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• Integrated photonics has emerged as a key technology to enable 
advancements in high-speed communication and advanced vision systems.

• Photonic integrated circuits possess high optical performance and are well 
suited for both monolithic and hybrid integration in a compact form factor, 
low cost and excellent reliability.

Introduction
PLC Technology
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• A versatile and low-cost platform with powerful characteristics.

• Widespread applications, including high-speed communication, medical imaging, 
autonomous driving, and environmental sensing.

Introduction
Silica-on-silicon PLC platform
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• Buried silica-based waveguides with a       
Δn = 2.0% refractive index contrast and 
typical waveguide dimensions of 3 ⨉ 3 μm. 

• Fabricated using atmospheric pressure 
chemical-vapor deposition (APCVD) and 
reactive ion etching.

• We offer our fabrication services for 
external clients for rapid prototyping and 
cost-effective custom solutions.

Our PLC Platform
Silica-on-silicon

• Typical performance characteristics:
• Low waveguide propagation losses (< 1 dB/m)
• Efficient fiber-to-waveguide coupling (∼0.5 dB per facet)
• Temperature-stable optical performance (< 10 pm/°C)
• Polarization-invariant waveguides with zero birefringence

SiO2 
cladding

Si substrate

Δn = 2.0% 

SiO2 
core



• An example of a 10-meter-long spiral with waveguide density close to the 
theoreUcal limit:

10 mm

10
 m

m
Ultra-dense architectures
Long delay lines
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• Realized in silica-on-silicon with a refractive index 
contrast of Δn = 2.0%. 

• Total device footprint: 1.0 cm2

• Waveguide density close to the theoretical limit
• 1 dB/m propagation loss

• Polarization- and wavelength-independent 
operation across the C-band



Ultra-dense architectures
4-channel CWDM multiplexer

• Total device footprint: 0.18 cm2

• Worst-channel insertion loss of 1.5 dB

• Without the two fiber couplings, on-chip loss 
estimated at 0.3 dB

• 1 dB bandwidth of 16.4 nm (>82% of the 
channel pitch)

• Worst case crosstalk of 19 dB

• Polarization-independent operation across the 
O-band (polarization dependent loss < 0.2 dB)
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Ultra-dense architectures
8-channel LAN-WDM multiplexer

• Total device footprint: 0.38 cm2

• On-chip loss estimated at 0.3 - 0.5 dB

• 1 dB bandwidth of 3.5 nm (80% of the channel pitch)

• Polarization-independent operation across the O-band 
(polarization dependent loss < 0.2 dB)
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Machine-driven design
Progressive abstraction of complexity

STEP 1: Simplified functional view

STEP 2: Expanded physical / simulation diagrams

STEP 3: Automated transformer from 
diagrams to physical layout
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ML-driven design
Building custom models

Leveraging ML technologies:
• Adopt Keras API for arbitrary 

advanced workflows
• Build on top of TensorFlow 2
• Deploy on AWS



DSP

OPTICAL PROCESSING

f1 f2 f3 f4 f5
…

COHERENT FEATURE 
EXTRACTION

Planar lightwave circuit

ML / AIOPTICAL DOMAIN
Advanced vision systems use coherent illumination and perform optical 
processing BEFORE the signal is detected electrically. Rich palette of optical 
features feed deep ML/AI models to enable a wide range of advanced vision 
applications

λφ PA

COHERENT 
ILLUMINATION 

ELECTRONICS

PDs

LD

spatial distance
3D imaging
velocity vector
tissue density
spectral analysis
layer metrology
surface texture
molecular 
detection
antibody bindings
art conservation
medical 
diagnostics
cardiology
virtual reality
…

Advanced vision
Optical processing



Optical building blocks
Polarization beam splitters

• Polarization isolation > 22 dB over 1510 – 1575 nm 
measurement range

• Highly-integrated arrayed PBS solution for LiDAR 
applications

composite coupler composite couplerbirefringent region



Op9cal building blocks
k-clocks for OCT and LiDAR

10 GHz (OCT)
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• Swept-source OCT (SS-OCT) and FMCW LiDAR measure the signal in k-space, 
which is linear to the change in the optical frequency of the swept source.

• k-clock is a timing control signal that is produced by an auxiliary MZI that is used 
as a highly linear optical frequency fiducial marker.

• Extremely low propagation losses of the PLC platform allow for the realization of 
wide range of k-clocks:

10 MHz (LiDAR)



• To achieve high-performing devices, we rely on 
advanced data analysis that is tightly coupled 
to our design and fabrication.

• We use machine learning (ML) algorithms to 
scale the capabilities of the silica-on-silicon PLC 
platform to high-volume manufacturing, where 
reproducible performance is critical to the 
adoption of integrated optics solutions.

• Two challenges to achieving homogeneous 
performance:

1. Systematic variability within a wafer
2. Variations between fabricated wafers 
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PLCs in Production
Challenges in high volumes



• Process uniformity and consistency is criUcal in the manufacturing of photonic 
chips.

• TradiUonally, standard staUsUcal methods are used to compensate for systemaUc 
process non-uniformiUes:

Design optimizations
The challenge of process uniformity
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systematic index variation



Design Optimizations
Adjustments of design parameters through ML
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Design Optimizations
Adjustments of design parameters through ML
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inferred design 
parameters
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Design Optimizations
Adjustments of design parameters through ML
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• To validate the approach, we applied it to a production mask with 600 devices:
• Devices on the mask were designed to be identical, except for a refractive index 

distribution correction computed by traditional statistical means.

• Despite the built-in compensation for systematic refractive index variations, nominally 
identical devices showed significant variations in performance stemming from process 
variabilities:
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Design Op9miza9ons
Adjustments of design parameters through ML

A high-performing chip from the same wafer A poor-performing chip

Ini:al 
mask



• To validate the approach, we applied it to a producUon mask with 600 devices:
• We used the model predicDons to insert correcDons into each of the chips on the mask, 

thereby producing a ML-enhanced version of the producDon mask.
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Design Optimizations
Adjustments of design parameters through ML

20 worst performing chips in the 
initial version of the mask.

The same 20 chips in the ML-enhanced 
version of the mask.

Initial 
mask

ML-enhanced 
mask



Performance Predic9ons
Classifica?on based on a wafer probe measurement
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Probed locations 
on the wafer
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Performance Predictions
Classification based on a wafer probe measurement



Probed loca2ons 
on the wafer

Typical spectroscopic 
signature
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Performance Predic9ons
Classifica?on based on a wafer probe measurement



Probed loca2ons 
on the wafer

Predicted performance of 
hundreds of chips on a wafer
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Typical spectroscopic 
signature

Performance Predic9ons
Classifica?on based on a wafer probe measurement



Probed locations 
on the wafer

Specification parameters:
1. IL
2. IL uniformity
3. Grid detuning
4. Channel spacing 

uniformity
5. 0.5 dB passband
6. 1 dB passband
7. 3 dB passband
8. PDL
9. Ripple
10. Adjacent crosstalk
11. Non-adjacent 

crosstalk
12. Total crosstalk
  .
  .
  .

.
  .
  .

Predicted performance of 
hundreds of chips on a wafer
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Typical spectroscopic 
signature

Performance Predictions
Classification based on a wafer probe measurement



25

Time to measure a 4-channel chip 2 minutes

Cost of measuring a 4-channel chip (North America) $4.25

Cost of measuring a 4-channel chip (Asia) $0.55

Cost of characterizing a wafer with 600 chips $2550 / $330

Time to measure a wafer with 600 chips 20 hours

Time to perform a wafer probe measurement 12 minutes

Time to infer the PASS/FAIL of all chips on a wafer instantaneous

Effective measurement time per chip 1.2 seconds

Cost of characterizing a wafer with 600 chips $25

Time to measure a wafer with 600 chips 12 minutes

Performance Predictions
Classification based on a wafer probe measurement

Tradi&onal chip tes&ng Wafer probe tes&ng
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over 26 specification 
parameters

Predicted PASS/FAIL

Performance Predictions
Classification based on a wafer probe measurement
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Actual PASS/FAIL
over 26 specification 

parameters

Predicted PASS/FAIL
over 26 specification 

parameters

Performance Predictions
Classification based on a wafer probe measurement



Conclusions
• We described how AI/ML revolutionized the way photonic integrated circuits are 

designed and fabricated in a high-volume environment: 

• The automated layout transformers overcome the complexity of design and physical 
layer layout enabling novel architectures not only in communications but also advanced 
vision applications, such as LiDAR and OTC.

• Deep neural network multivariate regression models optimize the individual design 
parameters of hundreds of devices on a mask.

• A support vector machine (SVM) predicts the performance of optical chips in multi-
dimensional space. 

• These approaches bring the power of ML to both the design of optical chips and their 
manufacturing, demonstrating the tremendous potential of AI/ML for increasing the 
scale and reach of the photonics industry.
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Tutorial 2 – Ksenia Yadav
Machine Learning Fundamentals with Applications in 
Photonics, Wed, June 14, 11:05 – 12:05, ROOM 513


