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Introduction
PLC Technology Q Enablence

* Integrated photonics has emerged as a key technology to enable
advancements in high-speed communication and advanced vision systems.

* Photonic integrated circuits possess high optical performance and are well
suited for both monolithic and hybrid integration in a compact form factor,

low cost and excellent reliability.




Introduction Q Enablence

Silica-on-silicon PLC platform

Aversatile and low-cost platform with powerful characteristics.

. Widespread applications, including high-speed communication, medical imaging,
autonomous driving, and environmental sensing.




Our PLC Platform Q Enablence

Silica-on-silicon

*  Buried silica-based waveguides with a An = 2.0%
An = 2.0% refractive index contrast and
typical waveguide dimensions of 3 X 3 um.

*  Fabricated using atmospheric pressure core
chemical-vapor deposition (APCVD) and SiO2
reactive ion etching. cladding

. We offer our fabrication services for
external clients for rapid prototyping and
cost-effective custom solutions.

Si substrate

e  Typical performance characteristics:
. Low waveguide propagation losses (< 1 dB/m)
. Efficient fiber-to-waveguide coupling (~0.5 dB per facet)

*  Temperature-stable optical performance (< 10 pm/°C)
. Polarization-invariant waveguides with zero birefringence




Ultra-dense architectures Q Enablence

Long delay lines

*  An example of a 10-meter-long spiral with waveguide density close to the
theoretical limit:
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e Realized in silica-on-silicon with a refractive index
contrast of An = 2.0%.

e Total device footprint: 1.0 cm?

*  Waveguide density close to the theoretical limit

10 mm « 1dB/m propagation loss

* Polarization- and wavelength-independent
operation across the C-band




Ultra-dense architectures
4-channel CWDM multiplexer Q Enablence

* Total device footprint: 0.18 cm?

| *  Worst-channel insertion loss of 1.5 dB
0B 11 1M 34 W1 | 3 I *  Without the two fiber couplings, on-chip loss
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QEHRBLEHGE e i estimated at 0.3 dB

* 1dB bandwidth of 16.4 nm (>82% of the
channel pitch)

*  Worst case crosstalk of 19 dB

*  Polarization-independent operation across the
0 7 O-band (polarization dependent loss < 0.2 dB)
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Ultra-dense architectures Q Enablence

8-channel LAN-WDM multiplexer

TRANSMISSION (dB)

Total device footprint: 0.38 cm?
On-chip loss estimated at 0.3 - 0.5 dB
1 dB bandwidth of 3.5 nm (80% of the channel pitch)

Polarization-independent operation across the O-band
(polarization dependent loss < 0.2 dB)
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Machine-driven design Q Enablence

Progressive abstraction of complexity

STEP 1: Simplified functional view
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STEP 2: Expanded physical / simulation diagrams

STEP 2: SIMULATOR

STAGE 2 STAGE 3

P = m om om m m s SlmSmSiwSdmSSmnm
i | | B 5 || ) | | B | | | | | | | | | ]
B | | || | | =) B =] o | | B | | 2| = ]
I\ |
| N NN /\
A lm’\m[\m' ‘L
STEP 3: Automated transformer from clideo.com

diagrams to physical layout



ML-driven design

Building custom models

() Enablence

High-level
training APIs
Built-in
training/eval
loops
Normalized ch0-ch3 | input: |[(None, 4, 90)] Easy to use
InputLayer output: | [(None, 4, 90)] Tensor i
/ \ Customized
step-by-step
FOT feature extraction | input: | (None, 4,90) | | F10T feature extraction | input: | (None, 4, 90) | | F11T feature extraction | input: | (None, 4, 90) Low-level oop High-level
architecture APIs Custom Lajers Sequential  architecture APIs
FOT output: | (None, 90) F10T output: | (None, 90) F11T output: | (None, 90) Full subclassing Functional AP model
'/ Fully flexible -
FOT densel | input: | (None, 90) F10T densel | input: | (Nons, 90) FIIT densel | imput: | (Nons, 90) y Toining/eval K Ke ras
Dense | output: | (None, 200) Dense output: | (None, 200) Dense output: | (None, 200) from scratch
Low-level
training APIS
FOT dense2 | input: | (None, 200) F10T dense2 | input: | (None, 200) F11T dense2 | input: | (None, 200)
Dense output: | (None, 200) Dense output: | (None, 200) Dense output: | (None, 200)

\

FOT dense3 | input: | (None, 200)
Dense | output: | (None, 200)

l

/

1c7-1¢9_dl5-dI6

input:

(None, 200)

Dense

output:

(None, 5)

1c0-1c3_dl0-dI2 | input: | (None, 200)

lc4-1c6_dI3-dl4 | input:

(None, 200)

Dense output: | (None, 7)

Dense output: | (None, 5)

T~

1c0-

0 dl0-dl6 | input: | [(None, 7), (None, 5), (None, 5)]

Concatenate | output:

(None, 17)

re-order outputs | input: | (None, 17)

Reorder output: | (None, 17)

Rescale to physical units

input: | (None, 17)

Rescale

output: | (None, 17)

Leveraging ML technologies:

» Adopt Keras API for arbitrary
advanced workflows

» Build on top of TensorFlow 2

* Deploy on AWS




Advanced vision Q Enablence

Optical processing COHERENT FEATURE
EXTRACTION
fifafafafs D

spatial distance
3D imaging
velocity vector
tissue density
&b ‘\'/" ' . spectral analysis
\\\\‘%4,,,(»‘4 layer metrology
“\"’ A )surface texture

., molecular
+ detection
' antibody bindings
' art conservation
medical
diagnostics
cardiology
virtual reality

OPTICAL PROCESSING

Planar lightwave circuit

COHERENT

ILLUMINATION
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OPTICAL DOMAIN ELECTRONICS ML/AI

Advanced vision systems use coherent illumination and perform optical

processing BEFORE the signal is detected electrically. Rich palette of optical
features feed deep ML/Al models to enable a wide range of advanced vision
applications




Optical building blocks Q Enablence

Polarization beam splitters
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Polarization isolation > 22 dB over 1510 — 1575 nm
measurement range

Highly-integrated arrayed PBS solution for LiDAR
applications




Optical building blocks Q Enablence

k-clocks for OCT and LiDAR

Swept-source OCT (SS-OCT) and FMCW LiDAR measure the signal in k-space,
which is linear to the change in the optical frequency of the swept source.

 k-clock is a timing control signal that is produced by an auxiliary MZI that is used
as a highly linear optical frequency fiducial marker.

Extremely low propagation losses of the PLC platform allow for the realization of
wide range of k-clocks:

10 GHz (OCT) 10 MHz (LiDAR)




PLCs in Production Q Enablence

Challenges in high volumes

*  To achieve high-performing devices, we rely on
advanced data analysis that is tightly coupled
to our design and fabrication.

We use machine learning (ML) algorithms to
scale the capabilities of the silica-on-silicon PLC
platform to high-volume manufacturing, where
reproducible performance is critical to the
adoption of integrated optics solutions.

*  Two challenges to achieving homogeneous
performance:

1. Systematic variability within a wafer
2. Variations between fabricated wafers




Design optimizations Q Enablence

The challenge of process uniformity

*  Process uniformity and consistency is critical in the manufacturing of photonic
chips.

* Traditionally, standard statistical methods are used to compensate for systematic
process non-uniformities:
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systematic index variation
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Adjustments of design parameters through ML
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Designh Optimizations Q Enablence

Adjustments of design parameters through ML
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Design Optimizations Q Enablence

Adjustments of design parameters through ML

ML-enhanced
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Adjustments of design parameters through ML

* To validate the approach, we applied it to a production mask with 600 devices:

* Devices on the mask were designed to be identical, except for a refractive index
distribution correction computed by traditional statistical means.

* Despite the built-in compensation for systematic refractive index variations, nominally
identical devices showed significant variations in performance stemming from process

variabilities: @
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Adjustments of design parameters through ML

* To validate the approach, we applied it to a production mask with 600 devices:

*  We used the model predictions to insert corrections into each of the chips on the mask,
thereby producing a ML-enhanced version of the production mask.

ML-enhanced
mask
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20 worst performing chips in the The same 20 chips in the ML-enhanced
initial version of the mask. version of the mask.




Performance Predictions Q Enablence

Classification based on a wafer probe measurement




Performance Predictions Q Enablence

Classification based on a wafer probe measurement

Probed locations
on the wafer
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Classification based on a wafer probe measurement
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Classification based on a wafer probe measurement
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Performance Predictions

Classification based on a wafer probe measurement
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Q Enablence

== Specification parameters:

IL

IL uniformity
Grid detuning
Channel spacing
uniformity

0.5 dB passband
1 dB passband
3 dB passband
PDL

Ripple

Adjacent crosstalk

. Non-adjacent

crosstalk

. Total crosstalk

Probed locations Typical spectroscopic Predicted performance of
on the wafer signature hundreds of chips on a wafer




Performance Predictions

Classification based on a wafer probe measurement

Traditional chip testing
Time to measure a 4-channel chip
Cost of measuring a 4-channel chip (North America)
Cost of measuring a 4-channel chip (Asia)
Cost of characterizing a wafer with 600 chips

Time to measure a wafer with 600 chips

2 minutes

$4.25

$0.55

$2550/ $330

20 hours

Wafer probe testing
Time to perform a wafer probe measurement
Time to infer the PASS/FAIL of all chips on a wafer
Effective measurement time per chip

Cost of characterizing a wafer with 600 chips

Time to measure a wafer with 600 chips

(2 Enablence

12 minutes
instantaneous
1.2 seconds
$25

12 minutes
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Classification based on a wafer probe measurement

- — -

Predicted PASS/FAIL

over 26 specification
parameters




Performance Predictions Q Enablence

Classification based on a wafer probe measurement

Predicted PASS/FAIL Actual PASS/FAIL

over 26 specification over 26 specification
parameters parameters
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. We described how AI/ML revolutionized the way photonic integrated circuits are
designed and fabricated in a high-volume environment:

* The automated layout transformers overcome the complexity of design and physical
layer layout enabling novel architectures not only in communications but also advanced
vision applications, such as LiDAR and OTC.

* Deep neural network multivariate regression models optimize the individual design
parameters of hundreds of devices on a mask.

* A support vector machine (SVM) predicts the performance of optical chips in multi-
dimensional space.

*  These approaches bring the power of ML to both the design of optical chips and their
manufacturing, demonstrating the tremendous potential of Al/ML for increasing the
scale and reach of the photonics industry.
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Custom Optical Design ; o E USA

We have built systems-on-a-chip for avionics, medical robotics, X
automotive LIDAR, 3D mapping, and optical sensing. We can do Enablence USA Components, Inc.
commercial-grade prototyping or high-volume production of chips. Our 2933 Bayview Drive
mechanical design engineers can also assist with fiber pigtailing and Fremont. CA 94538
packaging. Through PLC, we can help our customers to open new ‘
market opportunities. 3 ’ Tel: +1 (510) 226-8900
‘ Fax: +1 (510) 226-8333

Tutorial 2 — Ksenia Yadav Canada
Machine Learning Fundamentals with Applications in

390 March Road, Suite 119

- Photonics, Wed, June 14, 11:05 — 12:05, ROOM 513 Ottwa, Onaro K2K 07

Tel: +1 (613) 656-2850
Fax: +1 (613) 656- 2855

Fab Services

For clients who wish to implement their own PLC designs, we offer
services through our own silica-on-silicon PLC fabrication facility. The
client can provide their own photomask, or digital mask data (GDS
format). We are known for a quick turnaround from our well-equipped
fab

Inquire



