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Introduction Q Enablence

Optical communication

e The deployment of wide-scale optical communication systems led to a phenomenal
growth in information exchange.

*  High-capacity optical fibers, combined with the use of integrated optical devices to
control light, allow for optical networks with advanced routing and multiplexing
capabilities.
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Artificial intelligence and machine learning

* Atrtificial intelligence (Al) and machine learning (ML) emerged as a powerful new
approach for solving previously intractable problems.
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Introduction Q Enablence

Machine learning

* Atrtificial intelligence (Al) and machine learning (ML) emerged as a powerful new
approach for solving previously intractable problems.

ML is able to capture
essential features
from vast amounts of
high-dimensional data
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Al/ML in photonics Q Enablence

The photonics industry has began adopting Al and ML techniques to further both
research and deployment of optical technologies.
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The photonics industry has began adopting Al and ML techniques to further both
research and deployment of optical technologies.

. Advances have been made in:

* Deep learning for inverse design

nature photonics
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The photonics industry has began adopting Al and ML techniques to further both
research and deployment of optical technologies.

Advances have been made in:
* Deep learning for inverse design
* Deep learning microscopy

Research Article Vol. 4, No. 11 / November 2017 / Optica 1437 |
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Deep learning microscopy
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The photonics industry has began adopting Al and ML techniques to further both
research and deployment of optical technologies.

Advances have been made in:
* Deep learning for inverse design
* Deep learning microscopy
*  Machine learning in optical communication and networking

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 37, NO. 2, JANUARY 15, 2019 493

An Optical Communication’s Perspective on
Machine Learning and Its Applications

Faisal Nadeem Khan *“, Qirui Fan *“, Chao Lu, and Alan Pak Tao Lau
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The photonics industry has began adopting Al and ML techniques to further both
research and deployment of optical technologies.

*  Advances have been made in:
* Deep learning for inverse design
* Deep learning microscopy
*  Machine learning in optical communication and networking
* Deep learning in ultrafast optics

Research Article Vol. 5, No. 5/ May 2018 / Optica ~ 666 |

Deep learning reconstruction of ultrashort pulses
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Introduction Q Enablence

Photonic integrated circuits

*  Photonic integrated circuits have grown into a powerful and versatile platform that
is able to meet the challenging demands of today’s high-speed communication and

advanced vision systems.

*  Photonic circuits possess high optical performance and are well suited for both
monolithic and hybrid integration.
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Volume production of photonic circuits

* The key to accelerated adoption of photonics is achieving reproducible
performance — a significant challenge in the photonics industry.

*  Traditionally, the problem of performance inhomogeneity stemming from process
variations has been handled by relying on 100% optical testing of devices.

Today, we:
. Present how the use of Al/ML has revolutionized the field of photonic integrated circuit

design and manufacturing.

. Describe our use of deep learning to optimize the multi-dimensional design parameter
space for hundreds of optical chips on a production mask.

. Discuss our approach of using ML to predict the performance of optical devices by wafer
probing.

. Show how the use of Al/ML allows us to achieve an unprecedented control over our
fabrication process, and thus consistently high performance of optical chips at high
production volumes.
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Volume production of photonic circuits

*  Photonic integrated circuits have been widely used to realize high-performance
wavelength division multiplexing (WDM) devices for datacom and telecom

applications.

*  Atypical production wafer contains hundreds of optical devices:
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Design optimizations Q Enablence

The challenge of process uniformity

Process uniformity and consistency is critical in the manufacturing of photonic
chips.

Traditionally, standard statistical methods are used to compensate for systematic
process non-uniformities:
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Design Optimizations ( Enablence

Adjustments of design parameters through ML
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Designh Optimizations Q Enablence

Adjustments of design parameters through ML
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Design Optimizations Q Enablence

Adjustments of design parameters through ML

ML-enhanced
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Design Optimizations ( Enablence

Adjustments of design parameters through ML

* To validate the approach, we applied it to a production mask with 600 devices:

* Devices on the mask were designed to be identical, except for a refractive index
distribution correction computed by traditional statistical means.

* Despite the built-in compensation for systematic refractive index variations, nominally
identical devices showed significant variations in performance stemming from process

variabilities: @
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Adjustments of design parameters through ML

* To validate the approach, we applied it to a production mask with 600 devices:

*  We used the model predictions to insert corrections into each of the chips on the mask,
thereby producing a ML-enhanced version of the production mask.

ML-enhanced
mask
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Classification based on a wafer probe measurement
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Classification based on a wafer probe measurement
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Classification based on a wafer probe measurement
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Classification based on a wafer probe measurement
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Performance Predictions

Classification based on a wafer probe measurement

Traditional chip testing
Time to measure a 4-channel chip
Cost of measuring a 4-channel chip (North America)
Cost of measuring a 4-channel chip (Asia)
Cost of characterizing a wafer with 600 chips

Time to measure a wafer with 600 chips

2 minutes

$4.25

$0.55

$2550/ $330

20 hours

Wafer probe testing
Time to perform a wafer probe measurement
Time to infer the PASS/FAIL of all chips on a wafer
Effective measurement time per chip

Cost of characterizing a wafer with 600 chips

Time to measure a wafer with 600 chips

(2 Enablence

12 minutes
instantaneous
1.2 seconds
$25

12 minutes
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Classification based on a wafer probe measurement
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Classification based on a wafer probe measurement
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Classification based on a wafer probe measurement

Predicted PASS/FAIL Actual PASS/FAIL

over 26 specification over 26 specification
parameters parameters
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Optimizations Through ML Q Enablence

Robust designs for volume manufacturing

*  Al/ML has become instrumental in our work in extending the reach of the
photonics technology.

We continue using “human-machine collaboration” to achieve outstanding

uniformity of performance of mass-produced photonics chips despite our
imperfect control of the fabrication process.

*  The ability of ML to find correlations within weak and noisy signals gives us an
unprecedented control over our process, making in-situ monitoring of optical wafer
fabrication and real-time process adjustments possible.

*  Our current work focuses on the use ML algorithms to scale the capabilities of our
platform to integrated optics solutions in LiDAR and OCT applications.

4—



Conclusions (2 Enablence

. Machine learning has the capacity to capture features from vast amounts of high-
dimensional data.

We described how Al/ML was used in the field of photonic integrated circuit design
and manufacturing:

* We used deep neural network multivariate regression model to optimize the individual
design parameters of hundreds of devices on a mask.

We used a support vector machine (SVM) to predict the performance of optical chips in
multi-dimensional space.

These approaches bring the power of ML to both the design of optical chips and their

manufacturing, demonstrating the tremendous potential of Al/ML for increasing the
scale and reach of the photonics industry.




Custom Optical Design

We have built systems-on-a-chip for avionics, medical robotics,
automotive LIDAR, 3D mapping, and optical sensing. We can do
commercial-grade prototyping or high-volume production of chips. Our
mechanical design engineers can also assist with fiber pigtailing and
packaging. Through PLC, we can help our customers to open new
market opportunities.

Inquire

Fab Services

For clients who wish to implement their own PLC designs, we offer
services through our own silica-on-silicon PLC fabrication facility. The
client can provide their own photomask, or digital mask data (GDS
format). We are known for a quick turnaround from our well-equipped
fab.

Inquire

Q Enablence

USA

Enablence USA Components, Inc.
2933 Bayview Drive
Fremont, CA 94538

Tel: +1 (510) 226-8900
Fax: +1 (510) 226-8333

Canada

Enablence Technologies, Inc.
390 March Road, Suite 119
Ottawa, Ontario K2K 0G7

Tel: +1 (613) 656-2850
Fax: +1 (613) 656- 2855



