

Machine learning for design optimizations and prediction of optical chip performance

K. Yadav, S. Bidnyk, A. Balakrishnan Enablence Technologies Inc.

> Photonics West February 1, 2023

Optical communication

- The deployment of wide-scale optical communication systems led to a phenomenal growth in information exchange.
- High-capacity optical fibers, combined with the use of integrated optical devices to control light, allow for optical networks with advanced routing and multiplexing capabilities.

Artificial intelligence and machine learning

Machine learning

Machine learning

Machine learning

Introduction AI/ML in photonics

• The photonics industry has began adopting AI and ML techniques to further both research and deployment of optical technologies.

AI/ML in photonics

- The photonics industry has began adopting AI and ML techniques to further both research and deployment of optical technologies.
- Advances have been made in:
 - Deep learning for inverse design

nature photonics

Review Article | Published: 26 October 2018

Inverse design in nanophotonics

Sean Molesky, Zin Lin, Alexander Y. Piggott, Weiliang Jin, Jelena Vucković & Alejandro W. Rodriguez 🖂

AI/ML in photonics

- The photonics industry has began adopting AI and ML techniques to further both research and deployment of optical technologies.
- Advances have been made in:
 - Deep learning for inverse design
 - Deep learning microscopy

AI/ML in photonics

- The photonics industry has began adopting AI and ML techniques to further both research and deployment of optical technologies.
- Advances have been made in:
 - Deep learning for inverse design
 - Deep learning microscopy
 - Machine learning in optical communication and networking

AI/ML in photonics

- The photonics industry has began adopting AI and ML techniques to further both research and deployment of optical technologies.
- Advances have been made in:
 - Deep learning for inverse design
 - Deep learning microscopy
 - Machine learning in optical communication and networking
 - Deep learning in ultrafast optics

Photonic integrated circuits

- Photonic integrated circuits have grown into a powerful and versatile platform that is able to meet the challenging demands of today's high-speed communication and advanced vision systems.
- Photonic circuits possess high optical performance and are well suited for both monolithic and hybrid integration.

Volume production of photonic circuits

- The key to accelerated adoption of photonics is achieving reproducible performance – a significant challenge in the photonics industry.
- Traditionally, the problem of performance inhomogeneity stemming from process variations has been handled by relying on 100% optical testing of devices.
- Today, we:
 - Present how the use of AI/ML has revolutionized the field of photonic integrated circuit design and manufacturing.
 - Describe our use of deep learning to optimize the multi-dimensional design parameter space for hundreds of optical chips on a production mask.
 - Discuss our approach of using ML to predict the performance of optical devices by wafer probing.
 - Show how the use of AI/ML allows us to achieve an unprecedented control over our fabrication process, and thus consistently high performance of optical chips at high production volumes.

- **Volume production of photonic circuits**
- Photonic integrated circuits have been widely used to realize high-performance wavelength division multiplexing (WDM) devices for datacom and telecom applications.
- A typical production wafer contains hundreds of optical devices:

Design optimizations The challenge of process uniformity

- Process uniformity and consistency is critical in the manufacturing of photonic chips.
- Traditionally, standard statistical methods are used to compensate for systematic process non-uniformities:

Adjustments of design parameters through ML

Adjustments of design parameters through ML

Design Optimizations

Enablence

Adjustments of design parameters through ML

ons Q Enablence

Adjustments of design parameters through ML

- To validate the approach, we applied it to a production mask with 600 devices:
 - Devices on the mask were designed to be identical, except for a refractive index distribution correction computed by traditional statistical means.
 - Despite the built-in compensation for systematic refractive index variations, nominally identical devices showed significant variations in performance stemming from process variabilities:

- Adjustments of design parameters through ML
- To validate the approach, we applied it to a production mask with 600 devices:
 - We used the model predictions to insert corrections into each of the chips on the mask, thereby producing a ML-enhanced version of the production mask.

Classification based on a wafer probe measurement

Classification based on a wafer probe measurement

Probed locations on the wafer

Classification based on a wafer probe measurement

Probed locations on the wafer Typical spectroscopic signature

Classification based on a wafer probe measurement

Probed locations on the wafer Typical spectroscopic signature

Predicted performance of hundreds of chips on a wafer

24

Classification based on a wafer probe measurement

Enablence

Classification based on a wafer probe measurement

Probed locations on the wafer Typical spectroscopic signature

Classification based on a wafer probe measurement

Predicted PASS/FAIL over 26 specification parameters

Enablence Classification based on a wafer probe measurement Probed locations Typical spectroscopic on the wafer signature **Predicted PASS/FAIL Actual PASS/FAIL**

Performance Predictions

over 26 specification parameters

over 26 specification parameters

Optimizations Through ML Robust designs for volume manufacturing

- AI/ML has become instrumental in our work in extending the reach of the photonics technology.
- We continue using "human-machine collaboration" to achieve outstanding uniformity of performance of mass-produced photonics chips despite our imperfect control of the fabrication process.
- The ability of ML to find correlations within weak and noisy signals gives us an unprecedented control over our process, making in-situ monitoring of optical wafer fabrication and real-time process adjustments possible.
- Our current work focuses on the use ML algorithms to scale the capabilities of our platform to integrated optics solutions in LiDAR and OCT applications.

Conclusions

- Machine learning has the capacity to capture features from vast amounts of highdimensional data.
- We described how AI/ML was used in the field of photonic integrated circuit design and manufacturing:
 - We used deep neural network multivariate regression model to optimize the individual design parameters of hundreds of devices on a mask.
 - We used a support vector machine (SVM) to predict the performance of optical chips in multi-dimensional space.
- These approaches bring the power of ML to both the design of optical chips and their manufacturing, demonstrating the tremendous potential of AI/ML for increasing the scale and reach of the photonics industry.

Custom Optical Design

We have built systems-on-a-chip for avionics, medical robotics, automotive LIDAR, 3D mapping, and optical sensing. We can do commercial-grade prototyping or high-volume production of chips. Our mechanical design engineers can also assist with fiber pigtailing and packaging. Through PLC, we can help our customers to open new market opportunities.

Inquire

Fab Services

For clients who wish to implement their own PLC designs, we offer services through our own silica-on-silicon PLC fabrication facility. The client can provide their own photomask, or digital mask data (GDS format). We are known for a quick turnaround from our well-equipped fab.

Inquire

USA

Enablence USA Components, Inc. 2933 Bayview Drive Fremont, CA 94538

Tel: +1 (510) 226-8900 Fax: +1 (510) 226-8333

Canada

Enablence Technologies, Inc. 390 March Road, Suite 119

Ottawa, Ontario K2K 0G7

Tel: +1 (613) 656-2850 Fax: +1 (613) 656- 2855