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• The deployment of wide-scale optical communication systems led to a phenomenal 
growth in information exchange.

• High-capacity optical fibers, combined with the use of integrated optical devices to 
control light, allow for optical networks with advanced routing and multiplexing 
capabilities.
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• Artificial intelligence (AI) and machine learning (ML) emerged as a powerful new 
approach for solving previously intractable problems. 
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ML is able to capture
essential features

from vast amounts of 
high-dimensional data



• The photonics industry has began adopting AI and ML techniques to further both 
research and deployment of optical technologies.
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• The photonics industry has began adopting AI and ML techniques to further both 
research and deployment of optical technologies.

• Advances have been made in:
• Deep learning for inverse design
• Deep learning microscopy
• Machine learning in optical communication and networking
• Deep learning in ultrafast optics
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• Photonic integrated circuits have grown into a powerful and versatile platform that 
is able to meet the challenging demands of today’s high-speed communication and 
advanced vision systems.

• Photonic circuits possess high optical performance and are well suited for both 
monolithic and hybrid integration.

Introduction
Photonic integrated circuits
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• The key to accelerated adoption of photonics is achieving reproducible 
performance – a significant challenge in the photonics industry.

• Traditionally, the problem of performance inhomogeneity stemming from process 
variations has been handled by relying on 100% optical testing of devices.

• Today, we:
• Present how the use of AI/ML has revolutionized the field of photonic integrated circuit 

design and manufacturing.
• Describe our use of deep learning to optimize the multi-dimensional design parameter 

space for hundreds of optical chips on a production mask.
• Discuss our approach of using ML to predict the performance of optical devices by wafer 

probing.
• Show how the use of AI/ML allows us to achieve an unprecedented control over our 

fabrication process, and thus consistently high performance of optical chips at high 
production volumes.

Introduction
Volume production of photonic circuits
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• Photonic integrated circuits have been widely used to realize high-performance 
wavelength division multiplexing (WDM) devices for datacom and telecom 
applications. 

• A typical production wafer contains hundreds of optical devices:

Design optimizations
Volume production of photonic circuits
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• Process uniformity and consistency is critical in the manufacturing of photonic 
chips.

• Traditionally, standard statistical methods are used to compensate for systematic 
process non-uniformities:

Design optimizations
The challenge of process uniformity
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systematic index variation



Design Optimizations
Adjustments of design parameters through ML
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• To validate the approach, we applied it to a production mask with 600 devices:
• Devices on the mask were designed to be identical, except for a refractive index 

distribution correction computed by traditional statistical means.

• Despite the built-in compensation for systematic refractive index variations, nominally 
identical devices showed significant variations in performance stemming from process 
variabilities:
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• To validate the approach, we applied it to a producUon mask with 600 devices:
• We used the model predicLons to insert correcLons into each of the chips on the mask, 

thereby producing a ML-enhanced version of the producLon mask.
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Adjustments of design parameters through ML

20 worst performing chips in the 
initial version of the mask.

The same 20 chips in the ML-enhanced 
version of the mask.

Initial 
mask

ML-enhanced 
mask



Performance Predic4ons
Classifica9on based on a wafer probe measurement

21
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Probed locations 
on the wafer

Specification parameters:
1. IL
2. IL uniformity
3. Grid detuning
4. Channel spacing 

uniformity
5. 0.5 dB passband
6. 1 dB passband
7. 3 dB passband
8. PDL
9. Ripple
10. Adjacent crosstalk
11. Non-adjacent 

crosstalk
12. Total crosstalk
  .
  .
  .

.
  .
  .

Predicted performance of 
hundreds of chips on a wafer
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Time to measure a 4-channel chip 2 minutes

Cost of measuring a 4-channel chip (North America) $4.25

Cost of measuring a 4-channel chip (Asia) $0.55

Cost of characterizing a wafer with 600 chips $2550 / $330

Time to measure a wafer with 600 chips 20 hours

Time to perform a wafer probe measurement 12 minutes

Time to infer the PASS/FAIL of all chips on a wafer instantaneous

Effective measurement time per chip 1.2 seconds

Cost of characterizing a wafer with 600 chips $25

Time to measure a wafer with 600 chips 12 minutes

Performance Predictions
Classification based on a wafer probe measurement

Tradi&onal chip tes&ng Wafer probe tes&ng
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Performance Predictions
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Optimizations Through ML
Robust designs for volume manufacturing
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• AI/ML has become instrumental in our work in extending the reach of the 
photonics technology.

• We continue using “human-machine collaboration” to achieve outstanding 
uniformity of performance of mass-produced photonics chips despite our 
imperfect control of the fabrication process.

• The ability of ML to find correlations within weak and noisy signals gives us an 
unprecedented control over our process, making in-situ monitoring of optical wafer 
fabrication and real-time process adjustments possible. 

• Our current work focuses on the use ML algorithms to scale the capabilities of our 
platform to integrated optics solutions in LiDAR and OCT applications.



Conclusions
• Machine learning has the capacity to capture features from vast amounts of high-

dimensional data.

• We described how AI/ML was used in the field of photonic integrated circuit design 
and manufacturing: 

• We used deep neural network multivariate regression model to optimize the individual 
design parameters of hundreds of devices on a mask.

• We used a support vector machine (SVM) to predict the performance of optical chips in 
multi-dimensional space. 

• These approaches bring the power of ML to both the design of optical chips and their 
manufacturing, demonstrating the tremendous potential of AI/ML for increasing the 
scale and reach of the photonics industry.
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