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Computational design of antibod
ies

Sharon Fischman1 and Yanay Ofran1,2
Antibody design aims to create new antibodies with biological

activity that can be used in therapy and research. Traditional

methods for antibody discovery, such as animal immunization

and large-scale library screening, generate antibodies that bind

to the target of interest, but do not necessarily have the desired

functional effect. Computational methods can be utilized as a

means to guide the search for biologically relevant antibodies,

focusing on specificity and affinity determinants to target a

particular region of the antigen. Such an approach would allow

for the design of epitope-specific antibodies that will have the

desired effect on the function of the targeted protein.
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Introduction
Antibodies are the fastest growing class of therapeutics

[1]. However, despite tremendous discovery efforts,

existing technologies fail to generate biologically active

antibodies against many of the most promising targets.

The essential goal of Ab design, particularly in the

context of drug design, is to design a novel antibody that

has a biological effect. However, most approaches focus

getting a specific binder to the target, not on eliciting a

desired biological activity. Immunization and screening

of large libraries can be employed to obtain binders to a

target of interest. Different approaches to the design of

such libraries, including restricted codons [2] or combina-

tions of germline H and L chain genes [3,4], have suc-

ceeded in producing antibodies with novel binding spe-

cificities and in some cases, biological activity [5]. These

methods, however, select for the tightest binders, typi-

cally to immunodominant epitopes, precluding the dis-

covery of antibodies with lower affinities that may bind to

other, functionally relevant sites. Targeting specific sites
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within a target antigen, for example, those known to

agonize or antagonize a biological pathway, remains a

challenge in antibody design.

While large-scale, general purpose libraries may yield

some functional antibodies, the size of the haystack in

which these needles hide makes it difficult to identify

them by meticulous functional screening of thousands of

binders. Computational approaches offer another route

to antibody design. The general scheme of current

methods for the computational design of antibodies is

presented in Figure 1. A first step toward identifying an

antibody that binds the antigen is to model the 3-D

structure of candidate antibodies, as well as the structure

of the antibody–antigen complex. These antibodies are

then tested experimentally for binding, and if necessary,

are improved via in vitro affinity maturation. Better

understanding of the structural basis of antigen binding

by antibodies is a key to the success of this approach [6].

Here, we review the current state of computational

technologies for antibody design, and suggest how new

computational approaches can be applied to design

libraries that are more likely to yield biologically active

antibodies.

Modeling antibodies and antibody–antigen
complexes
Structure-based computational protein design in general,

and antibody design in particular, relies heavily on quality

three-dimensional structural data for both the template

for design (in this case, the antibody), the desired target

(in this case, the antigen), and their complex. Antibody

modeling has advanced to the state where the majority of

the antibody variable domain can be modeled reliably.

The success in modeling is in part due to structurally

canonical conformations of most CDRs [7]. However

obtaining accurate models of the variable CDR H3 and

the relative orientation of the H and L chains, arguably

the most important elements in determining binding,

remains a challenge [8�] (for a review of antibody model-

ing and challenges see [9]). Among other reasons, this is

due to the unique conformation of H3 in different Abs

[10]. As H3 comprises part of the H-L interface, modeling

both of these regions is interdependent. H3 modeling can

be improved by implementing geometric constraints that

describe a conserved structural kink [11] (For a review of

H3modeling see [12]). Addressing both H3modeling and

VH-VL orientation, Marze et al. [13] demonstrate

improvements to antibodymodeling accuracy by utilizing

multiple templates of VH-VL orientation in addition to

CDR grafting with RosettaAntibody [14]. Deane and

colleagues implement a Random Forest classifier to
www.sciencedirect.com
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Computational design of antibodies — general scheme. Current methods for computational antibody design begin with modeling an antibody and

an antibody–antigen complex. Selected antibody sequences are tested experimentally for antigen binding, for example, either with a soluble

antigen or a cell-expressed antigen, and binders are further optimized by affinity maturation methods.
identify specific sequence positions that characterize the

VH-VL orientation as a series of torsion and bend angles

affecting the possible degrees of freedom, to improve

orientation prediction [15,16].

However, even when a reliable model for the antibody is

obtained, modeling the Ab-Ag complex is a difficult task.

The community wide critical assessment of protein inter-

actions (CAPRI), which assesses the performance of

computational tools for modeling complexes, demon-

strates this difficulty. In its recent experiment [17],

67 research teams using state-of-the-art methods

attempted to model 20 complexes. The teams submitted

>20 000 models (i.e. an average of 1000 models per

complex), and yet for six out of the 20 complexes there

was not a single model that was deemed ‘acceptable’ in its

quality (e.g. identifying correctly 50% or more of the

interface contacts). The success of docking that is based

on models of the subunits, is even poorer [18]. These

difficulties are encountered in antibody–antigen docking

as well [19].

Importantly, even when complex modeling successfully

generates a correct model among its best models, there is

no straightforward way of telling which one it is. Conse-

quently, attempts to design an antibody that are based on

modeling the 3-D structure of the complex, cannot rely on

a single model, and hence require the synthesis of dozens,

sometimes even hundreds, of different sequences, hoping

that one of them binds.

Selecting models as a basis for computational design,

however, is only the first step.Methods to predict changes
www.sciencedirect.com
in the free energy of mutants are then used to improve

antibodies or to introduce cross-reactivity. These methods

use either crystal structures or models of the antibody–

antigen complexes [20–22] as their starting point. A study

by Sirin et al. [23] highlights the limited performance of

these methods. This study used a large dataset of mutants

to compare the experimentally determined and the com-

putationally predicted effects of mutations on binding free

energies of antibody–antigen complexes. The computa-

tional methods tested included those based on statistical

potentials as well as all-atom force-fields. They conclude

that some of the computational methods perform reason-

ably well in identifying mutations with a large effect on

binding, but the problem of identifying mutations with

moderate or small effects is still unresolved. Another study

[24] found that using consensus scoring of some of these

programs can improve the identification of mutations that

weaken binding. However, the study did not distinguish

between mutations that improve affinity and mutations

that were neutral. A recent study by Clark et al. [25] on a

small number of antibodies shows that predictions of

binding energy changes correlate with experimental ala-

nine scanning data. However, the authors conclude that

their tool is not yet a “robust, automated protocol . . .

suitable for application to an arbitrary protein–protein

interaction.” Taken together, the results of these studies

demonstrate challenges that still exist for computational

design of antibodies: predicting whether, and how, the

designed proteins are going to interact is a major challenge

and predicting which mutations can improve affinity is not

easier. This is why existing approaches require many

experimental attempts and large libraries for improving

preliminary binders.
Current Opinion in Structural Biology 2018, 51:156–162
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A possible alternative approach to antibody design that

may mitigate these challenges should focus on predicting

specific functional determinants, rather than modeling

the full complex. It has been shown that specific contacts

between antibodies and antigens can be predicted, some-

times even without modeling the full complex [26,27].

Furthermore, a functional antibody has been successfully

designed by grafting a few specific contacts from a known

complex onto an antibody template [28��].

Specificity and affinity determinants —
contribution of specific positions and CDRs
The challenge of designing a new antibody can be thus

reduced to forming a handful of residue–residue contacts

between the designed antibody and the target protein.

Predicting which positions to select for variation, and

what variation to introduce there in order to elicit an

antibody with novel function, may hold the key to the

design of relatively small, focused libraries. It is well

known that certain amino acid residues, for example,

tyrosines, are prevalent in CDRs and contribute to their

ability to bind diverse ligands [29,30�,31��,32]. Several
studies, using both knowledge-based and physico-chemi-

cal-based methods, describe the identification and pre-

diction of specificity determinant positions of antibodies

as well as their composition. One such study has shown

the computational identification of antigen binding frag-

ments based on structural analysis [27]. Using MD simu-

lation of 20 Ab-Ag complexes and MM/GBSA calcula-

tions of binding free energies, Osajima and Hoshino [33]

show the significant role the H chain CDRs, and Tyr in

particular, contribute to the free energy of binding. These

observations are supported by results of another study on

a much larger dataset of 403 Ab-Ag complexes [34]. This

and other studies identified the prevalence of Tyr, in

addition to other amino acids (Trp, Ser, Asn, Asp, Thr,

Arg, Gly) in Ab-Ag interfaces (see [35] and references

therein). Interestingly, Tyr, Ser, and Trp are over-repre-

sented in germline residues that contact the antigen but

not in antigen-contacting residues that are introduced

into the Ab during somatic hypermutation [31��]. The

prevalence, thus, is encoded in the germline rather than

selected for during in vivo affinity maturation.

Further characterization of the specificity determinants of

paratopes shows that while almost all antibody binding

regions (ABRs) within the six variable loops, contribute to

the binding free energy of the complex, each ABR has

distinct amino acid compositions as well as preferences

for binding different amino acids on the antigen [30�]. For
example, H chain ABRs (particularly H2) are largely

shown to mediate charged interactions, while L chain

ABRs (L1 and L3) contribute to polar interactions.

Another study that compared natural antibodies to syn-

thetic ones has found that in natural antibodies each CDR

tends to specialize in specific types of contacts [36]. This

information is useful when considering library design for
Current Opinion in Structural Biology 2018, 51:156–162
antibody engineering, particularly for narrowing the vari-

ation down to incorporate only residues shown in nature

to contribute to specificity.

When designing libraries it is crucial to not only consider

the variability which will be introduced, but where to

introduce it as well. Figure 2 dissects an antibody–antigen

complex into the different determinants that contribute

to specificity and affinity. A large scale structural and

statistical analysis of 196 Ab-Ag complexes [31��] identi-
fied the positions in germline sequences that most likely

undergo somatic hypermutation and their predicted con-

tribution to binding affinity. The contribution of positions

to affinity, it shows, depends on the structural region of

the antibody in which they occur. Importantly, these

favored positions are not only in the Ag contacting resi-

dues, but also in the H-L interface, and in CDR positions

that do not mediate direct contact with the antigen. The

study also characterizes the contribution of germline

residues to binding affinity, relative to positions that

underwent somatic hypermutation. It has been shown

that some positions in the framework contribute to bind-

ing specificity, via long range and allosteric effects

[31��,37,38,39��,40]. When engineering antibodies, it is

important to consider the effects of all these positions. As

seen in Figure 2, while most of the contacts come from

the CDRs, projecting positions that tend to be altered in
vivo during SHM onto the structure of the antibody

reveals that only a small fraction of the CDR positions

are in direct contact with the antigen. Moreover, some

positions that are highlighted by SHM are not in the

paratope, revealing indirect effects. In addition, some

CDR positions contribute to stabilizing the H-L

interface.

De novo antibody engineering
While some computational tools have been proposed for

improving the affinity of existing antibodies [41], the

bigger challenge is to design an antibody with a new

function. Several recent examples demonstrate success in

this task. Each employs different computational methods

for modeling the antibody–antigen complex and predict-

ing beneficial mutations to introduce in the antibody to

improve specificity and affinity. A main goal of the

computational tools is to minimize the number of variants

that need to be experimentally screened.

Engineering an antibody that will have a functional effect

on a target requires a detailed understanding of the target.

The epitope within the target that should be bound to

affect the function must be identified. Antibody-specific

epitope prediction provides a method to overcome this

difficulty, sometimes even in the absence of a 3-D struc-

ture of the antibody [26,42–44].

Several computational approaches for engineering func-

tional antibodies de novo have been designed to mimic
www.sciencedirect.com
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Figure 2
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Specificity and affinity determinants. (a,d) Crystal structure of the antibody Fab Adalimumab (Humira) bound to its antigen TNF-alpha (PDB 3WD5).

The H chain is in green, the L chain is in blue, the antigen is in orange. The paratope of antibodies may be comprised of residues located in

different structural regions of the antibody. The paratope residues (6 Å from the antigen) are shown in stick in (a) and on the surface of the

antibody in (b) and (c). The antigen has been removed in (b) and (c) for clarity. (c) is rotated �90� about the x-axis relative to (b). CDR (ABR as

defined by Paratome [50]) residues that participate in the antigen interface only, are in grey; CDR residues that comprise both the antigen interface

and H-L (6 Å) interface are in purple; framework residues that comprise both the antigen interface and H-L interface are in light-orange. (d)

Antibody positions with high frequencies of SHM in vivo [31��] are mapped onto the structure of Adalimumab and shown in stick, and on the

surface of the antibody in (e) and (f). The antigen has been removed in (e) and (f) for clarity. (f) is rotated �90� about the x-axis relative to (e).

Those residues that contact the antigen (6 Å) are shown in pink; residues that do not contact the antigen are shown in dark blue. As seen, some

of the residues that are commonly altered during SHM are not surface residues, suggesting that engineering and design of affinity should not be

focused exclusively on interface residues. The different colors of the structural and functional elements suggest guidance for design focusing at

specificity and affinity determinants.
antibody development in nature, specifically, simulating

V(D)J gene recombination, by assembling an antibody

model from structural building blocks [28��,39��,45].
Using modular Ab parts (MAP), in combination with in
silico affinity maturation, the OptMAVEn program has

been used to generate human Abs for different antigens

[45]. A recent study by Poosarla et al. [46], offers the first

experimental validation of this methodology by engineer-

ing an antibody with novel peptide binding. Beginning

with 31 designs, and further predictions of stability from

molecular dynamics simulations, 27 designs were sub-

jected to in silico affinity maturation. Five of these designs

were tested experimentally and shown to be folded and

stable in solution; three showed nMbinding affinity to the

peptide antigen. A similar study employed the OptCDR
www.sciencedirect.com
[47] tool to predict and model scFvs targeted towards a

linear epitope, which resulted in identification of a de novo
antibody specific for that target [48]. While both these

studies demonstrate successful epitope-specific antibody

engineering generated by computational predictions, it is

important to keep in mind that the antigen in each case

comprises a linear epitope, and modeling conformational

epitopes (ie. non-sequential epitopes) will likely be more

difficult.

Baran et al. [39��] utilize AbDesign [49] to generate de
novo antibodies to two different protein antigens. By

combining framework and CDR segments from antibody

structures, docking the antigen, andmodeling the optimal

sequence for the docked complex, they succeed in
Current Opinion in Structural Biology 2018, 51:156–162
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generating three antibodies that bind to novel targets,

after experimentally testing�200 designs for stability and

binding. Randommutagenesis was then employed, yield-

ing two antibodies with improvements of affinity of an

order of magnitude. Interestingly the randomly intro-

duced mutations responsible for increased affinity were

not located in the CDRs, but rather in the framework, and

are proposed to mediate improved affinity via long-range

electrostatic interactions. This observation highlights an

additional challenge for predicting specific variations for

affinity improvements by focusing on in silico affinity

maturation of CDR residues in a model of the antibody-

–antigen complex. Notably, while computational model-

ing allowed for the discovery of de novo antibodies to a

given antigen, the design was not epitope-specific.

Going beyond the attempt to design an Ag-specific

binder, Liu et al. [28��], attempted to design an epi-

tope-specific antibody to cross-block the natural ligand

of the target. Their approach combines hot-spot grafting

with computational modeling and sequence optimization.

This method yielded low affinity initial binders, that were

then improved by computational re-design of CDR H3

via in silico swapping of CDR H3s from other template

structures. The fact that the hotspots were grafted onto

H2 and not CDR H3, allowed for the introduction of

variation into H3 with minimal concern for impairing

function. The crystal structure of the designed antibody

in complex with the antigen, while largely consistent with

the model, shows differences in CDR loop tilt and VH-

VL interface relative to the model. This observation

emphasizes the potential of an approach to antibody

engineering that focuses on modeling specific functional

interactions, rather than a single accurate 3-D model of

the Ab-Ag complex.

The examples highlighted here, show how predictions

can be used to design antibodies that target a specific

epitope or antibodies with a specific function. However,

in these cases, a rationally designed library was not

implemented. Future directions for this field may include

utilizing computational predictions, such as those

described above, to guide the design of focused, epi-

tope-specific libraries, predicted to elicit functional

antibodies.

Conclusion
Most existing approaches for Ab design start with

attempting to model the full complex. However, as dem-

onstrated in the case of Liu et al. [28��], success can

achieved even when the model was not found to be in

full agreement with the crystal structure, as long as the

functional interactions were modeled correctly. These

results are consistent with the successful modeling of

antibody–antigen interfaces in the absence of a model for

the entire complex [26] Thus, focusing on modeling

specific contacts suggests new avenues for Ab design
Current Opinion in Structural Biology 2018, 51:156–162
and engineering. Given the challenges in modeling

antibody–antigen complexes, the prediction of function-

ally important residues, which can be applied to designing

focused, epitope-specific libraries, will advance the engi-

neering of biologically active antibodies.
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