental ECC operation

P kv |

\ GIF: Wouter Castryck



Scalar multiplications via double-and-ado

How to (naively) compute k,Q — |k]Q 7
P < Q k= (kn kn—1, -, ko)

fori fromn — 1 downto 0 do

P « [2]P - DBL

if k;, =1 then

end if P—POQ ;ADD
end for I

return P(= [k]Q)



FCDLP security and Pollard’s rho algorithm

» ECDLP: given P,Q € E(FF,) of prime order N, find k such that @ = [k]P

« Pollard’78: compute pseudo-random R; = [a;]P + [b;]Q until
we find a collision Ri = R] with bi =+ bj, then k = (Cl] — Cli)/(bi — bj)

Birthday paradox says we can expect collision after computing
Jmn/2 group elements R;, i.e., after ~ VN group operations.
So 2128 security needs N = 22%°6

« The best known ECDLP algorithm on (well-chosen) elliptic curves
remains generic, i.e., elliptic curves are as strong as is possible

paper



https://www.ams.org/journals/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf

Index calculus on elliptic curves?

[Miller, 85] : “it is extremely unlikely that an index calculus [...] will ever be able to work”

Consider E/Fq517: vy = x3 —3x + 139
HE(Fy,.,) = 1277
P = (3,401) and Q = (192,847)
ECDLP: find k such that [k]P = Q

Regardless of factor base, can't efficiently decompose elements!

e.q., factor base R; = {(3,401), (5,395),(7,73),(11,252),(13,104),(19,265)}

Writing § = Y| k;|R; involves solving discrete logarithms, compare
this to integers mod p where we lift and factorise over the integers



NIST Curve P-256

NIST NISTReCur.pdf X |+

é O ‘ csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

RECOMMENDED ELLIPTIC CURVES FOR FEDERAL
GOVERNMENT USE

July 1999

ment use and contains choices of private key length and underlying fields.

1. PARAMETER CHOICES

2. CUurvEs oVER PriME FIELDS

N niinnul I ns-iifoe For each prime p. a psendo-random curve
of Standards e e
and Technology

(mod p)

This collection of elliptic curves is recommended for Federal govern-

P

b

G,

G,

Curve P-256

1157920892103562487626974469494075735300861 4\
3415290314195533631308867097853951

11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

€49d3608 86e70493

75d4f7e0 ce8dB84a9

769886bc 651d06b0

63a440f2 77037d81

7c0f9e16 2bce3357

6a6678e1l

7efbal66
cbl1l4abc

5ac635d8
cch53b0f6

6b17d1£2
2deb33a0

4fe342e2
6b315ece

139d26Db7 819£7e90

2985be94 03cb0565¢
af317768 0104fald

aa3a93e7 b3ebbd55
3bce3c3e 27d2604b

el2c4247 £8bcebeb
4213945 d898¢c296

fela7f9b 8Bee7ebda
cbb64068 37bf51f5



EFCDH key exchange (1999 — nowish)

p = 2256 _ 2224— + 2192 + 296 —1
p = 115792089210356248762697446949407573530086143415290314195533631308867097853951

2 — 3
E/F,.y“=x>—3x+b
#E = 115792089210356248762697446949407573529996955224135760342422259061068512044369

P = (48439561293906451759052585252797914202762949526041747995844080717082404635286,
36134250956749795798585127919587881956611106672985015071877198253568414405109)

[a]P = (84116208261315898167593067868200525612344221886333785331584793435449501658416,
102885655542185598026739250172885300109680266058548048621945393128043427650740)

[b]P = (101228882920057626679704131545407930245895491542090988999577542687271695288383,
77887418190304022994116595034556257760807185615679689372138134363978498341594)




Part 2:

Why go beyond genus 17




Why hyperelliptic?

“These jacobian varieties seems to
be a rich source of finite abelian
groups for which, so far as is
known, the discrete log problem is
intractable” — [Koblitz "89]

1. Cryptology (1989) 1: 139-150

Journal of Cryptology

© 1989International Association for
Cryplologic Research

Hyperelliptic Cryptosystems*

Neal Koblitz

Department of Mathematics GN-50, University of Washington,
Seattle, WA 98195, US.A.

Abstract. In this paper we discuss a source of finite abelian groups suitable for
cryptosystems based on the presumed intractability of the discrete [ogarithm
problem for these groups. They are the jacobians of hyperelliptic curves defined
over finite fields. Special attention is given to curves defined over the field of two
elements. Explicit formulas and examples are given, and the problem of finding
groups of almost prime order is discussed.

Key words. Cryptosystem, Public key, Discrete logarithm, Hyperelliptic curve,
Jacobian.

1. Introduction

In a finite abelian group, if an element was obtained as a multiple of another known
element (the “base”), the discrete logarithm problem consists in finding the integer
that was multiplied by the base to get the element. Whenever we have a finite abelian
group for which the discrete log problem appears to be intractable, we can construct
various public key cryptosystems in which taking large multiples of a group element
is the trapdoor function. Such cryptosystems were first constructed from the multi-
plicative group of a finite field. However, because certain special techniques are
available for attacking the discrete log problem in that case (especially when the
field has characteristic 2, see [13]), it is worthwhile to study other sources of finite
abelian groups.

In [8] we described how the group of points on an elliptic curve can be used to
construct public key cryptosystems. The purpose of the present article is to discuss
the more general class of groups obtained from the jacobians of hyperelliptic curves.
These jacobian varieties seem to be a rich source of finite abelian groups for which,
so far as is known, the discrete log problem is intractable. We pay special attention
to the case when the ground field has characteristic 2, because arithmetic over such
fields is particularly amenable to efficient implementation, and because it is in that
case that the multiplicative group of the field does not provide secure cryptosystems
unless the size of the field is extremely large, as explained in [13].

After giving the basic definitions of the group elements and the group addition
in Section 2, we describe an algorithm for addition in Section 3. In Sections 2 and

! Date received: February 4, 1988, Date revised: September 28, 1988.
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Hyper is (way) harder!

« Everything is much more complicated beyond genus 1. understanding,
group law, arithmetic, point counting (i.e. finding strong instantiations),
implementation, etc...

» The practical incentive for HECC in genus g > 1 boils down to

#]-(F,) = 0(q9) (see Ben's notes)

« E.g. g = 2 with p = 2" gets the same size cryptographic groups as g = 1
with p = 22", i.e. we can use fields of half the size!

« But things no longer “easy” like it was in genus 1... must understand the
language of divisors (see Ben's slides)



Genus 2 group law oubling (21D = D"

Addition D @ D' = D" C/K : y* = x> 4 .-

D = (P) + (Py) — 2(c0) [\ N
D' = () + (B) — 2() L,Z .

Du — (P1”) + (PZH) _ 2(00)

[f%

P

div(£) = (P) + (Py) + (P) + (P,") + («(P1)) + («(Py)) — 6(o0) div(€) = 2(Py) + 2(P,) + («(P1")) + (e(Py')) — 6(0)



Genus 3 group law

C/K:y*=x"+--

P ,

_ Pl B P, P. 2
Pl P4 P3 G /\ \
a ) / \ P \J

Py

|

Py

Composition Dy €6 D, = D Reduction D = D’ \

D, = (Py) + (P2) + (P3) — 3(»)
D, = (Py) + (Ps) + (Pg) — 3()

D = (P) + (P,) + (P3) + (P,) — 4()
D'=(P,)+ (P;') + (P;3') — 3()



Mumford representation

D = (a(x),b(x))
= (x% + ayx + agy, by x + by)

D' = (a’(x),b’(x)) [7<
= (x% + ajx + agy, bix + by) &

C/K : y? = x5 + -

Py

Addition D @ D' = D"

1. Compute cubic £(x) = l3x3 + --- + I such that
[(x) = b(x) mod a(x) and I'(x) = b'(x) mod a’(x) D = (P) + (P,) — 2(co)

2. Solve I(x)? — (x5 + ) = a(x)a'(x)a"" (x) for a’(x) , , ,
Compute b"'(x) = —I(x) mod a” (x) D= (P) + () — 2(c)
Output D' = (a" (x), b" (x)) D" =(P") + (P) — 2()



Question

Why is it computationally preferable to work in Mumford coordinates
rather than, say, using the coordinates of the points themselves?



Scalar multiplications via double-and-ado

How to (naively) compute k,Q — |k]Q 7
P < Q k= (kn kn—1, -, ko)

fori fromn — 1 downto 0 do

P« |2]P ~ i
SN

if k;, =1 then .
PP y

end if @ Q /7<

end for VV

return P(= [k]Q)



Trade-ofts for prime order Jacobians...

« NIST (elliptic) Curve P-256
DBL = 8M
ADD = 16M

» Hyperelliptic P-128

DBL ~ 35M Q" il
ADD ~ 63M et




Part 3

Why stop at genus 27




Index calculus attacks genus g = 3

Most reduced elements in Pic®(C) look like
(P1) + (P2) + (P3) — 3(0)
But some “special” divisors look like (@) + (Q,) — 2(o), and some look like (R;) — (o)

Unlike the elliptic curve case, we now have a notion of “smallness” that allows a factor base for index
calculus

Compute multiples of DLP inputs until they "decompose” into special divisors and split over the factor
base, i.e. D = (a(x),b(x)) = (x3 + a,x? + a;x + ag, bx% + byx + by) where

a(x)=(x = xp, ) (x = xr,) (x = xg;)

Then D = D; + D, + D3 where D; = (Ry) — (), Dy = (Ry) — (), D3 = (R3) — ().



Index calculus attacks genus g = 3

A double large prime variation for small genus hyperelliptic
index calculus
P. Gaudry, E. Thomé, N. Thériault and C. Diem
November 21, 2005

Abstract

In this artich ne how the index calculus

rithm:
variation.

liptic curve:

an be improve

are presented. T m is a rather nat

of the double larg On heuristic

grounds, it se te

algorithm is a considerably simplified v

nd prec
t, which can be analyzed

acks a complete

camplexity improves on the fastest known algorithms. Camputer e

hypeselliptic curves of geaus three. our first hm surpasses P

for rather small field sizes.

1 Introduction

The discrete logarithm problem in the jacobian group of a curve is known to be solvable in
size [1,20,8.9, 14, 6]. T
nus. and although the rus

subexponential time if t

s is large compared to the base G
Jeulus algorithm also works for small fixed

corresponding

ex ¢

time becomes exponential it can still be better than Pollard's Rho algorithm [11). Introducing a

large prime variation (23], it is possible 1o obtain an index calenlus algorithm that is asymptotically

faster than Pe s Rho algorithm already for genus 3 curves

k. we go one step further in th

In the pres direction and introduce a double large prime

variation for the sm enus index caleulns. Our algorithm is a simple extension to the single large

prime algorithm of 23]. However, maki

v: Double large prime
mpirically.

a rigorous analysis is not that

hum for the double 1
variation which lends itselfl much better to a rigorous complexity analysis. The analysis is made

obtain a proven complexity result. we introduce a simp

for fixed genus and growing field size. Our proofl is valid for the restricted context of hyperelliptic
curves in imaginary Weierstrass form with eyelic jacobian group, and the complexity result is

gaved ag ol

Theorem 1. Let g > 3 be fized. Let C be a hyperelliptic curve of genus g over F, given by an
imaginary Weierstrass equation, such that the jacobian group Jace(F,) is cyclic. Then the discrete
logarithm problem in Jace(Fy) can be solved in expected time

as q tends to infinity.

given by an

Theorem 1. Let g > 3 be fived. Let C be a hyperelliptic curve of g
b ) is eyelic. Then the discrete

rsfrass e tion, such tha

the jacob oup Jac,

problem in Ja can be solved in expected time

as g tends Lo infinity.

15 best

The O-notation captures logarithmic factors. This complexity improves on the pre

bound Ofg" " 77=). The presented algorithm also applies to general curves of genus g > 3, not

matics Subject Classification. Primary 11Y16; Secondary 11771, 94A6D.

. 5(q2‘2/9) not a theoretical deal-breaker (could scale parameters up),

but trade-offs become unfavorable and non-generic attacks scared
people away from g > 2

paper



https://hal.inria.fr/inria-00077334/document

Question

Why did the theorem on the previous page start at g = 37 We
handwaved that there’s no special/small divisors in g = 1, but there are
small divisors that could be used as a factor base in genus 2! So why
does index calculus not also (buzz)kill g = 27



Part 4:

Why Kummer surfaces?




Use of Elliptic Curves in Cryptography

Victor 5. Miller
Expleratory Computer Science, IBM Research, P.O. Box 218, Yorkiown Heigats, NY 10598
ABSTRACT

‘We discuss the use of elliptic curves in cryptography. In particular, we propose an analogue of the
Diffie-Hellmann key exchange protocol which appears to be immune Irom attacks of the style of
Western, Miller, and Adleman. With the current bounds for infeasible attack, it appears to be
about 20% Ffaster than the Diffie-Hellmann scheme over GF(p). As computational power grows,
this disparity should get rapidly bigger.

in Cryptology - CRYPTO "85, LNCS 218, pp. 417-426, 1986.
erlag Berlin Heidelberg 1986

In order to be secure from the Pohlig-Hell (or Pollard) algorithm, it is necessary that N,,

the number of points of E in F, have a prime factor > p* , for a as close to 1 as possible. This is
made possible by the algorithm of Schoof [19], which calculates N, in time polynomial in log p. In
general it is not hard to find such good p. Theoretically, the best result known is one of Fouvry
[20): For any fixed non-zero integer a,  positive proportion of primes p have the property that
the largest prime factor of p + ais 2 p* where § = 0.6687.

Instead of using the Schoof algorithm, when searching for a good p, I have taken the following
approach: Choose the curve to be:

E s —ax

‘where g is not a perfect square. This curve has complex multiplication by V2T, and there is an
exact formula for N, (see [10]). In the case p = 3 mod 4 we have N, = p + 1. Thisis the so-called
“supersingular” case. In this case we know even more, It is well known (see [1]) that any field
containing the coordinates of all points of order { also contains the l-th roots of unity. This shows
that a necessary condition for group of point over F, to contain a subgroup isomorphic to
Z/IZx Z/IListhat I|p — 1 . Because the number of points in the supersingular case is p + 1 we
have 2 as the only possibility for /. But, in our case, this happens if and only if, a is 2 quadratic
residue module p. To sum up, in the case above the group of points modulo p is of order p + 1,
eyclic in the case (a/p) = —1, and & product of a cyclic group of order 2 and a cyclic group of or-
der (p + 1)/2 when (a/p) = 1.

The above choice of curve was taken for convenience in ealculation. However, it may be pru-
dent to avoid curves with complex multiplication because the extra structure of these curves

might somehow be used to give a better algorithm

Finally, it should be remarked, that even though we have phrased everything in terms of points
on an elliptic curve, that, for the key exchange protocol (and other uses as one-way functions),
that only the x-coordinate needs to be transmiited. The formulas for multiples of a point cited in
the first section make it clear that the x-coordinate of a multiple depends only on the x -coordinate
of the original point.
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Finally, it should be remarked, that even though we have phrased everything in terms of points
on an elliptic curve, that, for the key exchange protocol (and other uses as one-way functions),
that only the x-coordinate needs to be transmitted. The formulas for multiples of a point cited in

the first section make it clear that the x-coordinate of a multiple depends only on the x -coordinate

of the original point.




Kummer lines in genus 1

Recall (from Ben) that the Kummer variety of an abelian variety A is its quotient by &

For E:yz — x3 + -0 we have e (x, y) — (x, —y)/ SOP x(P) is the qUOtient E/(@)

P is the Kummer variety of E, also the Kummer variety of E’

E.g., every x € Fy on either (or both) E or E' = By* = x* 4+ -+, B & O



Montgomery's fast differential arithmetic

E/F,:y*=x°4+Ax*+x paper

« drop the y-coordinate, and work with x-only.
. projectively, work with (X : Z) € Plinstead of (X : Y : Z) € P?
» But (pseudo-)addition of x(P) and x(Q) requires x(Q & P)

Extremely fast pseudo-doubling: xDBL
Xizp = (Xp + Zp)?(Xp — Zp)? 2M + 25
Zigp = 4XpZp((Xp — Zp)* + (A+ 2)XpZp)
Extremely fast pseudo-addition: xADD

Xpro =Zp_o|(Xp — Zp)(Xo + Zo) + (Xp + Zp)(Xy — Zo)

_ AM + 25
Zp+q = Xp—q|(Xp — Zp) (XQ T ZQ) — (Xp + ZP)(XQ - ZQ)- 2



https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf

Differential additions and the Montgomery ladder

ol o ol _a{

, \ \ \

 Given only the x-coordinates of two points, the x-coordinate of their sum
can be two possibilities

» Inputting the x-coordinate of the difference resolves ambiguity

« The (ingenious!) Montgomery ladder fixes all differences as the input point:
in k,x(P) » x([k]P), every XADD is of the form
xADD(x([n + 1]P), x([n]P), x(P))

« We carry two multiples of P "up the ladder”: x(Q) and x(Q @ P)
. At it"step: compute x([2]Q @ P) = xADD (x(Q @ P), x(Q), x(P))
. At ithstep: pseudo-double (xDBL) one of them depending on k;



Fast, compact, simple, sater Diffie-Hellman

.« Write k = Y- k28 with kp,_y = 1 and P = (xp, yp) in E[n]
(e.g., on Curve25519 or Goldilocks)

(xg,%1) « (XDBL(xp), xp)
fori = — 2 downto 0 do

(%0, X1) < cSWAP( (ki1 ® k;), (x0, 1)) Inherently uniform, much
(xg,%1) < (XDBL(xg),XxADD(xg, X1, Xp)) easier to implement in
end for constant-time

(Xg,%1) < cSWAP(kO, (xo, xl))
return xo (= X[kp)

+ x-only Diffie-Hellman (Miller'85): x([ab]P) = x([a]([p]P)) = x([b]([a]P))

see https:.//tools.iettorg/html/rfc/ 748
(Elliptic curves for security)



https://tools.ietf.org/html/rfc7748

Kummer surfaces

In genus 1, we saw that working with E /(&) can be much simpler/faster/easier than
working with E

In genus 2, the difference between Jac(C) and Jac(C)/{©) is way more drastic...

C:y? = fex®+ fsx* + -+ fo

« =

Jac(C) embeds into P1°: 72 equations in 16 variables!!! (see here) \&

BUT....

A I\

Jac(C)/{©) embeds into IP3: 1 equation in 4 variables!!! @


https://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/defining.equations

Kummer surface arithmetic = s v o

 Ingenus 1, we can use the “general” Kummer line E /{©) correspondingto E : y> = x3 +ax + b (ala
Brier-Joye), but it's faster/simpler to work with the Montgomery x-line. The only restriction is that this
forces some rational points of small order

« In genus 2, there is somewhat of an analogue. We can use the general Kummer surface (a la Flynn), which
has no restrictions but is slow and bulky (see here and here), or if we insist that Jacg (C) has full rational 2-
torsion, we can use Kummer surfaces that arise from the theory of Theta functions

y) S N

K: E2-(XYZT) = (X2 + Y2+ Z2 + T2 — F(XT + YZ) — G(XZ + YT) — H(XY + ZT))" &

« Pointsare (X:Y:Z:T) e P3 and the doubling and differential addition formulae are beautiful!

Algorithm 1 DOUblil’lg on a Kummer surface Algorithm 2 Pseudo-addition on a Kummer surface

Input: two points P=(X:Y :Z:T)and Q@ =(X:Y :Z:T) on K(4.8:4), and
Input; a point P = (X Y Z: T) on }C(a:ﬁ:'y:é)- 0thc pomtli? (YP}’ QZ 1(") equal to)P @ such that XY ZT # 0.
. . . X . . utput: the point P + Yy t
Output: the point [2|P = (X2 : Yy : Zs : Ts). X = (XAYAZAT) XYz )
X' = (X+Y+Z+1)°4, Y = (X+Y—-Z- T) =, Y Eﬁj;;é:g%j}—y,;%:%?
Z = (X-Y+zZ-T)"%, T = (X-Y-Z+T7)*} = (X-Y-Z4T)X-Y-Z+T)}
2 v = (X' +Y+2'+T) 4,
X, = (X’+Y’+Z’+T’) é, Yo = (X'4+Y' -2 -T')4, - ey 7Tl
Zo = (X' —Y'+2' —T)* L Ty, = (X'—Y' -7 +T)°} : = (X-v'+2-T) L,
i t — (XF_}”_Z’+rI)2%



https://people.maths.ox.ac.uk/flynn/genus2/kummer/defining.equations
https://people.maths.ox.ac.uk/flynn/genus2/kummer/duplication
https://www.degruyter.com/document/doi/10.1515/JMC.2007.012/pdf
https://www.ams.org/journals/mcom/2010-79-270/S0025-5718-09-02295-9/S0025-5718-09-02295-9.pdf
https://www.sciencedirect.com/science/article/pii/0196885886900230

Kummer line vs. Kummer surface

full group arith. Kummer arith.

DBL ADD ladder step
genus 8M T6M 10M
genus 2 35M 603M 25M

« Scalar multiplications on the Gaudry-Schost fast Kummer surface over p = 2127 — 1
solidly outperform (= 2x) those on Bernstein's Curve?25519 (see eBACS)

« Summary: the state-of-the-art in conservative prime field Diffie-Hellman in genus 2 is
significantly faster than that in genus 1


https://cs.uwaterloo.ca/~eschost/publications/countg2.pdf
https://link.springer.com/content/pdf/10.1007/11745853_14.pdf
https://bench.cr.yp.to/results-dh.html

Question

The previous comparison only talked about speed, but what about key
sizes? How does genus 2 compare to genus 1in bandwidth, in both the
case of uncompressed and compressed public keys?



Question

T the state-of-the-art in genus 2 prime field Diffie-Hellman performs
roughly twice as fast as that of genus 1, and if index calculus fails
against genus 1 and genus 2, then why isn't KummerDH a standard?



Part 5: Why are we interested in isogenies?




Diffie-Hellman instantiations

g% mod g

g” mod ¢

Pa(E)

¢ (E)

paper



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.7776&rep=rep1&type=pdf

Diffie-Hellman instantiations

DH ECDH SIDH
Elements integers g modulo | points P in curve curves E in
orime group isogeny class
Secrets exponents x scalars k Isogenies ¢
computations g,x — g~ P,k — |k]|P E,¢ —» ¢d(E)
hard problem given g, g* given P, [k]P given E, ¢(E)
find x find k find ¢
10YE 10YE




Diffie-Hellman instantiations




e.g. supersingular isogeny graph — the nodes

~ @ @
©
@ ® o

364i + 304 .l
lE 87i + 190

Sa4i + 190 306i + 426
209i + 118

389i + 141

p: =431 there are 37 supersingular j's (all over IF 2: = IF, (i), i“+1=0)









Explicit formulas

(1/a,0)

D

/

ker(¢2)

(0,0)

&/



SIKE

Clock cycles to compute ¢

orime PK (bytes) (x 10°) i7-6700 Skylake
p AN
toy example 2433 — 1 7 € e’
SIKEp434 22163137 _1q 330 92 98
SIKEp503 22503159 __ 1 378 142 151
SIKEp610 23053192 _ 1 462 295 297
SIKEp751 23723239 _ 1 564 468 503

https://sike.org/

https.//www.microsoft.com/en-us/research/project/sike/

https:.//csrc.nist.gov/projects/post-quantum-cryptography



https://sike.org/
https://www.microsoft.com/en-us/research/project/sike/
https://csrc.nist.gov/projects/post-quantum-cryptography

The case for SIKE... o

SIKE only isogeny-

"~ based candidate...



https://eprint.iacr.org/2021/543.pdf

Part ©: Why is genus 2 (even more) promising here?




Genus Two Isogeny Cryptography

E.V. Flynn! and Yan Bo Ti?

! Mathematical Institute, Oxford University, UK. £1ynn@maths.ox.ac.uk
? Mathematics Department, University of Auckland, NZ. yanbo.t1@gmail.com

Abstract. We study ({,#)-isogeny graphs of principally polarised super-
singular abelian surfaces [I’I SAS). The (£, {}-isogeny graph has cycles
of small length that can be used 10 break the collision resistance assump-
tion of the genus two isogeny hash function suggested by Takashima.
Algorithms for computing (2, 2)-isogenies on the level of Jacobians and
(3, 3)-isogenies on the level of Kummers are used to develop a genus two

VEISION O] U8 SUPErsIngUIAr 1sogeny DITe-Hell AN DIOLGCoL O JH0 A1
de Feo. The genus two isogeny Diffie-Hellman protocol achioves the same
leval of security as SIDH but uses a prime with a third of the bit length.

Keywords: Post-quantum crvptography - Isogeny-based crvptography
- Cryptanalysis - Key exchange . Hash function

1 Introduction

Isogeny-based cryptography involves the study of isogenies between abelian va-
rieties. The first proposal was an unpublished manuscript of Couveignes [G] that
uule(‘d a key-exchange algorithm set in the isogeny graph of elliptic curves
This was rediscovered by Rostovtsev and Stolbunov [I8]. A hash function was
developed by Charles, Goren and Lauter [4] that uses the input to the hash to
generate a path in the isogeny graph and outputs the end point of the path
Next in the line of invention is the Jao de Feo cryptosystem [12] which relies
on the difficulty of finding isogenies with a given degree between supersingular
elliptic curves. A key exchange protocol, called the Supersingular Isogeny Diffie
Hellman key exchange (SIDH), based on this hard problem, was proposed in the
same paper. The authors proposed working with 2-isogenies and 3-isogenies for
efficiency.

Elliptic curves are principally polarised abelian varieties of dimension one,
hence we can turn to principally polarised abelian varieties of higher (]I'[]I(EI'I‘ﬂ(J'[]
when looking to geners geny-hased cry
elliptic curves have th
dimension 2) have fifteen (2 ”\ oquum Henee, th]s motivates the use of abelian
surfaces for use in these cryptosys

In this work, we will focus on pnnc |p'1]|\ polarised supersingular abelian vari-
eties of dimension two, which we call principally polarised supersingular abelian
surfaces (PPSSAS) and consider their application to cryptography. The two chal-
lenges before us are: to understand the isogeny graphs of PPSSAS, and to have

Genus 2 isogeny-based cryptography.

elements in the n-sphere is 6'3”_3(62 +1)(¢+1) = y/p3, hence a naive exhaustive
search on the leaves of .Jiy has a complexity of O(4/p3). One can improve on this
by considering the meet-in-the-middle search by listing all isogenies of degree

("™ from Jg and .J4 and finding collisions in both lists. The meet-in-the-middle
search has a complexity of O(\/_ ). One can perform better by employing a
quantum computer to reduce the complexity to O(\/;T ) using Claw finding
algorithms [23]. This compares favourably with the genus one case which has
classical security of O({/p), and quantum security of O(\f n). An example of a
prime which one can use to achieve 128-bits of security is 171-bits, whereas the
genus one case requires 512-bits for the same level of security.

paper



https://eprint.iacr.org/2019/177.pdf

2-1S0genies VS. (2,2)-Isogenies

¢ Z Lp+1)/2 X Lp+1)y2 X Ly X Ly
Jel2] = 7y X 7y X 7y X Zy

e &8%°8
e S L

{—on @ <; {@

g g

Castryck-Decru-Smith"19: use superspecial subgraph!

E = Z(p+1) N Z(p+1)
El2l=7Z,X1Z,



https://www.esat.kuleuven.be/cosic/publications/article-3027.pdf

Superspecial g-dimensional PPAV's over IF 2

0(p99+1)/2Y vertices

Genus 1. O(p) vertices
Genus 2: 0(p?) vertices



Motivation for genus 2

ECC prime field state-of-the-art (Curve25519) uses Montgomery x arith
HECC prime field state-of-the-art uses Kummer surface arith
» HECC wins solidly with fields of 1/2 the size

 SIDH state-of-the-art uses Montgomery x

- What can we expect with hyperelliptic SIDH using Kummers with fields
of 1/3 the size?




Part /:

Why stop at genus 27




Superspecial g-dimensional PPAV's over IF 2

0(p99+1)/2) vertices

Genus 1. O(p) vertices
Genus 2: 0(p?) vertices
Genus 3: 0(p®) vertices...




Why stop at genus 27

 Could this mean g = 3 SIDH uses fields of 1/6 the size? Hyper-SIKEp72 vs. SIKEp4347
« Can g = 4 SIDH can use fields of 1/10 the size? Hyper-SIKEp43 vs. SIKEp4347
- What about g > 47

« C-Smith19: finds ¢ : A, = A," classically in 0(p9~1), quantumly in 0 (pY~1/2)

« Algorithm starts overtaking (asymptotically) generic algorithms for g > 4, but absolutely
not a deal-breaker for g < 4


https://arxiv.org/pdf/1912.00701.pdf

Why stop at genus 27

« Upshot: no known reason to stop at g = 2

« My view is that g > 1 isogeny crypto is currently extremely promising, even more
promising than g > 1 HECC was!

«  We currently know a little bit about g = 2 (much more work to be done here), but we
know almost* nothing for g > 2

» [sogeny-based crypto for g > 1 is clearly not for the faint-hearted, but the field is

* This paper and this paper are
promising starts...



https://arxiv.org/abs/2005.09031
https://arxiv.org/abs/1001.2016

Question

What are some of the issues (or open questions) that need to be
resolved before we could seriously consider using g > 1 isogenies to
compete (or maybe even replace) elliptic curve SIDH/SIKE/....?



Part 8: Why not use hyperelliptic curves in genus 17



N a nutshell:

E(F,2)

Q
D
—=

Q
D
—=



https://eprint.iacr.org/2018/850.pdf
https://www.researchgate.net/profile/Jasper-Scholten/publication/228946053_Weil_restriction_of_an_elliptic_curve_over_a_quadratic_extension/links/5a494892aca272d29461ff2c/Weil-restriction-of-an-elliptic-curve-over-a-quadratic-extension.pdf




Inanutshell:  K(IF,)




From elliptic to hyperelliptic

Consider
E/K: y*?=x3+1 C/K: y?=x°+1
Obvious map w: C(K)—- E(K)
(x, ) P (x%,5)

T But what about w™! : E(K) - C(?)...

2: Points on E are group elements, points on € are not...

3: Actually want map E - J, but dim(E) = 1 while dim(J.) = 2...

4 Want general w, ™! between y% = x3 + Ax? + x to y? = x° + Ax* + x% 2?7



Proposition 1

F,2 = F,({) with i* + 1 =10

E[F2: y*=x(x—a)(x—1/a)

C/Fy: y*= (x*+ mx — 1)(x2 —mx —1)(x? —mnx — 1)

m=ﬂ,n—( )bothln[F
(ac+ac+

Then Resp 2/ Fp (E) is (2,2)-isogenous to J¢(IF,)

ker(n) = ker(#})) = Z, X Z,

Or, pictorially, @ I nof =|[2]
T -




Unpacking Proposition 1

- Weil restriction turns Tequation over F,2 into two equations over I,

Simple linear transform of E/Isz:y2 =f(x) =x3+Ax* +xt0

E/F,2: y* = g(x) such that C/F,.:y* = g(x?) is non-singular < Y
Pullback w* of w : (x,y) = (x2,y) gives 2 points in C(F,s),

but composition with Abel-Jacobi map bring these to J¢(F,2) < P

Need to go from J¢(FF,2) to J¢(FFp,); cue good o}lld Trace map,

7: P z o(P)

o€Gal(F,,2/Fp)

n: Resg e, (E) = Jc(Fp), P (opoh)(P)

< T




Question

There's a bug in Proposition 1 (pointed out to me a while ago by
Castryck). Can you spot it?



Performance

chained 2-isogenies on chained (2, 2)-isogenies on
: Montgomery curves over [F - Kummer surfaces over I,
Operation . P .
(previous work) (this work)
M S A ~ cycles m S a ~ cycles
s=m s = 0.8m
doubling 4 2 4 5862 8 8 16 6272 5714
2-1sog. curve - 2 1 2088 19 4 28 9231 8952
| 2-isog. point 4 0 4336 4 4 16 3480 3200 |

« Theta constants map to theta constants: point map is enough
« Comparison in Table/paper rather conservative

» Dreamt of (re-)defining SIDH entirely using Kummers over F,,, but compression
algorithms were the buzzkill ...



Questions?



