

 Why hyperelliptic?

 Why hyperelliptic?}

Craig Costello

Microsoft ${ }^{\circ}$
Research

Diffie-Hellman key exchange (circa 1976)

$q=1606938044258990275541962092341162602522202993782792835301301$

$$
g=123456789
$$

$$
g^{a b} \bmod q=437452857085801785219961443000845969831329749878767465041215
$$

Index calculus

$$
\begin{array}{rll}
\text { solve } & g^{x} \equiv h & (\bmod p) \\
\text { e.g. } & 3^{x} \equiv 37 \quad(\bmod 1217)
\end{array}
$$

- factor base $p_{i}=\{2,3,5,7,11,13,17,19\}, \quad \# p_{i}=8$
- Find 8 values of k where 3^{k} splits over p_{i}, i.e., $3^{k} \equiv \pm \prod p_{i} \bmod p$
$(\bmod 1217)$
$(\bmod 1216)$

$$
\begin{array}{ll}
3^{1} \equiv 3 & 1 \equiv L(3) \\
3^{24} \equiv-2^{2} \cdot 7 \cdot 13 & 24 \equiv 608+2 \cdot L(2)+L(7)+L(13) \\
3^{25} \equiv 5^{3} & 25 \equiv 3 \cdot L(5) \\
3^{30} \equiv-2 \cdot 5^{2} & 30 \equiv 608+L(2)+2 \cdot L(5) \\
3^{34} \equiv-3 \cdot 7 \cdot 19 & 34 \equiv 608+L(3)+L(7)+L(19) \\
3^{54} \equiv-5 \cdot 11 & 54 \equiv 608+L(5)+L(11) \\
3^{71} \equiv-17 & 71 \equiv 608+L(17) \\
3^{87} \equiv 13 & 87 \equiv L(13)
\end{array}
$$

$(\bmod 1216)$

$$
\begin{aligned}
L(2) & \equiv 216 \\
L(3) & \equiv 1 \\
L(5) & \equiv 819 \\
L(7) & \equiv 113 \\
L(11) & \equiv 1059 \\
L(13) & \equiv 87 \\
L(17) & \equiv 679 \\
L(19) & \equiv 528
\end{aligned}
$$

Index calculus

$$
\begin{array}{rll}
\text { solve } & g^{x} \equiv h & (\bmod p) \\
\text { e.g. } & 3^{x} \equiv 37 \quad(\bmod 1217)
\end{array}
$$

$$
\begin{array}{rlrl}
L(2) & \equiv 216 & \text { Now search for } j \text { such that } g^{j} \cdot h=3^{j} \cdot 37 \text { factors over } p_{i} \\
L(3) & \equiv 1 & 3^{16} \cdot 37 \equiv 2^{3} \cdot 7 \cdot 11(\bmod 1217) \\
L(5) & \equiv 819 & & \\
L(7) & \equiv 113 & & \\
L(11) & \equiv 1059 & L(37) & \equiv 3 \cdot L(2)+L(7)+L(11)-16(\bmod 1216) \\
L(13) & \equiv 87 & & \equiv 36216+113+1059-1 \\
L(19) & \equiv 528 & & \equiv 588
\end{array}
$$

Subexponential complexity $L_{p}\left[1 / 3,(64 / 9)^{1 / 3}\right]=e^{\left((64 / 9)^{1 / 3}+o(1)\right)(\ln (p))^{1 / 3} \cdot(\ln \ln (p))^{2 / 3}}$

Diffie-Hellman key exchange (circa 2016)

58096059953699580628595025333045743706869751763628952366614861522872037309971102257373360445331184072513261577549805174439905295945400471216628856721870324010321116397 06440498844049850989051627200244765807041812394729680540024104827976584369381522292361208779044769892743225751738076979568811309579125511333093243519553784816306381580 16186020024749256844815024251530444957718760413642873858099017255157393414625583036640591500086964373205321856683254529110790372283163413859958640669032595972518744716
90595408050123102096390117507487600170953607342349457574162729948560133086169585299583046776370191815940885283450612858638982717634572948835466388795543116154464463301 99254382340016292057090751175533888161918987295591531536698701292267685465517437915790823154844634780260102891718032495396075041899485513811126977307478969074857043710 716150121315922024556759241239013152919710956468406379442914941614357107914462567329693649

$$
g=123456789
$$

$b=$

Diffie-Hellman key exchange (cont.)

- Individual secret keys secure under Discrete Log Problem (DLP): $g, g^{x} \mapsto x$
- Shared secret secure under Diffie-Hellman Problem (DHP): $g, g^{a}, g^{b} \mapsto g^{a b}$
- Fundamental operation in DH is group exponentiation: $g, x \mapsto g^{x}$... done via "square-and-multiply", e.g., $(x)_{2}=(1,0,1,1,0,0,0,1 \ldots)$
- We are working "mod q ", but only with one operation: multiplication
- Main reason for fields being so big: (sub-exponential) index calculus attacks!

DH key exchange (Koblitz-Miller style)

If all we need is a group, why not use elliptic curve groups?

Rationale: "it is extremely unlikely that an index calculus attack on the elliptic curve method will ever be able to work" [Miller, 85]

Elliptic curve group law is easy

Fun fact: homomorphism between Jacobian of elliptic curve and elliptic curve itself

Upshot: you don't have to know what a Jacobian is to understand/do elliptic curve cryptography

The elliptic curve group law \oplus

The fundamental ECC operation

$$
P, k \mapsto[k] P
$$

Scalar multiplications via double-and-add

$$
P \leftarrow Q
$$

$$
\begin{aligned}
& \text { How to (naively) compute } k, Q \mapsto[k] Q \text { ? } \\
& k=\left(k_{n}, k_{n-1}, \ldots, k_{0}\right)_{2}
\end{aligned}
$$

for i from $n-1$ downto 0 do

$$
P \leftarrow[2] P
$$

$$
\text { if } k_{i}=1 \text { then }
$$

$$
\text { end if } P \leftarrow P \oplus Q
$$

end for
return $P(=[k] Q)$

ECDLP security and Pollard's rho algorithm

- ECDLP: given $P, Q \in E\left(\mathbb{F}_{p}\right)$ of prime order N, find k such that $Q=[k] P$
- Pollard'78: compute pseudo-random $R_{i}=\left[a_{i}\right] P+\left[b_{i}\right] Q$ until we find a collision $R_{i}=R_{j}$ with $b_{i} \neq b_{j}$, then $k=\left(a_{j}-a_{i}\right) /\left(b_{i}-b_{j}\right)$
- Birthday paradox says we can expect collision after computing $\sqrt{\pi n / 2}$ group elements R_{i}, i.e., after $\approx \sqrt{N}$ group operations. So 2^{128} security needs $N \approx 2^{256}$
- The best known ECDLP algorithm on (well-chosen) elliptic curves remains generic, i.e., elliptic curves are as strong as is possible

Index calculus on elliptic curves?

[Miller, 85] : "it is extremely unlikely that an index calculus [...] will ever be able to work"
Consider $E / \mathbb{F}_{1217}: \quad y^{2}=x^{3}-3 x+139$

$$
\begin{gathered}
\# E\left(\mathbb{F}_{1217}\right)=1277 \\
P=(3,401) \text { and } Q=(192,847) \\
\text { ECDLP: find } k \text { such that }[k] P=Q
\end{gathered}
$$

Regardless of factor base, can't efficiently decompose elements!
e.g., factor base $R_{i}=\{(3,401),(5,395),(7,73),(11,252),(13,104),(19,265)\}$

Writing $S=\sum\left[k_{i}\right] R_{i}$ involves solving discrete logarithms, compare this to integers $\bmod p$ where we lift and factorise over the integers

NIST Curve P-256

	$11579208921035624876269744694940757353008614 \backslash$							
	3415290314195533631308867097853951							
	{$11579208921035624876269744694940757352999695 \$} \hline & \multicolumn{4}{\|l	}{5224135760342422259061068512044369} \hline & c49d3608 86e70493 & 6a6678e1 & 139d26b7 & 819f7e90 \hline & & 7efba166 & 2985be94 & 03cb055c \hline & $75 \mathrm{~d} 4 \mathrm{f7e0}$ ce8d84a9				c5114abc	af317768	0104fa0d
		5 ac 635 d 8	aa3a93e7	b3ebbd55				
	769886bc 651d06b0	cc53b0f6	$3 \mathrm{bce3c3e}$	27d2604b				
$G_{x}=$		6b17d1f2	e12c4247	f8bce6e5				
	$63 \mathrm{a440f2} 77037 \mathrm{~d} 81$	2deb33a0	f4a13945	d898c296				
$G_{y}=$		4fe342e2	fe1a7f9b	$8 \mathrm{ee} 7 \mathrm{eb4a}$				
	7c0f9e16 2bce3357	6b315ece	cbb64068	7bf51f 5				

§2. Curves over Prime Fields
National Institute
For each prime p, a pseudo-random curve
of Standards and Technology

$$
E: \quad y^{2} \equiv x^{3}-3 x+b \quad(\bmod p)
$$

ECDH key exchange (1999 - nowish)

$$
p=2^{256}-2^{224}+2^{192}+2^{96}-1
$$

$p=115792089210356248762697446949407573530086143415290314195533631308867097853951$

$$
E / \mathbb{F}_{p}: y^{2}=x^{3}-3 x+b
$$

$\# E=115792089210356248762697446949407573529996955224135760342422259061068512044369$
$P=(48439561293906451759052585252797914202762949526041747995844080717082404635286$,
36134250956749795798585127919587881956611106672985015071877198253568414405109)
$[\mathrm{a}] P=(84116208261315898167593067868200525612344221886333785331584793435449501658416$, 102885655542185598026739250172885300109680266058548048621945393128043427650740)
$[\mathrm{b}] P=(101228882920057626679704131545407930245895491542090988999577542687271695288383$, $77887418190304022994116595034556257760807185615679689372138134363978498341594)$

89130644591246033577639 77064146285502314502849 28352556031837219223173 24614395
[ab] $P=(101228882920057626679704131545407930245895491542090988999577542687271695288383$, 77887418190304022994116595034556257760807185615679689372138134363978498341594)

$b=$
10095557463932786418806 93831619070803277191091 90584053916797810821934 05190826

Why hyperelliptic?

"These jacobian varieties seems to be a rich source of finite abelian groups for which, so far as is known, the discrete log problem is intractable" - [Koblitz '89]

In a finite abelian group, if an element was obtained as a multiple of another known element (the "base"), the discrete logarithm problem consists in finding the integer
that was multiplied by the base to get the element. Whenever we have a finite abelian group for which the discrete log problem appears to be intractable, we can construct various public key cryptosystems in which taking large multiples of a group element is the trapdoor function. Such cryptosystems were first constructed from the multiplicative group of a finite field. However, because certain special techniques are
available for attacking the discrete log problem in that case especially when the
 abelian groups.
In [8] we described how the group of points on an elliptic curve can be used to construct public key cryptosystems. The purpose of the present article is to discuss construct pubic key cryptosystems. The purpose of the present article is to discuss These jacobian varieties seem to be a rich source of finite abelian groups for which, so far as is known, the discrete log problem is intractable. We pay special attention to the case when the ground field has characteristic 2 , because arithmetic over such
fields is particularly amenable to efficient implementation, and because it is in that case that the multiplicative group of the field does not provide secure cryptosystems unless the size of the field is extremely large, as explained in [13].
After giving the basic definitions of the group in Section 2, we describe an algorithm for addition in Section 3. In Sections 2 and

[^0]
Hyper is (way) harder!

- Everything is much more complicated beyond genus 1: understanding, group law, arithmetic, point counting (i.e. finding strong instantiations), implementation, etc...
- The practical incentive for HECC in genus $g>1$ boils down to

$$
\# J_{C}\left(\mathbb{F}_{q}\right)=O\left(q^{g}\right)
$$

(see Ben's notes)

- E.g. $g=2$ with $p \approx 2^{n}$ gets the same size cryptographic groups as $g=1$ with $p \approx 2^{2 n}$, i.e. we can use fields of half the size!
- But things no longer "easy" like it was in genus 1... must understand the language of divisors (see Ben's slides)

Genus 2 group law

$$
\text { Doubling }[2] D=D^{\prime \prime}
$$

Addition $D \oplus D^{\prime}=D^{\prime \prime}$

$\operatorname{div}(\ell)=\left(P_{1}\right)+\left(P_{2}\right)+\left(P_{1}^{\prime}\right)+\left(P_{2}^{\prime}\right)+\left(\iota\left(P_{1}^{\prime \prime}\right)\right)+\left(\iota\left(P_{2}^{\prime \prime}\right)\right)-6(\infty)$

$$
\operatorname{div}(\ell)=\left(P_{1}\right)+\left(P_{2}\right)+\left(P_{1}^{\prime}\right)+\left(P_{2}^{\prime}\right)+\left(\iota\left(P_{1}^{\prime \prime}\right)\right)+\left(\iota\left(P_{2}^{\prime \prime}\right)\right)-6(\infty)
$$

$C / K: y^{2}=x^{5}+\cdots$

$$
\begin{aligned}
D & =\left(P_{1}\right)+\left(P_{2}\right)-2(\infty) \\
D^{\prime} & =\left(P_{1}^{\prime}\right)+\left(P_{2}^{\prime}\right)-2(\infty) \\
D^{\prime \prime} & =\left(P_{1}^{\prime \prime}\right)+\left(P_{2}{ }^{\prime \prime}\right)-2(\infty)
\end{aligned}
$$

Genus 3 group law

$C / K: y^{2}=x^{7}+\cdots$

Composition $D_{1} \oplus D_{2}=\bar{D}$

$$
\begin{gathered}
D_{1}=\left(P_{1}\right)+\left(P_{2}\right)+\left(P_{3}\right)-3(\infty) \\
D_{2}=\left(P_{4}\right)+\left(P_{5}\right)+\left(P_{6}\right)-3(\infty) \\
\bar{D}=\left(\bar{P}_{1}\right)+\left(\bar{P}_{2}\right)+\left(\bar{P}_{3}\right)+\left(\bar{P}_{4}\right)-4(\infty) \\
D^{\prime}=\left(P_{1}{ }^{\prime}\right)+\left(P_{2}^{\prime}\right)+\left(P_{3}{ }^{\prime}\right)-3(\infty)
\end{gathered}
$$

Mumford representation

$$
\begin{aligned}
D & =(a(x), b(x)) \\
& =\left(x^{2}+a_{1} x+a_{0}, b_{1} x+b_{0}\right) \\
D^{\prime} & =\left(a^{\prime}(x), b^{\prime}(x)\right) \\
& =\left(x^{2}+a_{1}^{\prime} x+a_{0}^{\prime}, b_{1}^{\prime} x+b_{0}^{\prime}\right)
\end{aligned}
$$

$C / K: y^{2}=x^{5}+\cdots$

$$
\text { Addition } D \oplus D^{\prime}=D^{\prime \prime}
$$

1. Compute cubic $\ell(x)=l_{3} x^{3}+\cdots+l_{0}$ such that $l(x) \equiv b(x) \bmod a(x)$ and $l^{\prime}(x) \equiv b^{\prime}(x) \bmod a^{\prime}(x)$
2. Solve $l(x)^{2}-\left(x^{5}+\cdots\right)=a(x) a^{\prime}(x) a^{\prime \prime}(x)$ for $a^{\prime \prime}(x)$
3. Compute $b^{\prime \prime}(x) \equiv-l(x) \bmod a^{\prime \prime}(x)$
4. Output $D^{\prime \prime}=\left(a^{\prime \prime}(x), b^{\prime \prime}(x)\right)$

$$
\begin{gathered}
D=\left(P_{1}\right)+\left(P_{2}\right)-2(\infty) \\
D^{\prime}=\left(P_{1}^{\prime}\right)+\left(P_{2}^{\prime}\right)-2(\infty) \\
D^{\prime \prime}=\left(P_{1}^{\prime \prime}\right)+\left(P_{2}^{\prime \prime}\right)-2(\infty)
\end{gathered}
$$

Question

Why is it computationally preferable to work in Mumford coordinates rather than, say, using the coordinates of the points themselves?

Scalar multiplications via double-and-add

$$
P \leftarrow Q
$$

$$
\begin{gathered}
\text { How to (naively) compute } k, Q \mapsto[k] Q \text { ? } \\
k=\left(k_{n}, k_{n-1}, \ldots, k_{0}\right)_{2}
\end{gathered}
$$

for i from $n-1$ downto 0 do

$$
P \leftarrow[2] P
$$

$$
\text { if } k_{i}=1 \text { then }
$$

end for

DBL

$$
\text { end if } P \leftarrow P \oplus Q
$$

return $P(=[k] Q)$

Trade-offs for prime order Jacobians...

- NIST (elliptic) Curve P-256

> DBL $\approx 8 M$ ADD $\approx 16 M$

- Hyperelliptic P-128

$$
\begin{aligned}
D B L & \approx 35 M \\
A D D & \approx 63 M
\end{aligned}
$$

Part 1: Why use curves at all?
Part 2: Why go beyond genus 1?
Part 3: Why stop at genus 2?

Index calculus attacks genus $g \geq 3$

- Most reduced elements in $\operatorname{Pic}^{0}(C)$ look like

$$
\left(P_{1}\right)+\left(P_{2}\right)+\left(P_{3}\right)-3(\infty)
$$

- But some "special" divisors look like $\left(Q_{1}\right)+\left(Q_{2}\right)-2(\infty)$, and some look like $\left(R_{1}\right)-(\infty)$
- Unlike the elliptic curve case, we now have a notion of "smallness" that allows a factor base for index calculus
- Compute multiples of DLP inputs until they "decompose" into special divisors and split over the factor base, i.e. $D=(a(x), b(x))=\left(x^{3}+a_{2} x^{2}+a_{1} x+a_{0}, b_{2} x^{2}+b_{1} x+b_{0}\right)$ where

$$
a(x)=\left(x-x_{R_{1}}\right)\left(x-x_{R_{2}}\right)\left(x-x_{R_{3}}\right)
$$

- Then $D=D_{1}+D_{2}+D_{3}$ where $D_{1}=\left(R_{1}\right)-(\infty), D_{2}=\left(R_{2}\right)-(\infty), D_{3}=\left(R_{3}\right)-(\infty)$.

Index calculus attacks genus $g \geq 3$

A double large prime variation for small genus hyperelliptic index calculus
P. Gaudry, E. Thomé, N. Thériault and C. Diem November 21, 2005

Introduction
The dicceret logarithm probiem in he jecolian group of a curve is haown to be solable in

 logerithm problem in Jace $\left(\mathrm{F}_{7}\right)$ can be solved in appect
$\bar{o}\left(q^{2-\frac{2}{2}}\right)$
 $\frac{60 u n d}{} O\left(q^{2}-\lambda_{t}\right)$. The prosented algovitum ato applies to general cuir

Theorem 1. Let $g \geq 3$ be fixed. Let \mathcal{C} be a hyperelliptic curve of genus g over \mathbb{F}_{q} given by an imaginary Weierstrass equation, such that the jacobian group $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$ is cyclic. Then the discrete logarithm problem in $\operatorname{Jac}\left(\mathbb{F}_{q}\right)$ can be solved in expected time

$$
\widetilde{O}\left(q^{2-\frac{2}{g}}\right)
$$

as q tends to infinity.

- $\tilde{O}\left(q^{2-2 / g}\right)$ not a theoretical deal-breaker (could scale parameters up), but trade-offs become unfavorable and non-generic attacks scared people away from $g>2$

Question

Why did the theorem on the previous page start at $g=3$? We handwaved that there's no special/small divisors in $g=1$, but there are small divisors that could be used as a factor base in genus 2 ! So why does index calculus not also (buzz)kill $g=2$?

Part 4: Why Kummer surfaces?

Miller's seminal sign-off...

Finally, it should be remarked, that even though we have phrased everything in terms of points on an elliptic curve, that, for the key exchange protocol (and other uses as one-way functions), that only the x-coordinate needs to be transmitted. The formulas for multiples of a point cited in the first section make it clear that the x-coordinate of a multiple depends only on the x-coordinate of the original point.

Kummer lines in genus 1

- Recall (from Ben) that the Kummer variety of an abelian variety A is its quotient by \ominus
- For $E: y^{2}=x^{3}+\cdots$, we have $\Theta(x, y)=(x,-y)$, so $P \mapsto x(P)$ is the quotient $E /\langle\ominus\rangle$
- \mathbb{P}^{1} is the Kummer varietv of E, also the Kummer varietv of E^{\prime}

- E.g., every $x \in \mathbb{F}_{q}$ on either (or both) E or $E^{\prime}=B y^{2}=x^{3}+\cdots, B \notin 口$

Montgomery's fast differential arithmetic

$$
E / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x
$$

- drop the y-coordinate, and work with x-only.
- projectively, work with $(X: Z) \in \mathbb{P}^{1}$ instead of $(X: Y: Z) \in \mathbb{P}^{2}$
- But (pseudo-)addition of $\mathrm{x}(P)$ and $\mathrm{x}(Q)$ requires $x(Q \ominus P)$

Extremely fast pseudo-doubling: xDBL

$$
\begin{array}{ll}
X_{[2] P}=\left(X_{P}+Z_{P}\right)^{2}\left(X_{P}-Z_{P}\right)^{2} & 2 M+2 S \\
Z_{[2] P}=4 X_{P} Z_{P}\left(\left(X_{P}-Z_{P}\right)^{2}+(A+2) X_{P} Z_{P}\right) &
\end{array}
$$

Extremely fast pseudo-addition: xADD
$X_{P+Q}=Z_{P-Q}\left[\left(X_{P}-Z_{P}\right)\left(X_{Q}+Z_{Q}\right)+\left(X_{P}+Z_{P}\right)\left(X_{Q}-Z_{Q}\right)\right]^{2}$
$Z_{P+Q}=X_{P-Q}\left[\left(X_{P}-Z_{P}\right)\left(X_{Q}+Z_{Q}\right)-\left(X_{P}+Z_{P}\right)\left(X_{Q}-Z_{Q}\right)\right]^{2}$
$4 M+2 S$

Differential additions and the Montgomery ladder

- Given only the x-coordinates of two points, the x-coordinate of their sum can be two possibilities
- Inputting the x-coordinate of the difference resolves ambiguity
- The (ingenious!) Montgomery ladder fixes all differences as the input point: in $k, x(P) \mapsto x([k] P)$, every xADD is of the form

$$
\operatorname{xADD}(x([n+1] P), x([n] P), x(P))
$$

- We carry two multiples of P "up the ladder": $x(Q)$ and $x(Q \oplus P)$
- At $i^{\text {th }}$ step: compute $x([2] Q \oplus P)=x A D D(x(Q \oplus P), x(Q), x(P))$
- At $i^{t h}$ step: pseudo-double (xDBL) one of them depending on k_{i}

Fast, compact, simple, safer Diffie-Hellman

- Write $k=\sum_{i=0}^{\ell-1} k_{i} 2^{i}$ with $k_{\ell-1}=1$ and $P=\left(x_{P}, y_{P}\right)$ in $E[n]$ (e.g., on Curve25519 or Goldilocks)

$$
\begin{aligned}
& \left(x_{0}, x_{1}\right) \leftarrow\left(\operatorname{xDBL}\left(x_{P}\right), x_{P}\right) \\
& \text { for } i=\ell-2 \operatorname{downto} 0 \text { do } \\
& \quad\left(x_{0}, x_{1}\right) \leftarrow \operatorname{cSWAP}\left(\left(k_{i+1} \otimes k_{i}\right),\left(x_{0}, x_{1}\right)\right) \\
& \quad\left(x_{0}, x_{1}\right) \leftarrow\left(\operatorname{xDBL}\left(x_{0}\right), \operatorname{xADD}\left(x_{0}, x_{1}, x_{P}\right)\right) \\
& \text { end for } \\
& \quad\left(x_{0}, x_{1}\right) \leftarrow \operatorname{cSWAP}\left(k_{0},\left(x_{0}, x_{1}\right)\right) \\
& \text { return } x_{0}\left(=x_{[k] P}\right)
\end{aligned}
$$

Inherently uniform, much easier to implement in constant-time

- x-only Diffie-Hellman (Miller'85): $x([a b] P)=x([a]([b] P))=x([b]([a] P))$

see https://tools.ietf.org/html/rfc7748

(Elliptic curves for security)

Kummer surfaces

- In genus 1 , we saw that working with $E /\langle\Theta\rangle$ can be much simpler/faster/easier than working with E
- In genus 2 , the difference between $\operatorname{Jac}(C)$ and $\operatorname{Jac}(C) /\langle\Theta\rangle$ is way more drastic...

$$
C: y^{2}=f_{6} x^{6}+f_{5} x^{5}+\cdots+f_{0}
$$

$\operatorname{Jac}(C)$ embeds into \mathbb{P}^{15} : 72 equations in 16 variables!!! (see here)
BUT....
$\operatorname{Jac}(C) /\langle\ominus\rangle$ embeds into \mathbb{P}^{3} : 1 equation in 4 variables!!!

Kummer surface arithmetic

- In genus 1, we can use the "general" Kummer line $E /\langle\Theta\rangle$ corresponding to $E: y^{2}=x^{3}+a x+b$ (a la Brier-Joye), but it's faster/simpler to work with the Montgomery x-line. The only restriction is that this forces some rational points of small order
- In genus 2, there is somewhat of an analogue. We can use the general Kummer surface (a la Flynn), which has no restrictions but is slow and bulky (see here and here), or if we insist that $\mathrm{Jac}_{K}(C)$ has full rational 2torsion, we can use Kummer surfaces that arise from the theory of Theta functions

$$
K: \quad E^{2} \cdot(X Y Z T)=\left(X^{2}+Y^{2}+Z^{2}+T^{2}-F(X T+Y Z)-G(X Z+Y T)-H(X Y+Z T)\right)^{2}
$$

- Points are $(X: Y: Z: T) \in \mathbb{P}^{3}$, and the doubling and differential addition formulae are beautiful!

Algorithm 1 Doubling on a Kummer surface		
Input: a point $P=(X: Y: Z: T)$ on $\mathcal{K}_{(\alpha ; \beta ; \gamma ; \delta)}$ Output: the point [2] $P=\left(X_{2}: Y_{2}: Z_{2}: T_{2}\right)$.		
	$=(X+Y+Z+T)^{2} \frac{1}{A}$,	$Y^{\prime}=(X+Y-Z-T)^{2}$
	$=(X-Y+Z-T)^{2} \frac{1}{C}$,	$T^{\prime}=(X-Y-Z+T)^{2}$
	$=\left(X^{\prime}+Y^{\prime}+Z^{\prime}+T^{\prime}\right)^{2} \frac{1}{\alpha}$,	$Y_{2}=\left(X^{\prime}+Y^{\prime}-Z^{\prime}-T^{\prime}\right)^{2} \frac{1}{\beta}$,
	$=\left(X^{\prime}-Y^{\prime}+Z^{\prime}-T^{\prime}\right)^{2} \frac{1}{\gamma}$,	$T_{2}=\left(X^{\prime}-Y^{\prime}-Z^{\prime}+T^{\prime}\right)^{2} \frac{1}{\delta}$

Algorithm 1 Doubling on a Kummer surface
Input: a point $P=(X: Y: Z: T)$ on $\mathcal{K}_{(\alpha: \beta: \gamma: \delta)}$

$$
\begin{array}{ll}
X^{\prime}=(X+Y+Z+T)^{2} \frac{1}{A}, & Y^{\prime}=(X+Y-Z-T)^{2} \frac{1}{B}, \\
Z^{\prime}=(X-Y+Z-T)^{2} \frac{1}{C}, & T^{\prime}=(X-Y-Z+T)^{2} \frac{1}{D} \\
X_{2}=\left(X^{\prime}+Y^{\prime}+Z^{\prime}+T^{\prime}\right)^{2} \frac{1}{\alpha}, & Y_{2}=\left(X^{\prime}+Y^{\prime}-Z^{\prime}-T^{\prime}\right)^{2} \frac{1}{\beta} \\
Z_{2}=\left(X^{\prime}-Y^{\prime}+Z^{\prime}-T^{\prime}\right)^{2} \frac{1}{\gamma}, & T_{2}=\left(X^{\prime}-Y^{\prime}-Z^{\prime}+T^{\prime}\right)^{2} \frac{1}{\delta}
\end{array}
$$

Algorithm 2 Pseudo-addition on a Kummer surface
Input: two points $P=(X: Y: Z: T)$ and $Q=(X: Y: Z: T)$ on \mathcal{K}
Input: two points $P=(X: Y: Z: T)$ and $Q=(\underline{X}: \underline{Y}: \underline{Z}: \underline{T})$ on $\mathcal{K}_{(a}$
the point $R=(\bar{X}: \bar{Y}: \bar{Z}: \bar{T})$ equal to $P-Q$ such that $\bar{X} \bar{Y} \bar{Z} \bar{T} \neq 0$.
the point $R=(\bar{X}: Y: Z: \bar{T})$ equal to $P-Q$ such that $X \bar{Y} \bar{T} \neq$
Output: the point $P+Q=(x: y: z: t)$.

```
利}=(X+Y+Z+T)(\underline{X}+\underline{Y}+\underline{Z}+T)\frac{1}{A}
    = (X-Y+Z-T)(\underline{X}}-\underline{Y}+\underline{Y}+\underline{Z}-\underline{T})\frac{M}{Y
    =
        =(\mp@subsup{X}{}{\prime}+\mp@subsup{Y}{}{\prime}+\mp@subsup{Z}{}{\prime}+\mp@subsup{T}{}{\prime}\mp@subsup{)}{}{2}\frac{1}{X}
```



```
        =(\mp@subsup{X}{}{\prime}-\mp@subsup{Y}{}{\prime}+\mp@subsup{Z}{}{\prime}-\mp@subsup{T}{}{\prime}\mp@subsup{)}{}{2}
        =(\mp@subsup{X}{}{\prime}-\mp@subsup{Y}{}{\prime}-\mp@subsup{Z}{}{\prime}+\mp@subsup{T}{}{\prime}\mp@subsup{)}{}{2}\frac{1}{T}
```


Kummer line vs. Kummer surface

	full group arith.		Kummer arith.
	DBL	ADD	ladder step
genus 1	8 M	16 M	10 M
genus 2	35 M	63 M	25 M

- Scalar multiplications on the Gaudry-Schost fast Kummer surface over $p=2^{127}-1$ solidly outperform ($\approx \mathbf{2 x}$) those on Bernstein's Curve25519 (see eBACS)
- Summary: the state-of-the-art in conservative prime field Diffie-Hellman in genus 2 is significantly faster than that in genus 1

Question

The previous comparison only talked about speed, but what about key sizes? How does genus 2 compare to genus 1 in bandwidth, in both the case of uncompressed and compressed public keys?

Question

If the state-of-the-art in genus 2 prime field Diffie-Hellman performs roughly twice as fast as that of genus 1, and if index calculus fails against genus 1 and genus 2, then why isn't KummerDH a standard?

Part 5: Why are we interested in isogenies?

Why stop at genus 2?
Why not use hyperelliptic curves in genus 1?

Diffie-Hellman instantiations

\mathbb{Z}_{q}^{*}

\mathbb{Z}_{q}^{*}

Diffie-Hellman instantiations

	DH	ECDH	SIDH
Elements	integers g modulo prime	points P in curve group	curves E in isogeny class
Secrets	exponents x	scalars k	isogenies ϕ
computations	$g, x \mapsto g^{x}$	$P, k \mapsto[k] P$	$E, \phi \mapsto \phi(E)$
hard problem	given g, g^{x} find x	given $P,[k] P$ find k	given $E, \phi(E)$ find ϕ

Diffie-Hellman instantiations

e.g. supersingular isogeny graph - the nodes

$p:=431$: there are 37 supersingular $j^{\prime} s$ (all over $\left.\mathbb{F}_{p^{2}}:=\mathbb{F}_{p}(i), i^{2}+1=0\right)$

Explicit formulas

$$
\begin{aligned}
{[2]: E_{a} \rightarrow E_{a}, } & x & \mapsto \frac{\left(x^{2}-1\right)^{2}}{4 x(x-\alpha)(x-1 / \alpha)} \\
\phi_{2}: E_{a} \rightarrow E_{a^{\prime}}, & x & \mapsto x \cdot\left(\frac{\alpha x-1}{x-\alpha}\right) \\
& & a^{\prime}=2\left(1-2 \alpha^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
{[3]: E_{a} \rightarrow E_{a}, } & x & \mapsto \frac{\left(x^{4}-6 x^{2}-4 a x-3\right)^{2} x}{\left(3 x^{4}+4 a x^{3}+6 x^{2}-1\right)^{2}} \\
\phi_{3}: E_{a} \rightarrow E_{a^{\prime}}, & x & \mapsto x \cdot\left(\frac{\beta x-1}{x-\beta}\right)^{2} \\
& a^{\prime} & =\left(a \beta-6 \beta^{2}+6\right) \beta
\end{aligned}
$$

SIKE

	prime p	PK (bytes)	Clock cycles to compute ϕ $\left(\times 10^{6}\right)$ i7-6700 Skylake	
			(00)	-i
toy example	$2^{4} 3^{3}-1$	7	ϵ	ϵ^{\prime}
SIKEp434	$2^{216} 3^{137}-1$	330	92	98
SIKEp503	$2^{250} 3^{159}-1$	378	142	151
SIKEp610	$2^{305} 3^{192}-1$	462	295	297
SIKEp751	$2^{372} 3^{239}-1$	564	468	503

https://sike.org/
https://www.microsoft.com/en-us/research/project/sike/
https://csrc.nist.gov/projects/post-quantum-cryptography

The case for SIKE...

A decade unscathed
The rise and rise of classical hardness
Quantum computers don't help
Concrete cryptanalytic clarity
Side-channel securityThe efficiency drawback
Happy hybrids
Other avenues of attack
Elegance
The \$IKE challenges

Part 6: Why is genus 2 (even more) promising here?

Genus 2 isogeny－based cryptography．．．

E．V．Flymn ${ }^{1}$ and Yan Bo Ti
Mathematical Institute，Oxford University，UK．flynnemaths．ox．ac．uk
Mathematics Department，University of Auckland，NZ．yanbo．tiegrail．coum

Abstract．We study（（ ℓ ）－sogeny graphs of principally polarised super－ Aingular abelian surfaces（PPSSAS）．The（ ℓ, priniciogaty poly prapised super－ tion of the genus two bogeny hash function suisiong resedstanco assump．

 Keywords：Post－quantum cryptography－Isogeny．－based cryptography
Cryptanalysis s ．Key exchange．Hash function

1 Introduction

[^1]elements in the n－sphere is $\ell^{3 n-3}\left(\ell^{2}+1\right)(\ell+1) \approx \sqrt{p^{3}}$ ，hence a naive exhaustive search on the leaves of J_{H} has a complexity of $O\left(\sqrt{p^{3}}\right)$ ．One can improve on this by considering the meet－in－the－middle search by listing all isogenies of degree ℓ^{n} from J_{H} and J_{A} and finding collisions in both lists．The meet－in－the－middle search has a complexity of $O\left(\sqrt[4]{p^{3}}\right)$ ．One can perform better by employing a quantum computer to reduce the complexity to $O\left(\sqrt[6]{p^{3}}\right)$ using Claw finding algorithms［23］．This compares favourably with the genus one case which has classical security of $O(\sqrt[4]{p})$ ，and quantum security of $O(\sqrt[6]{p})$ ．An example of a prime which one can use to achieve 128－bits of security is 171－bits，whereas the genus one case requires 512－bits for the same level of security．

2-isogenies

$$
\begin{gathered}
E \cong \mathbb{Z}_{(p+1)} \times \mathbb{Z}_{(p+1)} \\
E[2] \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}
\end{gathered}
$$

$$
\begin{gathered}
J_{C} \cong \mathbb{Z}_{(p+1) / 2} \times \mathbb{Z}_{(p+1) / 2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\
J_{C}[2] \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
\end{gathered}
$$

Superspecial \boldsymbol{g}-dimensional PPAV's over $\mathbb{F}_{p^{2}}$:

$$
O\left(p^{g(g+1) / 2}\right) \text { vertices }
$$

Genus 1: $O(p)$ vertices
Genus 2: $O\left(p^{3}\right)$ vertices

Motivation for genus 2

- ECC prime field state-of-the-art (Curve25519) uses Montgomery x arith
- HECC prime field state-of-the-art uses Kummer surface arith
- HECC wins solidly with fields of $1 / 2$ the size
- SIDH state-of-the-art uses Montgomery x
- What can we expect with hyperelliptic SIDH using Kummers with fields of $1 / 3$ the size?

Why are we interested in isogenies?

Part 7: Why stop at genus 2?

Superspecial \boldsymbol{g}-dimensional PPAV's over $\mathbb{F}_{p^{2}}$:

$$
O\left(p^{g(g+1) / 2}\right) \text { vertices }
$$

Genus 1: $O(p)$ vertices
Genus 2: $O\left(p^{3}\right)$ vertices
Genus 3: $O\left(p^{6}\right)$ vertices...

Why stop at genus 2?

- Could this mean $g=3$ SIDH uses fields of $1 / 6$ the size? Hyper-SIKEp72 vs. SIKEp434?
- Can $g=4$ SIDH can use fields of $1 / 10$ the size? Hyper-SIKEp43 vs. SIKEp434?
- What about $g>4$?
- C-Smith'19: finds $\phi: A_{g} \rightarrow A_{g}{ }^{\prime}$ classically in $\tilde{O}\left(p^{g-1}\right)$, quantumly in $\tilde{O}\left(p^{(g-1) / 2}\right)$
- Algorithm starts overtaking (asymptotically) generic algorithms for $g>4$, but absolutely not a deal-breaker for $g \leq 4$

Why stop at genus 2?

- Upshot: no known reason to stop at $g=2$
- My view is that $g>1$ isogeny crypto is currently extremely promising, even more promising than $g>1$ HECC was!
- We currently know a little bit about $g=2$ (much more work to be done here), but we know almost* nothing for $g>2$
- Isogeny-based crypto for $g>1$ is clearly not for the faint-hearted, but the field is wiiiiide open and there's much work to do...

$$
\begin{aligned}
& \text { * This paper and this paper are } \\
& \text { promising starts... }
\end{aligned}
$$

Question

What are some of the issues (or open questions) that need to be resolved before we could seriously consider using $g>1$ isogenies to compete (or maybe even replace) elliptic curve SIDH/SIKE/....?

In a nutshell:
 $E\left(\mathbb{F}_{p^{2}}\right)$

In a nutshell: $\quad J_{C}\left(\mathbb{F}_{p}\right)$

In a nutshell:
 $K\left(\mathbb{F}_{p}\right)$

From elliptic to hyperelliptic

Consider

$$
E / K: \quad y^{2}=x^{3}+1 \quad C / K: \quad y^{2}=x^{6}+1
$$

Obvious map

$$
\begin{aligned}
\omega: \begin{aligned}
C(K) & \rightarrow E(K) \\
(x, y) & \mapsto\left(x^{2}, y\right)
\end{aligned}
\end{aligned}
$$

1: But what about $\omega^{-1}: E(K) \rightarrow C(?) \ldots$
2: Points on E are group elements, points on C are not...
3: Actually want map $E \rightarrow J_{C}$, but $\operatorname{dim}(E)=1$ while $\operatorname{dim}\left(J_{C}\right)=2 \ldots$
4: Want general ω, ω^{-1} between $y^{2}=x^{3}+A x^{2}+x$ to $y^{2}=x^{6}+A x^{4}+x^{2}$???

Proposition 1

$$
\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(i) \text { with } i^{2}+1=0
$$

$E / \mathbb{F}_{p^{2}}: \quad y^{2}=x(x-\alpha)(x-1 / \alpha)$
$C / \mathbb{F}_{p}: \quad y^{2}=\left(x^{2}+m x-1\right)\left(x^{2}-m x-1\right)\left(x^{2}-m n x-1\right)$

$$
m=\frac{2 \alpha_{0}}{\alpha_{1}}, n=\frac{\left(\alpha_{0}^{2}+\alpha_{1}^{2}-1\right)}{\left(\alpha_{0}+\alpha_{1}^{2}+1\right)} \text { both in } \mathbb{F}_{p}
$$

Then $\operatorname{Res}_{\mathbb{F}_{p^{2}} / \mathbb{F}_{p}}(E)$ is $(2,2)$-isogenous to $J_{C}\left(\mathbb{F}_{p}\right)$

Or, pictorially,

$$
\operatorname{ker}(\eta) \cong \operatorname{ker}(\hat{\eta}) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

$$
\eta \circ \hat{\eta}=[2]
$$

Unpacking Proposition 1

- Weil restriction turns 1 equation over $\mathbb{F}_{p^{2}}$ into two equations over \mathbb{F}_{p}
- Simple linear transform of $E / \mathbb{F}_{p^{2}}: y^{2}=f(x)=x^{3}+A x^{2}+x$ to $\tilde{E} / \mathbb{F}_{p^{2}}: y^{2}=g(x)$ such that $C / \mathbb{F}_{p^{2}}: y^{2}=g\left(x^{2}\right)$ is non-singular
- Pullback ω^{*} of $\omega:(x, y) \mapsto\left(x^{2}, y\right)$ gives 2 points in $C\left(\mathbb{F}_{p^{4}}\right)$, but composition with Abel-Jacobi map bring these to $J_{C}\left(\mathbb{F}_{p^{2}}\right)$

Question

There's a bug in Proposition 1 (pointed out to me a while ago by Castryck). Can you spot it?

Performance

Operation	chained 2-isogenies on Montgomery curves over $\mathbb{F}_{p^{2}}$ (previous work)				chained (2,2)-isogenies on Kummer surfaces over \mathbb{F}_{p} (this work)				
	M	S	A	\approx cycles	m	s	a	\approx cycles	
								$\mathbf{s}=\mathbf{m}$	$\mathrm{s}=0.8 \mathrm{~m}$
doubling	4	2	4	5862	8	8	16	6272	5714
2-isog. curve	-	2	1	2088	19	4	28	9231	8952
2-isog. point	4	0	4	4336	4	4	16	3480	3200

- Theta constants map to theta constants: point map is enough
- Comparison in Table/paper rather conservative
- Dreamt of (re-)defining SIDH entirely using Kummers over \mathbb{F}_{p}, but compression algorithms were the buzzkill ...

Questions?

[^0]: ${ }^{1}$ Date received: February 4, 1988. Date revised: September 28, 1988.

[^1]: sogeny－based cryptography involves the study of sogenies between abelian va－
 vieties．The first proposal was an unpublished manuscript of Couveignes 6 （ tha rieties．The first proposal was an unpublished manuscript of Couveignes［⿴囗大 t that
 putlined a key－exchange algorithm set in the isogeny graph of elliptic curves． This was rediscoverered by Rostovtsev and Stolbonnovy grapl．A hash function was
 （Intitict developed by Chares，Goren and Lauter（4）that uses the input to the hash
 generate a path in the isogeny graph and outputs the end point of the pat generate a path in the isogeny graph and outputs the end point of the pat
 Next in the line of invention is the Jao－de Feo cryptosystem［12］which reli on the difficulty of finding isogenies with a given degree between supesingular
 elliptic curves．A key exchange protocol，called the Supersingular sogeny Diffie elliptic curves．A key exchange protocol，called the Supersingular sogeny Dififie
 Helliman key exchange（SIDH），based on this hard problem，was proposed in the ame paper．The authors proposed working with 2 －isogenies and 3 －isogenies for effciency．
 Elliptic
 hence we can turn to principally polarised abelian varieties of himer dimsion one， when looking torn toneralisise isogegeny pobased cryptosystems．As noted by Takashima when looking to generaise isogeny－based cryptosystems．As noted by Takashim
 elliptic curves have three 2 －isogenies but abelian surfaces（abelian varieties of dimension 2 ）have fifteen（ 2,2 ）－isogenies．Hence，this motivates the use of abeli urfaces for use in theses cryptosystems．
 In this work
 In this work，we will focus on princins．
 eties ofly polarised supersingular abelian vari－ surfaces（PPSSAS）and consider their application to crryptography．The twe chial （enges before us are：to understand the isogeny graphs of PPSSAS，and to have
 lis．

