Molekulare Semantik –
Evolution zwischen Variation und Konstruktion

Walter Fontana

Institut für Theoretische Chemie
Universität Wien
Währingerstraße 17
A-1090 Wien, Austria

und

Santa Fe Institute
1660 Old Pecos Trail
Santa Fe, NM 87501 USA

walter@leonardo.tbi.univie.ac.at, walter@santafe.edu

Erschienen in
EVOLUTION: Entwicklung und Organisation in der Natur
V. Braitenberg & I. Hosp (Herausgeber)
pp. 69-106, rororo – science 1 97065 (1994)
Wie Schiffer sind wir, die ihr Schiff auf offener See umbauen müssen, ohne es jemals in einem Dock zerlegen und aus besten Bestandteilen neu errichten zu können.

OTTO NEURATH

1 Keine Fragen, keine Natur

Wissenschaftler organisieren die Natur in verschiedene Beschreibungsebenen: Physik, Chemie, Biologie, Soziologie, Ökonomie... Das ist durchaus bemerkenswert, hängen doch diese Ebenen in der analytisch-reduktionistischen Richtung zusammen. Es ist keine Frage, daß eine Spezialistin für Termingeschäfte, deren neurophysiologischen Fähigkeiten wir ohne weiteres Intentionalität dritter Ordnung zuschreiben (X will, daß ein Kollege Y glaubt, daß X annimmt, daß Soja in drei Monaten um 5 Prozent teurer sein wird), ein diskreter Verband einer Vielzahl zellulärer Metabolismen ist, in denen Moleküle umgewandelt werden, die aus Atomen bestehen, die... Vor dem Hintergrund dieser Kopplung in der Zusammensetzung ist die Kopplung im Gegenstand nur um so verblüffender. So hängt zum Beispiel die Chemie an der Physik und ist trotzdem ein eigenständiges System kodifizierter Regelmäßigkeiten, das generative Ableitungen gestattet. Begriffe wie "chemische Bindung" oder "Elektronenegativität" entstanden, bevor sie als quantenmechanische Phänomene verstanden wurden. Ähnlich steht es um die Biologie. Sie ist eine eigenständige Disziplin, obwohl sie nur auf chemisch-physikalischen Prozessen beruht. Doch was macht ihre Eigenständigkeit aus? Welches sind ihre definierenden Konzepte, und wie sind diese in den chemisch-physikalischen Vorgängen begründet?

1John A.Wheeler

Darwin postulierte Evolution als die Wirkung einer "natürlichen Auslese": Wenn die Vermehrung von Organismen zu vererbaren Variationen führt, dann werden in einer Population jene Varianten angereichert, die besser als andere geeignet sind, zu überleben und sich zu vermehren. Der "Überlebenskampf" ist die Konsequenz einer Dynamik der selbstverstärkenden Vermehrung bei endlichem Re-

2 Molekularer Darwin

Ein bahnbrechernder Schritt, der einen theoretischen Rahmen für eine molekulare Beschreibungsebene zur Verfügung stellt, ist der Arbeit von Manfred Eigen und Peter Schuster und ihren Mitarbeitern zu verdanken [11, 12, 13]. Der Begriff "Organismus" taucht allerdings hier in seiner absolut extremen Form auf: als unimolekulare Einheit, nämlich als RNA-Strang. (Man wäre geneigt zu sagen, der Begriff "Organismus" taucht hier gar nicht auf; RNA-Stränge werden als Objekte aufgefaßt, die ihrem Wesen nach kombinatorischer Natur sind: Ketten (Sequenzen) endlicher Länge aus vier unterschiedlichen diskreten Bausteinen (Nukleotide). Eine RNA-Sequenz wird in Anwesenheit einer (der Theorie externen) "Kopie-

die ausdrückliche Berücksichtigung der syntaktischen Form der RNA-Objekte erlangt. Gerade dadurch erhält dieser Raum selbst eine Struktur, die durch die Nachbarschaftsbeziehungen zwischen Objekten, das heißt durch ihre möglichen Transformationen ineinander, induziert wird. Der “Raum möglicher Sequenzen” (Sequenzen [11]) ist natürlich eine konzeptuelle Konstruktion, die jederzeit nur als winziger Ausschnitt durch eine Population realisiert werden kann: Es gibt mehr Varianten einer RNA-Kette der Länge 300 als Wasserstoffatome im Universum Platz haben. Durch diese lokale Perspektive entsteht Historizität. Es stellt sich aber heraus, daß aufgrund der Gesetzmäßigkeiten der Sequenz/Struktur-Aufzählung fast jede Struktur (der Art wie sie in Abbildung 1 dargestellt ist) fast überall im Sequenzenraum zu finden ist [35]. Daraus ergibt sich eine “Wiederholbarkeit” auf der Strukturbene: Unter sonst gleichen Bedingungen würden in zwei unabhängig ablaufenden Evolutionsexperimenten zwar unterschiedliche Se-

3 Die Logik der Chemie

In 3,9 Milliarden Jahren existentieller Rekursion hat Evolution eine Reihe von Organisationsstufen jenseits replizierender Moleküle erzeugt: Metabolismen und einfache (prokaryotische) Zellen, moderne (eukaryotische) Zellen, bestehend aus

3Das läßt sich mit Computerexperimenten demonstrieren. Laborexperimente in diese Richtung sind bereits machbar.

Diese Regeln gründen in der Quantenmechanik. Phänomenologisch sind sie schon vor der Begründung der Quantenphysik teilweise im „Periodensystem der Elemente“ zusammengefaßt worden.

Der Begriff „operationale Semantik“ bezieht sich auf die Existenz von Regeln für die syntaktische Umwandlung von Objekten. Diese Regeln steuern welche Umwandlungen an welchen syntaktischen Teilstrukturen in einem Objekt durchgeführt werden können. So beginnt eine chemische Reaktion mit einer instabilen molekularen Kombination, die sich gemäß den „Regeln der Chemie“ in eine stabile Struktur umlagert. Die Schreibweise der Reaktion \(A + B \rightarrow C + D \) drückt aus, daß die molekulare Kombination \(A+B \) durch die beiden Objekte \(C \) und \(D \) ersetzt werden kann. Mit anderen Worten: eine Reaktion oder ein Reaktionsschema regelt den Austausch eines symbolischen „Textes“ durch einen anderen. Manchmal führt eine Regel zu einem stabilen Endresultat, manchmal zu einer Zwischenstufe, auf die weitere Reaktionsregeln anwendbar sind. Die „Umschreibese“ endet mit
einer Kombination für die es keine anwendbare Reaktionsregel mehr gibt.

4 Die Chemie der Logik

Welcher Kalkül?

Im \(\lambda \)-Kalkül gibt es einfache Regeln, die bestimmen wie neue symbolische Ausdrücke (Terme) aufgebaut werden. Eine davon besagt, daß ein beliebiger Term \(A \) mit einem beliebigen Term \(B \) zu einem neuen Term \(A(B) \) verbunden werden kann. \(A(B) \) soll die Anwendung der Funktion \(A \) auf das Argument \(B \) ausdrücken. Diese "funktionale Anwendung" dient hier als Metapher für die reaktive Wechselwirkung zweier Moleküle \(A \) und \(B \). Die Auswertung der Funktion \(A \) an der Stelle \(B \), das heißt, die syntaktische Umwandlung des Objekts \(A(B) \) in den Funktionswert \(C \), wird in Analogie zur Umlagerung eines molekularen Übergangszustandes in ein stabiles Produkt \(C \) gesehen. Man beachte, daß ähnlich wie in der Chemie, \(B \) ein beliebiges Objekt dieses \(\lambda \)-Universums sein darf – insbesondere kann \(B \) auch \(A \) sein, so daß die Einwirkung von \(A \) auf sich selbst erlaubt ist. Im Unterschied zur Alltagsarithmetik gibt es hier keine syntaktische Unterscheidung zwischen einer Funktion und einem Objekt, auf das die Funktion einwirkt, sowie dem Resultat einer solchen Anwendung. Das Abstraktionsniveau, mit dem wir hier die "Chemie" betrachten wollen, ist jenes einer Welt von Objekten, die Operatoren darstellen, deren Anwendungsbereich aus weiteren Operatoren besteht und durch deren Anwendung neue Operatoren erzeugt werden. Das ist es, was, ungeachtet aller Details, in der Chemie "eigentlich" passiert.

Wie oben erwähnt, steuern ein paar Regeln die Umwandlung eines "Reaktions"-Terms \(A(B) \). Dies geschieht im wesentlichen durch die Substitution des Arguments \(B \) an die Stelle der entsprechenden Variablen in \(A \). Die genaue Definition ist für den Zweck dieses Aufsatzes unwichtig (sie kann in [15] und jedem Lehrbuch der mathematischen Logik nachgelesen werden). Ein Ausdruck, der nicht mehr verändert werden kann, wird als "Normalform" bezeichnet und steht hier in Analogie zu einem "stabilen" Molekül.

Man beachte, daß die syntaktischen Umwandlungen die "Gleichheit" zweier Termkombinationen zu entscheiden gestatten: Zwei verschiedene abstrakte Reaktionen, \(A(B) \) und \(E(F) \), können zum selben Produkt führen.

Diese beiden Aspekte – die Konstruktion neuer funktionaler Objekte und die
Abb. 2: Kaniatur eines funktionalen Netzwerkes. Syntaktische Objekte – hier arithmetische Ausdrücke und Zahlen – werden als Teilchen aufgefaßt (gefüllte Scheiben), die in einem Behälter zusammenstoßen und durch funktionale Anwendung wechselsich wirken (ausgezogene Pfeile). Durch die Wechselwirkung entsteht ein neues Objekt, das regelmäßig in eine "stabile" syntaktische Form gebracht wird (gestrichelte Pfeile). Dadurch entsteht ein Begriff von "Gleichheit". Es bilden sich Transformationsnetzwerke aus.

der Sinn dieser Übung.4 Es steht außer Frage, daß das Einfangen immer feinerer molekularer Details dramatische Konsequenzen für diesen Ansatz haben muß.
Es steht aber genauso außer Frage, daß entlang dieser Strecke irgendwann der Versuch zu einem tieferen Verständnis in blinde Imitation und Simulation umschlagen wird. Zunächst geht es also nur darum zu verstehen, welches biologische Wissen und welche Fakten durch ein dieserart postuliertes Abstraktionsniveau eingefangen werden können.

Dies gesagt, bleibt nur noch ausdrücklich darauf hinzuweisen, daß wir beispielsweise keine Thermodynamik, keine Geschwindigkeitskonstanten, keine räumliche Ausdehnung und vor allem keine Selektivität in den Wechselwirkungen betrachten.5

Weitere Modelle, die einer ähnlichen Motivation entspringen aber auf unterschiedliche Weise der funktionalen Selbstorganisation ausgerichtet sind, stammen von Michael Banzhaf [2], John McCaskill [28], George Kampis [20], Steen Rasmussen [32, 31], Marcel Thürk [39], Francisco Varela [40] und Peter Wills [45], um nur

5Zwar bewirkt jeder Term spezifische Umwandlungen, aber jeder Term kann mit jedem Term "reagieren". Es ist vielleicht interessant zu bemerken, daß "freie Energie", durch die Forderung an die Terme in Normalform vorzuliegen, in einem gewissen Sinne eingefangen wird.

6Damit ist "Semantik" nun wirklich im schlicht definierten, unangenehm rutschigen Sinn von "Bedeutung" (engl.: meaning) verstanden – nicht mehr im wohldefinierten rein syntaktischen Sinn einer operationalen Semantik, Griffe von der Biologie an die Linguisten.
5 Lebendige Algebra

Zu einem Spiel gehören Spielregeln. Diese werden hier nur skizziert, und der interessierte Leser sei auf die Originalliteratur verwiesen [15].

Ausgehend von der Metapher, daß ein Molekül eine Funktion ist, haben wir die Anknüpfung an eine formale Sprache erreicht. Nun lesen wir die Metapher in die andere Richtung und betrachten eine Funktion als ein physikalisches Objekt oder "Teilchen". Damit soll nur zum Ausdruck gebracht werden, daß eine Funktion mehrmals vorkommen darf, das heißt eine "Konzentration" annehmen kann, wie es bei einer molekularen Teilchensorte der Fall ist. Man stelle sich einen mit λ-Termen gefüllten Reaktionsbehälter vor. Weiters verlangen wir, daß jeder Term im Behälter in Normalform vorliegt ("stabil" ist) und daß der Behälter "gut durchmischt" werde. Wenn zwei Teilchen/Terme A und B zusammenstoßen, entsteht ein neuer Teilchen/Term A(B), der sofort durch syntaktische Umwandlungen in seine "stabile" Normalform gebracht wird.7 Aus Gründen der Einfachheit postulieren wir, daß bei einer solchen Wechselwirkung weder A noch B aufgebracht werden. Stattdessen legen wir fest, daß jedes Teilchen im System nur eine endliche "Lebensdauer" hat, nach deren Ablauf das Teilchen einfach aus dem System verschwindet. Das bedeutet nichts weiter, als daß unser Behälter einem ständigen Verdünnungsfluß ausgesetzt ist; ein Reaktionsbehälter also, in dem immer wieder neue Teilchen produziert werden (aus zur Verfügung stehenden Bausteinen) und der einfach überläuft, wodurch die Gesamtteilchenzahl im System konstant gehalten wird (sagen wir tausend). Obwohl die Teilchen durch eine Reaktion nicht aufgebracht werden, garantiert ihre endliche Lebensdauer, daß eine Aufrechterhaltung einer bestimmten Teilchenart im System nur durch entsprechende Produktionswege innerhalb des Systems möglich ist.

Dieses Spiel definiert ein einfaches dynamisches System, allerdings mit einem zusätzlichen Trick. Wie im RNA-Beispiel von Eigen und Schuster ist die ausdrück-

7Die Wechselwirkung scheint nicht symmetrisch zu sein, denn A(B) ist nicht gleich B(A). Bei zufälliger Kollision wird jedoch mit gleicher Wahrscheinlichkeit A als Funktion oder als Argument auftreten. Die eigentliche Wechselwirkung kann als chemische Reaktion geschrieben werden:

\[
A(B) \rightarrow \text{Normalform}_1 \quad A + B \quad B(A) \rightarrow \text{Normalform}_2
\]

wobei jede Verzweigung mit derselben Häufigkeit verwirklicht wird. Diese Wechselwirkung ist symmetrisch.

Ebene 0

Computerexperimente ohne weitere Einschränkungen der Spielregeln generieren nach einer unterschiedlich langen Anfangsphase Systeme, für die zwei Eigenschaf-
ten typisch sind. (1) Die Anzahl unterschiedlicher Objekte im Behälter ist klein, und das System ist bezüglich der konstruktiven Wechselwirkungen zwischen diese-n Objekten abgeschlossen. Das heißt alle Wechselwirkung produzieren Objekte, die zu diesem Zeitpunkt im Reaktionsbehälter bereits vorhanden sind. (2) Alle Objekte kopieren sich selbst oder werden von einem anderen Objekt im System kopiert. Ein typischer Fall ist in Abbildung 3 gezeigt. Das Ergebnis ist leicht verständlich: im Laufe der Zeit entstehen Funktionen f, die für mindestens ein anderes anwesendes Objekt g (wobei auch $g = f$ möglich ist) als Identität wirken: $f(g) = g$. Identitätsfunktionen wirken kinetisch wie selbstverstärkende Kopierer. Die Lage ist dem RNA-Fall ähnlich. Wir bezeichnen Ensemble-Strukturen dieser Art mit „Ebene 0“.

Ebene 1

Wir nutzen nun die Möglichkeit dem Reaktionsbehälter funktionale Randbedin-
gungen aufzuerlegen. Eine solche ist das Verbot von Kopierreaktionen, die für

Ebene 0 charakteristisch sind. Falls das Produkt einer Wechselwirkung zwischen \(A \) und \(B \) identisch mit \(A \) oder \(B \) ist, wird die Reaktion einfach nicht zugelassen. Eine solche Wechselwirkung, die einer Randbedingung nicht genügt, nennen wir "elastisch". Das kann in der Natur auf vielerlei Weisen geschehen, deren Beschreibung aber nicht Gegenstand unserer Betrachtungen ist; wir wollen vielmehr sehen, was die Konsequenzen sind, falls so etwas (auf welche Weise auch immer) geschieht.

Das Verbot von Kopierreaktionen führt nach einer langen Anfangsphase zu einer grundlegend verschiedenen Struktur des Ensembles. Ein sofort auflaufender Unterschied zu Ebene 0 ist eine wesentlich größere Zahl unterschiedlicher Objekte im Behälter sowie die anhaltende Produktion neuer Objekte. In vielen Fällen stellt sich heraus, daß die "neuen" Objekte zu einem früheren Zeitpunkt (aber
nicht zu Beginn) in schwacher Konzentration bereits im Behälter vorhanden waren und durch den Verdunstungsfluß eliminiert wurden. Es ist nicht einfach zu verstehen, was bei Anwesenheit von beispielsweise 300 verschiedenen Teilchen- sorten (be 1000 Teilchen) eigentlich geschieht. Was wir tun können, ist genau das, was ein Chemiker tun würde: die syntaktische Struktur aller Objekte zu analysieren, um mögliche Gemeinsamkeiten sowie Regelmäßigkeiten festzustellen und das gleiche mit allen möglichen Reaktionskombinationen zu versuchen.8 Es stellt sich heraus, daß es tatsächlich Regelmäßigkeiten gibt. Ensembles, die sich nach vielen Wechselwirkungen stabilisiert haben, besitzen ausnahmslos folgende drei Charakteristika:

8 Das ist bei 300 Objekten eine Liste von 90000 unterschiedliche Paarreaktionen, in der nach Regelmäßigkeiten gesucht werden muß. Bevor wir (Nichtmathematiker) überhaupt verstanden haben, was es denn ist, womach wir suchen (eine algebraische Struktur ähnlich), haben wir tagelang und nichtelang auf Computerausdrucke gestarrt, als hätten wir es mit einem Teesatz zu tun, der uns doch sicher etwas sagen will. Steen Rasmussen hat in einem andersartigen System, das ebenfalls eine im besten Sinne des Wortes künstliche Welt darstellt, eine ganz ähnliche Erfahrung gemacht [31]. Mittlerweile hat Harald Freund in Yale größere Abschnitte dieses mühsamen Unterfangens automatisiert.
ohne Kenntnis des zugrundeliegenden λ-Kalküls formuliert werden. (Genau wie wir Chemie betreiben können, ohne deshalb Quantenmechaniker sein zu müssen.) Die algebraische Struktur des Ensembles stellt ein von der Mikromechanik des Modelluniversums unabhängiges Beschreibungs niveau dar.

Durch Anlegen unterschiedlicher syntaktischer Randbedingungen (das sind "Filter", die Objekte mit bestimmten syntaktischen Mustern verbieten) kann ein Zoo von Ebene-1-Organisationen erzeugt werden. Die Abbildungen 4 und 5 illustrieren schematisch zwei Beispiele.

\footnote{Die Meinungen gehen im wesentlichen in bezug auf die Entstehungswahrscheinlichkeit und Realisierbarkeit solcher Mengen mit bestimmten Molekülen – Polypeptide, Ribonukleinsäuren oder kleinere organische Moleküle – auseinander. Pier-Luigi Luisi hat im Labor einige einfache autokatalytische Systeme entworfen und realisiert [1].}

Generator-Menge im Behälter übrigläßt, kann sich die Organisation rekonstituieren.

Wie bereits erwähnt, läßt sich die Zugehörigkeitsfrage eines beliebigen λ-Terms zu einer Organisation aufgrund ihrer grammatikalischen Abgeschlossenheit klären. Das wirft die Frage auf, ob ein "organisationsfremder" Term in eine Organisation aufgenommen werden kann. Natürlich würde dies die Veränderung der ursprünglichen Organisation bedeuten. Störungen funktionaler Art, wie sie durch Zugabe von organisationsfremden Objekten entstehen, können mit Computerexperimenten studiert werden. Um in eine Organisation integriert zu werden, muß das neu eingeführte Objekt durch kinetisch stabile Produktionswege innerhalb der Organisation aufrechterhalten werden (Selbsterverhalten). Da dies nicht in einem Schritt möglich ist (Kopierreaktionen sind ausgeschlossen), muß dies über

 Sekundärprodukte des neuen Objekts geschehen, für die aber dieselbe Förderung gilt. In vielen Fällen gelingt es nicht, ein Objekt stabil zu integrieren; es wird mit der Zeit vom Verdünnungsfluß aus dem System entfernt. Wenn eine stabile Aufnahme gelingt, entstehen unterschiedlich große Erweiterungen, die über unterschiedlich ausgedehnte Netzwerke mit der ursprünglichen Organisation verbunden sind. Neue Gesetze sind nötig, um die Wechselwirkungen der neu hinzugekommenen Objekte zu beschreiben. Es ist jedoch häufig der Fall, daß die algebraischen Gesetze der ungestörten Organisation auch in der erweiterten Organisation uneingeschränkt gültig bleiben. Organisationen dieser Art erweitern sich also "zwiebelartig".

 Fassen wir zusammen: (1) Ebene-1-Organisationen sind durch Elimination von Objekten nur schwer zerstörbar (manchmal sind sie sogar unzerstörbar), und (2) Störobjecte werden zwar selten integriert, aber wenn dies geschieht, geschieht es typischerweise durch (unterschiedlich große) Erweiterungen der ursprünglichen

Ebene 2

Falls kein Kleister entsteht (weil die Vereinigung beider Organisationen abgeschlossen ist bezüglich ihrer Wechselwirkungen), herrscht eine Wettbewerbssituation, in der eine Organisation die andere aufgrund ihrer Wachstumskinetik aus dem Behälter eliminiert. Auch ist die Ausbildung eines Kleisters keine Garantie für eine stabile Integration beider autonomer Organisationseinheiten in eine Ebene-2-

10 Im Wesentlichen wird das freie Produkt der beiden algebraischen Strukturen gebildet.

Einheit. Es ist derzeit eine offene Frage, ob es bestimmte Ebene-1-Organisationen gibt, die leichter als andere zur Ebene-2-Bildung neigen. Ebene-2-Organisationen bilden sich jedoch nicht nur durch Zusammenfügen zweier getrennt entstandener Ebene-1 Organisationen, sondern bauen sich gelegentlich auch spontan auf.

In Abbildung 7 fassen wir die organisatorischen Ebenen, soweit sie derzeit ausgearbeitet sind, noch einmal zusammen.

6 Semantik der Anpassung

Bücherhalter und ein Marmeladeglas als Blumenvase eingesetzt werden [8].

Es ist häufig der Fall, daß natürliche Auslese als die ausschließliche Quelle biologischer Ordnung gesehen wird, weil biologische Ordnung mit Angepaßtheit gleichgesetzt wird. Eine mögliche Ursache dafür mag darin liegen, daß wir biologische Organisationen (genauso wie Artefakte) interpretieren müssen [8, 9]. Überzeugende Interpretationen sind aber kaum möglich, wenn etwas nur "paßt" (denn das kann es auf vielerlei Weise), es muß schon besonders gut passen. Eine Tendenz zur Optimierung erscheint daher als eine Voraussetzung für Interpretation. Diese Optimierungstendenz resultiert aber gerade aus dem Darwinschen Prozeß der natürlichen Auslese. Darin liegt der große Erklärungswert der Darwinschen Theorie.

Es ist wichtig zu betonen, daß Anpassung und Organisation sich keineswegs gegenseitig ausschließen. Im Gegenteil: Sobald eine Organisation konstruiert worden ist, definiert sie erst jene Funktionalitäten, die durch Selektion optimiert werden können und deren Fortbestand Selektion kontrolliert. Eine Theorie der Evolution kann sich nicht ausschließlich mit der Anpassung dessen, was ist, befassen, sondern muß auch eine Einsicht bieten in die Konstruktion dessen, was nicht ist; neue Organisationsstufen, neue “Objekt”-Klassen, neue funktionale Nischen.12

Unser Modell geht über diese Situation hinaus, indem gerade diese Beziehungen freigegeben werden. Dies geschieht dadurch, daß die Objekte, auf die sich die Variablen beziehen, Darstellungen von Transformationsoperatoren sind, deren

Definitionsbereich aus anderen Objekten besteht. Damit werden zusätzlich zu den
üblichen nichtlinearen Phänomenen in den Werten der Variablen (den Konzentra-
tionen der Terme) nun auch Muster in den funktionalen Beziehungen zwischen
den Variablen möglich. Die bisher beobachteten Muster sind "Fixmengen", die
als sich selbst aufrechterhaltende algebraische Strukturen charakterisierbar sind
(Ebene 1 und Ebene 2). Nichtstationäre Muster sind mit anderen dynamischen
Spielregeln nicht auszuschließen. Der Begriff einer Organisation bezieht sich auf
solche "Attraktoren" im Raum der funktionalen Beziehungen.

Der eklatante Unterschied zwischen Ebene 0 und Ebene 1 zwingt zur sorgfältigen
Unterscheidung zwischen Reproduktion und Selbsterhaltung. Erstere induziert
den Darwinischen Selektionsprozeß, während letztere mit funktionaler Organisa-
tion verknüpft ist. Die Tatsache, daß unter bestimmten Bedingungen Repro-
duktion (Ebene 0) die Entstehung von Ebene 1 Organisation verhindert, deutet
auf einen potentiellen Konflikt hin. Reproduktion auf Ebene 0 erschwert in ei-
nem Schritt, während Selbsterhaltung auf Ebene 1 mehrstufig ist. Unter den
Bedingungen unseres Reaktors verdrängen daher reproduzierende Objekte sehr
leicht nichtreproduzierende, aber selbsterhaltende Organisationen. Dieser Kon-
flikt stellt sich potentiell bei jedem Übergang von einer Organisationsstufe zur
nächsten [5]. Er kann gelöst werden, indem Reproduktion auf der Organisati-
onsstufe "niedrigerer" Ordnung einfach unterbunden wird (beispielsweise durch
Umweltbedingungen) oder durch konstruktive "Nebeneffekte" reproduzierender
Objekte (Ebene-0-e, siehe Text zur Abbildung 7) [15].

Darwinsche Selektion setzt reproduzierende Objekte voraus. Ebene-1- (und Ebene-
2-) Organisationen entstehen hier in Abwesenheit jeglicher Reproduktion. Es
ist evident, daß Organisation in diesem Modell die Konsequenz konstruktiver
Wechselwirkungen ist und nicht einer natürlichen Auslese. Gleichzeitig können
selbsterhaltende Organisationen, aufgrund ihrer unterschiedlichen "Größe" und
intrinsischen Wachstumsraten, sich gegenseitig ausschließen. Das zwingt uns zu
einer weiteren Unterscheidung zwischen Darwinscher Selektion, die auf repro-
duierenden Einheiten beruht, einerseits, und einer generischen Selektion, für die
reflexive Katalyse ausreichend ist, andererseits.13

Ebene-1-Organisationen integrieren sich zu Ebene-2 Organisationen, innerhalb
denen sie als autonome Komponenten weiter existieren. Dies erinnert an die Ent-
stehung eukaryotischer Zellarchitekturen durch Symbiose prokaryotischer Meta-
bolismen, die in der höheren Einheit als autonome Organellen weiterbestehen.
Weiters teilen Ebene-1- und Ebene-2-Organisationen mit einfachen, metabolis-
schen, zellulären Organisationen die Fähigkeit zur extensiven Regeneration und
eine Robustheit gegenüber Störungen durch organisationsfremde Objekte. Die
Existenz von Generatoren - wenigen Einheiten, deren Wechselwirkungen die ge-

13 Reproduktion ist hier ein Spezialfall reflexiver Katalyse, bei der die reflexive Menge aus
einem einzigen A-Objekt besteht.
samte Organisation generieren – erinnert an die *funktionale* Rolle eines Genoms, obwohl unser Modell darstellungsmäßig keine genetische Ebene enthält (und daher auch keine Variation durch Mutation berücksichtigt). Daß mit einer Ordnung der funktionalen Beziehungen zwischen Objekten, auch eine Ordnung ihrer grammatischen Struktur einhergeht, erinnert an die verschiedenen molekularen "Grammatiken" in metabolischen Systemen: Polysaccharide, Lipide und dergleichen.

7 Keine Fragen, keine Natur14

14Noch immer John A. Wheeler.
Ganzheiten zusammenzufliegen. Daß eine Ganzheit, die wir verstehen, ihrem Wesen nach anders ist als eine Ganzheit, die wir nur anglotzen können, versteht sich von selbst. Was aber sind die richtigen Elemente? Besteht nicht jeder Teil aus weiteren Teilen? Was ist die "richtige" Abstraktion? Die Abstraktion hängt natürlich von der Fragestellung ab. Diese aber setzt in gewissem Umfang bereits die Sprache voraus, die das Territorium definiert.\footnote{Leo Buss, Yale University, sei gedankt für die gemeinsame Arbeit über λ-Organisationen und für unzählige Diskussionen dieses- und jenseits der Biologie. Günter Wagner, ebenfalls Yale University, hat das Manuskript kritisch kommentiert. Falls es nun weniger Fehlschlüsse enthält, ist es sein Verdienst. Danke an Inga Höpp, Bozen, und Valentin Braatenberg, Tübingen, für die Bozener Treffen, das Durchlesen des Manuskripts und viele hilfreiche Kommentare. Danke an Erich Bornberg-Bauer für Kommentare zum Manuskript. Herzlichen Dank auch an Herrn Jens Petersen vom Rowohlt Verlag für die Geduld und die Hilfestellung bei der redaktionellen Evolution dieses Beitrags.}

References

