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1 Introduction

Proper alignment is a tetradic affair, involving relationships among AIs, their users,

their developers, and society at large (Gabriel, et al. 2024). Agentic AIs—AIs that are

capable and permitted to undertake complex actions with little supervision—mark a

new frontier in AI capabilities. Accordingly, they raise new questions about how to

safely create and align such systems. Existing AIs, such as LLM chatbots, primarily

provide information that human users can use to plan actions. Thus, while chatbots

mayhave significant effects on society, those effects are largely filtered through human

agents. Because the introduction of agentic AIs would mark the introduction of a new

kind of actor into society, their effects on societywill arguably be more significant and

unpredictable, thus raising uniquelydifficult questions of alignment in all of its aspects.

Here, we focus on an underappreciated1 aspect of alignment: what attitudes toward

risk should guide an agentic AI’s decision-making? An agent’s risk attitudes describe

certain dispositions when making decisions under uncertainty. A risk-averse agent

disfavors bets that have high variance in possible outcomes, preferring an action with

a high chance of a decent outcome over one that has a lower probability of an even

better outcome. A risk seeking agent is willing to tolerate much higher risks of failure

if the potential upside is great enough. People exhibit diverse and sometimes very

significant risk attitudes. How should an agentic AI’s risk attitudes be fixed in order to

achieve alignmentwith users? What guardrails, if any, should be placed on the range of

permissible risk attitudes in order to achieve alignment with society and designers of

AI systems? What are the ethical considerations involvedwhenmaking risky decisions

on behalf of others?

We present three papers that bear on key normative and technical aspects of these

questions.

In the first paper, we examine the relationship between agentic AIs and their users.

An agentic AI is “aligned with a user when it benefits the user, when they ask to be

benefitted, in the way they expect to be benefitted” (Gabriel, et al. 2024, 34). Because

individuals’ risk attitudes strongly influence the actions they take and approve of, get-

1This topic isn’t explicitly addressed in recent work on agentic AI alignment from Shavit, et al. (2023) or
Gabriel, et al. (2024).
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ting risk attitudes right will be a central part of agentic AI alignment. We propose two

models for thinking about the relationship between agentic AIs and their users – the

proxy model and off-the-shelf tool model – and their different implications for risk

alignment.

In the second paper, we focus on developers of agentic AI. Developers have impor-

tant interests and moral duties that will be affected by the risk attitudes of agentic AIs

that they produce, since AIs with reckless attitudes toward risk can expose developers

to legal, reputational, and moral liability. We explore how developers can navigate

shared responsibility among users, developers, and agentic AIs to best protect their

interests and fulfill their moral obligations.

In the third paper, we turn tomore technical questions about howagenticAIsmight

be calibrated to the risk attitudes of their users. We evaluate how imitation learning,

prompting, and preference modeling might be used to adapt models to information

about users’ risk attitudes, focusing on the kinds of data that we would need for each

learning process. Then, we evaluatemethods for eliciting these kinds of data about risk

attitudes, arguing that some methods are much more reliable and valid than others.

We end with recommendations for how agentic AIs can be created that best achieve

alignment with users and developers.
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Paper I

User Aspects of Risk Alignment

1 Introduction

Our primary goal in this paper is to make the case for why risk alignment will be an

essential component of aligning agentic AI systems to their users. Individuals’ risk

attitudes are a strong determinant of how they will act and which actions they will

approve of. Accordingly, these attitudes will influence the actions that users pursue via

agentic AIs, their judgments about the acceptability of actions taken on their behalf,

and the trust that they have in AI agents. As agents themselves, AIs will have their own

risk attitudes that determine the actions that they take. How should we design the risk

attitudes of agentic AIs so that they are aligned with those of their users?

We present two models of the relationship between users and agentic AIs and ex-

plore the normative considerations that bear on our choice between these twomodels

in particular contexts:

Proxy agents: Agentic AIs are representatives of their users and should be designed

to replicate their users’ risk attitudes.

Off-the-shelf tools: Agentic AIs are tools for achieving desirable outcomes. Their

risk attitudes should be set or highly constrained by developers in order to achieve

these outcomes.

When thinking about AIs that act as agents, it is natural to look for guidance in two

main areas. First, we might look at theories of rational human agency, theories about

how a person should act in order to best achieve her goals in light of her information

about the world. Different risk attitudes constitute different strategies for acting under

uncertainty. Philosophers and economists have developed formal theories of decision

under uncertainty that allow us to more precisely characterize these attitudes. These

can be evaluated for both their empirical accuracy (i.e. how well do they characterize
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the actions of actual agents) and their normative aptness (i.e. how rational are deci-

sions made under different risk attitudes?). In the first half of this paper, we will draw

on insights from this literature to better characterize the importance of risk attitudes

when designing agentic AIs.

Second, we might look at human agents — such as financial advisors, lawyers, or

personal assistants — who routinely take actions on another agent’s behalf. There are

complex formal and informal rules that govern how these agents ought to relate to

their clients (those on whose behalf they act), and these differ significantly across dif-

ferent kinds of agents. For example, professional societies like the American Bar As-

sociation uphold explicit professional and ethical standards that regulate how lawyers

should act on behalf of their clients. In contrast, alignment between personal assistants

and their clients are specified by the clients themselves or via a negotiation between

assistant and client.

These arrangements are determined by the nature of the relationship (its stakes,

voluntariness, etc.), how it is embedded in broader societal structures (e.g. an adver-

sarial legal system), and its effects on people outside of the relationship. In the second

half of this paper, we will turn to these models to examine different possibilities for

what alignment between an agentic AI and its user might look like for different kinds

of users and AI systems, and to recommend best practices for achieving it.

2 What are risk attitudes?

2.1 An example

An agent’s decisions are influenced bywhat she values andwhat she believes about the

world. However, knowing an agent’s values and beliefs is not enough to predict how

she will (or should) act. For example, suppose that Nate and Kate are each planning a

dinner out. They both prefer Restaurant A (a buzzy new spot that doesn’t take reserva-

tions) to Restaurant B (a mediocre stalwart that does) to the same extent, both valuing

a dinner at A more than twice as much as dinner at B. That is, they assign the same

relative utilities — a measure of the subjective value an agent assigns to an outcome
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— to eating at restaurant A versus B. They also agree that their chances of getting into

Restaurant A are about 50% and that they are certain of getting into B.

However, despite agreeing on the value and probabilities, Nate and Katemight nev-

ertheless make different choices about where to go. Nate might opt to take his chances

on Restaurant A, beingwilling to tolerate a 50% chance of failure in order to secure the

better dinner option. Kate would rather be safe than sorry and opts for Restaurant B.

What distinguishes Nate and Kate are their approaches to risk, the relative significance

that they give to the potential losses and gains of a risky action.2

Imagine now that Nate and Kate use AI assistants to plan their dinner meetings.

Presumably, these AIs would need more than just information about Nate and Kate’s

restaurant rankings and the probabilities of getting tables at each. In order to make

decisions that accord with Nate and Kate’s preferences, their AIs would need to be

adjusted to their risk attitudes.

2.2 Expected utility theory and risk attitudes

When evaluating an action that has uncertain outcomes, one must take the probabil-

ities and the amount of value (utility) of possible outcomes into account. Standard

decision-theoretic approaches assume that there is only one feature of the outcome

space that matters: its expected utility. The EU of an action A is the average of the util-

ities that doing A would yield in each relevant state of the world, Si, weighted by the

probability that those states will obtain:

EU(A) =

n∑
i=1

u(A|Si)p(Si) (1)

However, there are other features of the distribution of possible outcomes that

someone might also find important. For example, the following three bets all have

the same expected utility (equal to 4.5)3:

2One might object that they don’t really value the restaurants the same way, since Kate values the relia-
bility of B more than Nate does. Their risk attitudes should be incorporated into their utility assignments.
We discuss this approach in Appendix A.

3We are assuming that the payoffs are in terms of utility itself or else something that doesn’t have dimin-
ishing or increasing marginal utility.
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• Bet A: Flip a fair coin. If heads, win 10. If tails, lose 1.

• Bet B: Flip a fair coin. If heads, win 1,000,010. If tails, lose 1,000,001.

• Bet C:Draw from a lottery of amillion balls, one ofwhich is awinner. If you draw

the winning ball, win 5,500,000. If you draw any other ball, lose 1.4

Despite having the same expected utility, these seem like very different bets, in a

way that nearly all agents will be sensitive to. Bet B will cause you to incur enormous

losses half of the time. Bet C almost guarantees that you’ll lose something. If you’re

only concernedwith expected valuemaximization (EVM), then these differences don’t

matter. However, if you are sensitive to risk, they maymatter significantly.

At its most general, risk sensitivity is a sensitivity to variance, a higher-order statistical

feature of the outcome space. An agent can be risk neutral, risk averse, or risk prone.

A risk neutral agent does not take variance into account when evaluating actions. If an

“agent is risk averse with respect to some quantity X [e.g. money], she strictly prefers

a (degenerate) gamble that delivers some particular value x? for X with certainty to

a gamble that delivers an expected X-value of x?, but that includes nontrivial uncer-

tainty” (Greaves, et al. 2024, 9). A risk-averse agent will accept a bet that will deliver a

lower expected payoff butwith higher certainty over onewith a higher expected payoff

but less certainty. For example, a risk averse bettor might prefer a sure thing payoff

of 3 over Bet A, which has an expected utility of 4.5 but a 0.5 chance of losing. Kate is

willing to accept a sure thing of a decent meal over a lower chance of a better dinner. A

risk prone agent is the opposite of a risk averse one, preferring high variance gambles

over lower variance ones.

2.3 Varieties of risk aversion

This general characterization of risk sensitivity covers several different kinds of more

specific risk attitudes.5 To get a handle on these differences, we can ask the risk-averse

agent: what is it that is so bad about variance? What is it about variance that you don’t

like?6 An ambiguity averse agent answers that variance is bad when she is uncertain

4Technically, for the expected utility to not just approximate but equal 4.5, we need ’If you draw the
winning ball, win 5,499,999’, a little bit less tuneful.

5For a discussion of other facets of risk, see Hansson (2023).
6And vice versa for the risk prone: “what is it that you like about variance?”.
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about the probabilities involved (Machina and Siniscalchi 2014). As long as the proba-

bilities are all known (as in Bets A-C), there is no further problemwith variance. Some

agents might be averse to variance because they don’t think that very low probability

events should be taken into account. Therefore, they will ignore the unlikely tails of

the outcome distribution (the least probable bad outcomes and least probable good

outcomes) when making decisions (Kosonen 2022, Monton 2019).

A third kind of risk averse agent answers that variance in outcomes is bad because

it includes bad outcomes. The reason that Bet B is worse than Bet A is that there is

a significant possibility that something very bad will happen. A risk averse agent, in

this sense, cares more about avoiding the worst-case outcomes of their actions than

gaining the best-case outcomes (and vice versa for the risk prone). A risk neutral agent

assigns equal weight to gains and losses of the samemagnitude. This “avoid the worst”

risk attitude will be our primary focus in what follows.7

Because EU maximization’s assessment of a bet doesn’t take its variance into account,

it cannot account for risk sensitivity.8 It doesn’tmake space for people to treat bad out-

comes differently from good ones or to treat low probabilities differently from high

ones. Indeed, by prohibiting risk sensitivity, EUmaximization places extremely strin-

gent constraints on permissible risk attitudes by requiring strict risk neutrality (Hájek

2021).9

EU maximization has been extensively developed over the past century and de-

fended as a rational — and perhaps the uniquely rational — decision-procedure. This

amounts to a rejection of the rationality of being risk prone or risk averse. Arguments

in favor of EU maximization have taken two general forms. First, axioms of rational

choice — that is, conditions that one’s preferences or actions must obey in order to be

rational — are presented, and EVM is claimed to (uniquely) satisfy those axioms (e.g.

Von Neumann and Morgenstern 1953). Second, it is argued that an agent who obeys

7We focus on this kind of risk aversion for several reasons. First, this is the kind of attitude that has been
most studied in canonical experimental work on risk aversion (Kahneman & Tversky 1979). Second, it will
likely play a significant role in the kinds of decisions forwhich agenticAIswill be used. Third, agents do treat
low, middling, and high probabilities differently, but it can be difficult to tease out when this is the result of
risk weighting or simple errors in probabilistic reasoning (Kahneman & Tversky 1979; Holt & Laury 2014;
Barseghyan, et al. 2013).

8This is not strictly true, as there are ways to capture risk aversion within EU itself. We explain this
approach and whywe do not favor it in Appendix A.

9InEU, probabilities andutilities are linear, additive, and treated symmetrically. Forexample, an outcome
with a probability of p and utility u contributes the same amount to expected value as an outcome with
probability p/2 and value 2u.
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EVM will experience some long-run practical benefits over agents who obey alterna-

tive decision-procedures.10

We will not delve into the voluminous literature around this topic here, though

we will return to the question of rational constraints on risk attitudes. Instead, we em-

phasize something that ismore important for the purposes of alignment: actual agents

rarely act as expected utility maximizers, and are most often risk averse. This can be

seen in common judgements about artificial decisions cases, behavior in experimental

settings, and their actual behavior. Therefore, risk attitudes are an ineliminable aspect

of any characterization of a particular decision or an agent’s general dispositions to

act.

3 Evidence of risk non-neutrality

The now standard view in welfare economics is that “normative assessment should

recognize, in light of results of decades of behavioral experimentation, that people

are not expected utility maximizers” (Harrison & Ross 2017, 150). We have robust ev-

idence from subjects’ intuitive reports, behavioral experiments in the lab, and field

observations of economic behavior that most people are at least somewhat risk averse

in most situations.

Allais (1953) was one of the first to investigate how humans’ actual choice behaviors

depart from the predictions of expected utility theory (EUT), and the choice behav-

iors he illustrated are still used as benchmarks for testing theories of risk (Buchak 2013,

Bottomley and Williamson 2023). In Allais cases, subjects are asked for their prefer-

ence between bets A and B, and then asked for their preference between bets C and

D:

10See Briggs (2023) and Buchak (2022) for helpful overviews.
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Bet A Bet B

Certain $1million .89 chance of $1million

.01 chance of $0

.10 chance of $5million

Bet C Bet D

.89 chance of $0 .9 chance of $0

.11 chance of $1million .1 chance of $5million

Most people prefer A to B and prefer D to C. However, there is no consistent as-

signment of utilities to quantities of money that makes sense of these two preferences.

To see this, consider that moving from A to B and moving from C to D both involve

trading a .01 chance at $1 million for a .1 chance of $5 million. In the first case, subjects

are not willing to make the trade. In the second case, they are. Whether this trade is

acceptable depends on global properties of the bet; here, whether there is a high or

low probability of getting something good.11 These preferences have been shown to

be present in economic (List and Haigh 2005) and healthcare choices (Oliver 2003).

More fine-grained experimental examinations of risk attitudes ask subjects to con-

sider a list of bets, with incremental changes to the probabilities and/or payoffs in-

volved.12 They measure the amount of risk aversion (the relative risk premium) in-

volved by measuring “the mathematical expected value that one is willing to forgo to

obtain greater certainty” (Abdellaoui, et al. 2011, 65-66). For example, consider the

following price-list choice task from Holt and Laury (2002):

11In Appendix A, we consider several theories of risk aversion that give slightly different analyses of Allais
cases. For example, Kahneman and Tversky (1979) posit that people are biased toward certainties, while
Buchak (2013) suggests that people discount better outcomes. Some have argued that we can accommodate
these cases by adopting a more complex utility function, according to which different dollar amounts have
different utilities across contexts.
12We will examine these methods in much more depth in Paper 3.
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Table 2: The ten paired lottery-choice decisions with low payoffs

Option A Option B Expected payoff difference

1/10 of $2.00, 9/10 of $1.60 1/10 of $3.85, 9/10 of $0.10 $1.17
2/10 of $2.00, 8/10 of $1.60 2/10 of $3.85, 8/10 of $0.10 $0.83
3/10 of $2.00, 7/10 of $1.60 3/10 of $3.85, 7/10 of $0.10 $0.50
4/10 of $2.00, 6/10 of $1.60 4/10 of $3.85, 6/10 of $0.10 $0.16
5/10 of $2.00, 5/10 of $1.60 5/10 of $3.85, 5/10 of $0.10 -$0.18
6/10 of $2.00, 4/10 of $1.60 6/10 of $3.85, 4/10 of $0.10 -$0.51
7/10 of $2.00, 3/10 of $1.60 7/10 of $3.85, 3/10 of $0.10 -$0.85
8/10 of $2.00, 2/10 of $1.60 8/10 of $3.85, 2/10 of $0.10 -$1.18
9/10 of $2.00, 1/10 of $1.60 9/10 of $3.85, 1/10 of $0.10 -$1.52
10/10 of $2.00, 0/10 of $1.60 10/10 of $3.85, 0/10 of $0.10 -$1.85

They examinedwhen subjects switched from choosingOptionA toOption B.A risk

neutral subject would pick A four times, then switch to B. A risk averse subject would

stick with A for longer, and a risk seeking subject would switch earlier. They observed

considerable amounts of risk aversion across every condition tested; in their studies, 6-

15% of participants were risk loving, 13-29% risk neutral, and 56-81% risk averse. These

lab results have been replicated with choice tasks that compare bets with certain pay-

offs to risky bets with varying payoffs (Abdellaoui, et al., 2011).

Similar studies have been performed using actual payoffs outside of laboratory set-

tings. For example, in a landmark study, Binswanger (1980) offered various lotteries
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to farmers in India, with potential payoffs sometimes exceeding monthly incomes.

He found that nearly all participants were somewhat risk averse, with risk aversion

increasing with higher monetary stakes. Relative risk premiums in the 20%-50% are

common (Levi 1992). Even higher levels of risk aversion have been observed in field

data from auctions (Cox and Oaxaca 1996, Campo, et al. 2011). In sum, the “overall

message is that there is a lot of risk aversion, centered around the 0.3-0.5 range, which

is roughly consistent with estimates implied by behavior in games, auctions, and other

decision tasks” (Holt and Laury 2002, 1649).

As we will see in Paper 3, more fine-grained results are difficult to come by and rid-

dledwith inconsistencies across individuals, elicitationmethods, and contexts. Wewill

consider the implications of this for agentic AI alignment with user risk attitudes. For

now, the important point is that risk aversion has a significant influence on most peo-

ple’s actual choice behaviors. Therefore, it deserves to be given significant attention

when developing agentic AIs that work with or for human agents.

4 Formal models of risk aversion

Philosophers, economists, and behavioral scientists have developed variousmodels of

decision that incorporate sensitivity to risk. Some of these theories (e.g. Prospect The-

ory)were developedwith the primaryaimof being empirically adequate fordescribing

the economic behavior of actual agents. Others (e.g. Risk-Weighted Expected Utility)

aim to describe the normative aspects of rational decision-making. In AppendixA, we

examine the most prominent formal theories of risk. The choice of theory has some

small bearing on the normative issues we will discuss, but it can be skipped for those

uninterested in the details.13 What matters is that actual agents’ decisions rarely con-

form to EU maximization, and risk sensitivity will have to be incorporated in some

fashion in order to accurately capture the preferences and decision-making behavior

of agents. These preferences and decision-making behavior will matter for achieving

alignment between users and agentic AIs. Therefore, incorporating risk sensitivitywill

be essential for the project of agentic AI alignment.

13Wewill argue in Paper 3 thatwe should not use anyof these formal theories as ground truthswhen fitting
AIs to the risk attitudes of their users. Therefore, the details don’tmattermuch for technical implementation
either.

16

https://docs.google.com/document/d/1Dpebe5bhfim3udeAtaf4rfZgb8mdlqu4nPfeEKodGoU/edit?usp=sharing


5 User alignment

Here, we focus on how agentic AIs can be properly aligned with the interests of their

users. Above, we canvassed evidence that most human actors in most circumstances

depart from expected utility maximization by displaying some amount of risk aver-

sion. If users are risk averse, then prima facie, aligned AI agents that make decisions

on their behalf should also be risk averse. However, it is not clear whether this judg-

ment, however intuitive, is correct. If it is, it is unclear how such risk attitudes should

be implemented and what the justification for doing so would be.

Here, we see significant interaction effects between answers to the following ques-

tions:

a. What are the desiderata for alignment?

b. What are risk attitudes and why are they important for human agents?

c. What is the nature of the relationship between an agentic AI and its human user?

d. How are agentic AIs structured and how do they perform?

Wewill unpack several possible answers to each of these questions and then explain

how they give rise to different views about alignment.

5.1 Aspects of user alignment

Gabriel, et al. (2024) argue that an AI assistant is “aligned with a user when it benefits

the user, when they ask to be benefitted, in the way they expect to be benefitted” (34).

This suggests three aspects of user alignment:

1. Outcomes are beneficial to the agent

2. Users have control over the agentic AI

3. The agentic AI is predictable
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While Gabriel, et al. seem to take these three desiderata as jointly necessary and

collectively achievable, this should not be assumed. Indeed, there may sometimes be

trade-offs among them.

For example, increasing user control over the AI might cause it to deliver less bene-

ficial outcomes if the user lacks information about which actions would best promote

her interests. This is especially salient in the case of risk attitudes. Consider the case

of retirement investments. Since most people tend to be risk averse, it is plausible

that were they tasked with selecting their own portfolios, they would choose safe in-

vestments with lower average rates of return (e.g. government bonds or certificates

of deposit) over riskier investments with higher average rates of return (e.g. stocks).

However, if one makes the safe choice for every investment, it is exceedingly likely

that onewill have far lower yields than a portfolio including riskier options. Being risk

averse (in the short term)will lead to sub-optimal long term benefits. As a result, finan-

cial advisors do not tend to give their clients full control over individual investment

options. Instead, they present packages of investments that are controlled by experts.

This case also illustrates potential trade-offs between predictability and the other

two desiderata. Predictability might refer to either the outcomes of an agentic AI or

the means by which it achieves its outcomes. Either way, if the user does not have in-

formation or skill in a certain area, shemaynot be able to predict whatwill bring about

beneficial outcomes. After all, if she could, she arguablywouldn’t need an assistant (es-

pecially not a sophisticated AI). Likewise, if an unknowledgeable investor hand-selects

the components of her portfolio, the results will probably be less predictable than the

portfolio constructed by an expert.

Many of these conflicts arise in cases where an assistant utilizes risk attitudes that

are different from its client’s. To evaluate whether this is appropriate — and whether

these cases violate key alignment desiderata —we can distinguish between three ways

that user/assistant risk attitudes could line up.

5.2 Models of risk alignment

When an actor (assistant, representative, etc.) is tasked with making risky decisions

on behalf of a patient (user, client, etc.), what is the proper relationship between the
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actor’s and patient’s risk attitudes? Thoma (2023) distinguishes three views:

1. Permissive: the actor is permitted to implement any rationally permissible risk

attitude (including the actor’s own)

2. Required: there is some specific risk attitude that the actor is required to adopt,

and this is not determined by or necessarily identical with either the actor’s or the

patient’s risk attitude

3. Deferential: the actor ought to defer to (i.e. adopt, as much as possible) the pa-

tient’s risk attitude

The third view seems relatively straightforward: an actor achieves alignment by

adopting the risk strategies that her patient would adopt in that circumstance. How-

ever, what deference means can be somewhat complicated. For example, suppose

that a client is risk averse about short term financial investments (preferring CDs over

stocks) and risk averse about the amount of money they have at retirement. Deferring

to their short-term risk preferencesmight be in conflict with their long-term risk pref-

erences, so a financial advisor must choose which of these attitudes to defer to. There

are also difficult practical questions about how the actor can discover, characterize, and

conform to the risk attitudes of her client (this will be the focus of Paper 3).

According to the Required view, there is some external standard for which risk at-

titude the actor ought to have. This standard might come from normative decision

theories (e.g. that only strict EV maximization is rational), but it can also come from

other sources. For instance, Buchak (2017) argues that when we are making decisions

for multiple patients or a patient whose risk attitudes are unknown, we are ethically

required to adopt the most risk averse reasonable attitude. Particular levels of risk

aversion might also be required for legal reasons or reasons of liability (an issue we

will address in Paper 2).

Permissivism assumes a background pluralism about risk attitudes, onwhich agents

can reasonably differ with respect to their levels of risk aversion or tolerance. It is

an open question what the limits of “reasonableness” are and what sets those limits.

We will highlight two important cases that motivate Permissivism (where actors’ risk

profiles differ from their patients’ but no single profile is mandated).

19



First, there may be cases in which particular users have risk attitudes that are un-

reasonable. By analogy, among drivers, there is some permissible variation in levels of

caution and risk taking. However, some levels of risk taking (e.g. driving 30 mph over

the speed limit, cutting across lanes of traffic) are impermissible. It would be unaccept-

able to conform an autonomous driving system to the risk preferences of such users.

It’s debatable whether we should count such a system as aligned with its user14, but it’s

clear that it would not count as aligned in the broader, tetradic sense.

Second, the actor may have positive reasons (or at least moral leeway) to give some

consideration to their own risk attitudes, something that Deference does not allow.15

If the actor and patient have different risk profiles, Permissive may allow some actors

to settle on a conciliatory position somewhere between the two. Human agents are

often allowed such leeway. For example, doctors are not required to act exactly as

their patients would desire (e.g. ordering every possible diagnostic test to satisfy a very

risk averse agent, or undertaking risky surgeries for a risk prone one). Human actors

are also allowed to suspend a relationship with a client whose risk attitudes are very

different from their own. For example, a financial advisor cannot prevent his client

from putting all of his savings in crypto, but neither is he mandated to help his client

do it.

The developers of agentic AI systems have their own risk attitudes. In Paper 2,

we will consider reasons why these attitudes matter. On Permissive, respecting those

attitudes is consistentwith user alignment, whereas this ismost likely inconsistentwith

both Required and Deferential.

As we have seen, there are various desiderata for alignment between a user and an

agentic AI and various models of what risk alignment might entail. Below, we will

consider several key questions that matter when conceptualizing user alignment.

14On the one hand, the car is aligned to the user’s stated preferences. On the other, it is likely unaligned
to the user’s deepest preferences (which probably include avoiding bodily harm). We will explore which of
these preferences we should align to in Paper 3.
15Required might allow the actor’s risk attitudes to factor into some objectively correct algorithm for de-

termining the right risk attitude
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5.3 What are risk attitudes and why are they important for human agents?

A fundamental question about risk attitudes is whether they matter intrinsically or in-

strumentally. On the instrumental view, a user’s risk attitude is a strategy for gettingwhat

she values. This view is expressed by Buchak (2013, 49):

It is plausible to think that some people are more concerned with the worst-

case scenario than others, again, for purely instrumental reasons: because

they think that guaranteeing themselves something of moderate value is a

betterway to satisfy their general aim of getting some of the things that they

value than ismaking something of veryhigh valuemerely possible…Thus, in

addition to having different attitudes towards outcomes and different evalu-

ations of likelihoods, two agentsmight have different attitudes towards some

way of potentially obtaining some of these outcomes.

When an agent is evaluating various bets (e.g., making retirement investments),

what she ultimately cares about is what those bets yield her (e.g., money). Agents differ

with respect to the strategies that they take to get what theywant. A risk averse and risk

prone agent may care about the same things to the same amount (e.g. they both want

to be well-off in retirement) but differ in their views about the most advisable way to

go about it.

It might be objected that it is misleading to characterize the risk averse and risk

tolerant agent as valuing outcomes in the same way. For reductio, assume that Pat and

Matt hate sitting in the airport to the same degree and hate missing their flights to the

same degree. Pat is risk averse and arrives at the airport three hours before her flight,

while Matt is risk tolerant and arrives one hour before his flight. On the instrumental

view, their different risk attitudes are just different strategies for balancing time in the

airport and the chances of a missed flight. However, it seems like Pat must either

assign more value to making her flight or assign less disvalue to sitting in the airport

than Matt. Indeed, she seems to be more okay with waiting in the airport precisely

because it is less risky!

On this view, the risk profile of an option is something that is intrinsically valued by
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the agent.16 The risk averse person might disvalue the feeling of distress that comes

with taking risks, while the risk prone person values the thrill. Their psychological

responses to risk will factor into the utilities they assign to various states of the world

(e.g. “I made my flight but felt stressed the whole time, which is a worse outcome than

if I had been to the airport earlier”). Risk attitudes might also be a central part of a

person’s agency or self-conception as an agent. It is important to them that they take

actions that accord with their own risk attitudes, and it is alienating to do otherwise,

even if it yields beneficial results.

These two views about the value assigned to risk have significant implications for

what itmeans for an assistant to be alignedwith a user’s risk attitudes. We can bring this

outwith the following kind of case. Imagine that you are a fairly risk averse personwho

valuesmoney. You find out that your financial advisor has taken an extremely risky bet

with your retirement savings which could have caused you to lose it all. Luckily, the

bet paid off, and you have slightly more money than had they invested more safely.

Have you been deprived of anything you value?17

On the instrumental view, the answer seems to be no. What you care about is

money, and the bet ultimately gave youwhat you valued. On the intrinsic view, the an-

swer is yes. You disvalue having risks takenwithyourmoney, so the bet itselfwas some-

thing you intrinsically disvalued (regardless of how it turned out). The instrumental

view seems to lend itself to either Permissive or Required, while the intrinsic view

recommends Deferential. This latter view has been adopted by welfare economists,

amongwhom “the widespread view that welfare should be assessed on the basis of be-

haviorally derived utility functions rather than EUT… is primarily based on concerns

about paternalism” (Harrison and Ross 2017, 157)18.

16This view is best represented by incorporating risk attitudes into utilities (see Appendix A). We will con-
tinue to distinguish between an agent’s utilities and their risk attitudes. This allows us to evaluate each
component separately for pedagogical reasons (and doing somakes nomathematical difference). Our strat-
egy is compatible with the intrinsic view if we interpret them as reflecting two sources of utility:the part of
the value that comes from the good obtained and the part that comes from the riskiness.
17This is a narrower question than whether you’ve been wronged, which might also include things like

informed consent.
18According to an influential account of paternalism, one person acts paternalistically towards another

when they interfere with that person’s autonomy (i.e., their capacity to set and pursue ends) without their
consent because they believe it will benefit them (Dworkin 2020). We might have reasons to worry about
paternalism regardless of whether risk attitudes are valued by agents intrinsically or instrumentally: if au-
tonomy matters for its own sake, there might always be a reason to refrain from interfering with agents’
plans without their consent. This reason will likely be overridable — we can always imagine some extreme
case where it is obvious that we must interfere and there is no time to secure consent — but will provide at
least some friction for such interference.
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Here, we face the question of what it means for an AI assistant’s outcomes to be

beneficial to the agent and hence whether that desideratum is met. Is it important

that an agentic AI have risk attitudes that match those of its user? If risk attitudes

are merely a means for bringing about beneficial outcomes, then an AI that delivers

good outcomes (e.g. money, making one’s flight, a good restaurant) via a different

risk strategy than its user can nevertheless be well-aligned. Indeed, we might prefer

that risk attitudes mismatch those of users if we think that users’ risk attitudes are

based on errors in reasoning or otherwise unreliable methods of getting what they

want (Harrison and Ross 2017). If risk attitudes are intrinsically valued, the AI should

display Deference, trying to bring about beneficial outcomes in roughly the way that

the agent herself would do so.

5.4 What is the nature of the relationship between an agentic AI and its human

user?

Above,we raised the question ofwhether an aligned agenticAI should replicate the risk

profile of its users or whether it is free to seek what users value by other risk strategies.

An important factor here is how we conceive of the relationship between a particular

AI and its user, and how that relationship is situated into other social structures. Here

we will discuss two issues: one has to do with what sort of thing agentive AIs are in

relation to their users, the other has to do with the nature of the sort of collaborative

agency that will take place (no matter what sort of entity the agentive AI is).

We can distinguish between an agent that serves as a representative of a client and one

that serves as a tool. These two roles comewith different expectations and thus different

conceptions of alignment. A tool is any system or entity that is used to bring about a

desirable outcome. A representative’s job goes beyond this. They also act as a channel

for communicating the views and interests of their client and are interpreted as acting

in their stead. Attorneys and personal assistants fit this bill, while doctors and travel

agents do not. Someone acting as a representative assumes a special duty to faithfully

portray their client, to act in a way that is faithful to how they would act. Therefore,

the alignment demands for an agentic AI that acts as a representative will include this

requirement of faithfulness. In turn, this might require a process of calibration of

the AI to the user to ensure that there is the kind of causal relationship between the
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properties of the user and properties of the AI such that we could reasonably take the

latter to represent the former.

It is unclear which view of risk alignment is appropriate for AI tools. However,

Deference is the most plausible view when it comes to AI representatives. Consider

an AI assistant that sends e-mails and arranges meetings on behalf of a user (perhaps

not even signaling that it is an AI assistant in interactions with others). If this assistant

makes decisions with a very different risk profile from the user, it will fail to represent

them well.

Whichever of these models an agentive AI falls into, it is important to appreciate

the kind of shared agency that will exist in collaborations between the user and the

AI. Whether the AI is a tool or a representative, if the relationship between the AI and

the human is functioning (i.e. it embodies the criteria for alignment) — then what the

agentive AI “does” will be what the AI and its user together do (cf. Nyholm 2018). This

is important for a variety of reasons. For one, when AI is sufficiently aligned with the

user, the user can see what the AI does as something that the user can share responsi-

bility for. But if it is not, then — in at least some cases — then the user might not be

responsible. For example, when a personal assistant AI successfully arranges a dinner

meeting, the user will likely feel like this was something that he deserves some of the

credit for. When a personal assistant AI sends an e-mail containing slurs or personal

insults that are completely out of character for the user, he will ( justifiably) deny re-

sponsibility. One way in which this alienation could occur is throughmisalignment of

risk functions, especiallywhen theAI takes actions that are far riskier ormore cautious

than the user can identify with. We will revisit legal, moral, and other implications of

shared agency in Paper 2.

5.5 How are they structured and how do they perform?

Choices about what our alignment goals are will interact with choices about and con-

straints on the kinds of AI systems that we build and market, including:

a. Will the AIs be calibrated to individual users or be provided “off-the-shelf”?

b. Will the user have a relationship with a single AI or have a choice of several AIs?
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c. How long does the relationship persist? Does the AI refresh with each usage or

remember past encounters?

d. What are the termination conditions, such that a relationship between a user and

AI could be ended by developers?

In order to achieve certain desiderata of alignment, we might prioritize certain

kinds of AI agents. For example, if it is important to create AI representatives that

adopt the risk profiles of their users, then this might point developers toward persist-

ing AIs that are calibrated toward the preferences of specific users. Relatedly, if we

found that this kind of calibration was not feasible or advisable, then this would cause

us to change our minds about what kinds of alignment are achievable.

5.6 Upshots for user alignment

We have presented three main dimensions of agentic AI risk alignment: desirable

outcomes, user control, and predictability. However, when it comes to interpreting

and achieving these dimensions of alignment, there are several important decisions

to make. While there are many conjunctions of design choices and alignment deci-

sions, we suspect that they will cluster around two general positions:

5.6.1 Proxy agents

Agentic AIs are representatives of their users. Risk attitudes are of intrinsic importance.

They should defer to user risk attitudes. Tools will likely be strongly calibrated to indi-

vidual users.

• Desired outcomes are achieved by doing things in the way the agent would do

things

• Control is achieved via calibration to agent

• Predictability is achieved via user self-knowledge, quality of fit between AI and

user
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Proxy agents in the human world include PR representatives and estate executors.

AIs that are trained to imitate particular agents19 are useful models of proxy systems

(see Paper 3 for a discussion).

5.6.2 Off-the-shelf tools

Agentic AIs are tools. Risk attitudes are instrumental (only valuable insofar as they yield

desirable outcomes). Choice of risk attitude is permissive or required. Tools are not

strongly calibrated to users.

• Desired outcomes are achieved through standards of best practices, empirical

study of optimal strategies for achieving desired outcomes

• Control is achieved by allowing users to make informed choices among various

tools with different risk profiles

• Predictability is achieved by providing users with the track record of particular

AI systems

A helpful model for off-the-shelf tools is the menu of financial investment options

(e.g. 401ks) offered to everyday investors. For example, the following table is taken

from a publication fromCharles Schwab called “How to determine your risk tolerance

level”20:

Table 3: Hypothetical performance for conservative, moderate, and aggressive model
portfolios

Asset allocation Conservative portfolio Moderate portfolio Aggressive portfolio

Stocks 30% 60% 80%
Bonds 50% 30% 15%
Cash 20% 10% 5%

Hypothetical Performance (1970–2014)

Growth of $10,000 $389,519 $676,126 $892,028
Annualized return 8.1% 9.4% 10.0%
Annualized volatility (standard deviation) 9.1% 15.6% 20.5%
Maximum loss -14.0% -32.3% -44.4%

Here, experts choose amenu of different options that instantiate different attitudes

toward risk, and data is presented clearly enough that even unsophisticated investors

19Character.ai is one example.
20https://www.schwab.com/learn/story/how-to-determine-your-risk-tolerance-level
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can grasp the basic risk profile of each option. Furthermore, experts place constraints

on the range of reasonable portfolios that theyarewilling to endorse: there is no option

that is all stocks or all bonds.

6 What’s next

In this paper, we’ve focused on one aspect of alignment: the relationship between

agentic AIs and their users. We have made a few key claims:

• Risk attitudes are an ineliminable aspect of agency, so proper alignment between

agentic AIs and their users involves alignment of risk attitudes.

• The standard view is that proper alignment between agentic AIs and users in-

volvesAIs being beneficial, predictable, and controllable byusers. However, there

are potential conflicts among these values, and there are several ways to interpret

each of them.

• A key choice point is whether agentic AIs should be trained to have the risk atti-

tudes of their users or should have their risk attitudes set in some other way.

• There are two general options for designing risk aligned AIs — Proxy Agents or

Off-the-Shelf Tools — and the best practices for user alignment will differ based

on which of these options is pursued.

Thenext twopaperswill addresswhetherdevelopers should pursue the ProxyAgent

or Off-the-Shelf Tool options when making and deploying agentic AIs. In Paper 2, we

will consider the interests (moral, legal, and reputational) of developers and evalu-

ate which of these options best promotes these interests. In Paper 3, we will consider

whether the ProxyAgent option is technically viable. Is it possible to calibrate agentic

AIs to particular users’ risk attitudes in a way that makes them beneficial, predictable,

and controllable?
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Paper II

Developer Aspects of risk Alignment

1 Introduction

In the previous paper, we considered several different models of an aligned relation-

ship between agentic AIs and their users. Here, we broaden our view. What we are

ultimately aiming for is holistic alignment among AIs, users, developers, and society

at large. Wewill argue that getting alignment right is largely about navigating shared re-

sponsibility among developers, users, and AIs. We want to find a system that strikes the

right balance and where each participant knows and is suitable for their role. Here, we

will focus on the role of developers within this balance, evaluating how their interests,

duties, and risk attitudes should shape and constrain the user-AI relationship.21

One major choice point in the user-AI alignment problem is whether the user will

determine the AI’s risk attitudes (the Deferential view) or the risk attitudes will be de-

termined at least in part by entities other than the user, such as AI developers or legal

regulations (Permissive or Required).22 Here, we will consider normative reasons that

bear on our choices here. Some key questions that arise include:

a. What options are available for influencing or constraining the risk attitudes of

agentic AIs?

b. When an agentic AI performs an action, who is responsible for the consequences:

the user, the agentic AI, or the developer? If responsibility is shared, how do we

apportion responsibility?

21We will focus on the role of developers, though some of what we say may equally well apply to the role
of policymakers regulating the actions of developers.
22The three views are:

1. Permissive: the actor is permitted to implement any rationally permissive risk attitude (including the
actor’s own)

2. Required: there is some specific risk attitude that the actor is required to adopt, and this is not deter-
mined by or necessarily identical with either the actor’s or the patient’s risk attitude

3. Deferential: the actor ought to defer to (i.e. adopt, as much as possible) the patient’s risk attitude
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c. What are developers’ duties when creating systems that make risky decisions on

behalf of users? What kinds of risk attitudes should be implemented in order to

fulfill these duties?

d. How andwhy doAI developers’ own risk attitudes matterwhen designing agentic

AIs?

e. How much relative influence should developers and users have in choosing the

risk attitudes of agentic AIs? How could we achieve different levels of balance

between the two?

Wewill endwith a series of recommendations for howdevelopers canmake agentic

AIs that benefit users, society, and protect developers’ interests at the same time.

2 Models of developer influence

Developer influence on the risk attitudes of the AIs they design could come in many

forms and degrees; there are many options between full control by users (pure Def-

erence) and full control by developers (no Deference). Here is a brief and incomplete

survey of the options, from least developer control to most.

a. Pure deference: the AI is designed to be fully calibrated to the risk attitudes of

particular users. The aim is to predict how the user would act in each circum-

stance.

b. Deference with guardrails: the AI is designed to be calibrated to the risk attitudes

of particular users. However, some risk attitudes are deemed to be unreasonable,

and the AI is prevented from taking on those risk attitudes (even if their user has

them).

c. Partially-calibrated defaults: AIs are designed with default risk attitudes that can

be partially adjusted to the risk attitudes of their users. For example, an AI might

start as a completely risk-neutral expected utilitymaximizer and learn to become

slightly risk-averse when interacting with a risk-averse user.
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d. Calibrated to demographic information: AIs are calibrated to common risk atti-

tudes among the subpopulation of which that user is a member.

e. Menu of AIs with fixed risk preferences: each AI’s risk attitudes are determined

by developers. Users can select from amenu ofAIs with a variety of risk attitudes.

f. Domain-adjusted AIs with fixed risk preferences: developers completely deter-

mine risk attitudes, but an AI can have different risk attitudes depending on the

context. Relevant features of a context include stakes (e.g. a financial bot is more

risk averse when dealing with large amounts of money) and domain (e.g. a finan-

cial bot is more risk averse than a restaurant reservation bot).

g. AI system with a fixed, determined risk profile: there is a single AI system with

risk attitudes that are determined by developers and fixed across contexts.

These options strike different kinds of balance in shared responsibilities across de-

velopers, users, and AI.

3 Shared responsibility for agentic AI actions

An important aspect of alignment that is introduced by agentic AIs that bears on the

interests of developers is, “Who will be responsible for the actions taken by an au-

tonomous AI?”

To address this question, it will be helpful to consider some of the issues that get

discussed under the banner of “responsibility gaps” (Mattias (2004); Goetze (2022);

see Nyholm (2022), ch. 6 for an overview). A responsibility gap exists when there is an

outcome that seems to be the product of agency but for which no agent seems to bear

any responsibility. A major concern in technology ethics for at least two decades has

been that AI agents might open responsibility gaps. Per Köhler, Roughley, and Sauer

(2017), responsibility gaps occur when

(1) it seems fitting to hold some person(s) to account for some φ to some

degree D. Second, in such situations either (2.1) there is no candidate who

it is fitting to hold to account for φ or (2.2) there are candidates who appear
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accountable for φ, but the extent to which it is, according to our everyday

understanding, fitting to hold them individually to account does not match

D. (p. 54)

An argument for the existence of these gaps (owed toRobert Sparrow (2007)) runs as

follows: if an autonomous agent causes some outcome, then the responsibility for that

outcome must be borne either by its developers, its user, or the AI itself. But often, it

can’t be the developers: among other things, they cannot control what the agent does,

after all, it is autonomous. Similarly, it often can’t be the user: they, too, lack proper

control over the agent to take responsibility for all that it does. Yet, it can’t be the

AI agent either: it doesn’t even make sense to hold such a thing morally responsible.

Thus, AI agents can bring about outcomes for which no one is responsible.

There are, of course, a number of ways one could respond to this argument. We

cannot survey every response here (for a helpful overview of responses, see Nyholm

(2022)). Of interest to us is a response that argues thatmany alleged responsibility gaps

can be closed by understanding: (1) shared (or ‘group’) agency and (2) the fact that pur-

ported responsibility gaps invariably occur in the context of human-AI partnerships

(Nyholm 2018). The core idea of this approach is that what an AI ‘does’ is often, in fact,

what anAI and some human or team of humans together do. Nyholm (2018) sheds light

on this idea by considering a case where an adult-child team robs a bank:

An adult and a child are robbing abank together, on the adult’s initiative,with

the gun-wielding child doingmost of the ‘work’. The adult is supervising the

duo’s activities, and would step in and start issuing orders to the child, if this

should be needed (Nyholm 2018, p. 1212).

It should be clear in this case that, even though the child is the one who walks into

the bank and wields the gun, the adult bears most (if not all) of the responsibility for

the robbery. This is because the bank robbery was the product of a shared agency

where the adult played a significant managerial role and is ultimately accountable for

the robbery.

We can characterize four levels or faces of responsibility constituted by increas-

ingly sophisticated involvement in an action (Shoemaker 2011). First, someone might
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be merely causally responsible when they lack any intention to perform the act in ques-

tion. For example, someone might have a seizure and accidentally crash their car into

a bank, giving someone the chance to rob it. Second, an action can be attributed to

someone who intended to perform the action, even if they had little understanding of

the reasons why they did so. For example, the child might abet the bank robber think-

ing that it is a game they are playing. Third, someone is answerable for an action when

they can cite the reasons that they acted, even if they fail to appreciate their normative

import. The child might know that they robbed the bank to get money but fail to ap-

preciate the wrongness of stealing, the effects on the bank’s customers and employees,

etc. Lastly, an accountable agent understands the normative importance of their action:

its rightness, wrongness, conflict with other values, etc. The adult who ropes the child

into robbing a bank has this understanding and is thereby accountable for it.

The level of responsibility that is assignable to agentic AIs, users, and developers

will depend on the capacities and roles played by each. In order to be accountable,

an agentic AI would have to have autonomy, an appreciation of its reasons for action,

and an ability to “defend or alter [its] actions based on one’s principles or principled

criticism of [its] agency” (Nyholm 2018). These are not the kinds of agentic AIs that we

expect to be developed anytime soon. It’s even unclear whether horizon AIs exhibit

anything beyond mere causal responsibility.23

Accountability will have to come from agents who do understand the reasons why

the agentic AI acted and the normative dimensions of those reasons. Important for

us, this approach doesn’t just bridge responsibility gaps by attributing responsibility to

users; it can also be used to attribute responsibility to developers, as they, too, design and

supervise the agents they develop. Nyholm (2018) demonstrates this by considering

two real-world cases involving accidents with self-driving cars.

In the first instance, we can consider the 2016 crash of a Tesla Model S while it was

in autonomous mode.24 Assume that leading up to the collision — where the Tesla

collided with a truck that its sensors had not spotted — the human passenger of the

23Present LLMs are best described as having what Nyholm calls “Domain-specific supervised and defer-
ential principled agency: pursuing a goal on the basis of representations in away that is regulated by certain
rules or principles, while being supervised by some authority who can stop us or to whom control can be
ceded, at least within certain limited domains.” It seems to us that this would make them answerable, at
most, though it strikes us as implausible that LLMs understand their reasons for action in the relevant way.
24Tesla (2016). A tragic loss, blogpost at. https://www.tesla.com/blog/tragic-loss.
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Tesla was instructed to supervise the vehicle, and was ready to take over if needed

(Nyholm 2018). In such a case it couldmake sense to hold the human user accountable,

even if they were not the one that literally drove into the truck.

In the second instance, we can consider the 2016 crash involving a Google Self-

Driving Car.25 Assume that leading up to the collision — where the car collided with

a bus after mistakenly predicting that the bus would yield — the human passenger of

the Self-Driving Carwas neither asked nor able to supervise the vehicle, as the perfor-

mance of the vehicle was “monitored by the designers and makers of the car, who […]

update the car’s hardware and software on a regular basis so as to make the car’s per-

formance fit with their preferences and judgments about how the car should perform

in traffic” (Nyholm 2018). In this second case, it makes sense to hold Google at least

partly responsible for the crash, even if the driver decided the destination and the ve-

hicle did the driving. Google, it should be noted, readily took responsibility. And it

is, presumably, their role as supervisor in this particular human-robot collaboration

made them the accountable party.

While the exact dynamics of responsibility are both complicated and contested, the

basic idea here should be intuitive enough: autonomous agents might seem to open

gaps in responsibility, but they (often) do not. This is because what these agents do is

done in the context of human-AI collaborations, making humans — including devel-

opers — at least partly responsible for what the AI does.

Decisionsmade bydevelopers— including howmuch supervision users and devel-

opers are expected to exert— can change the relative levels of responsibility assignable

to users, developers, and the AI. This will have implications for developers in the fol-

lowing ways:

• Legal liability

• Reputation of AI developers among users, the public, and potential regulators

• Moral responsibility toward users and society

Hence, getting risk alignment wrong could have significant costs for AI developers.

25Google says it bears 'some responsibility' after self-driving car hit bus | Reuters.
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Wewill briefly address legal and reputational aspects but focus primarily on moral

responsibility. First, it’s the area in which we have the most expertise. Secondly, judg-

ments about moral responsibility will often drive legal and reputational judgments.

Consider an action taken by an agentic AI on behalf of a user that has a bad outcome:

an email contains insensitive language, a chatbot promises to do something that the

user doesn’t agree to, a financial investment loses significant amounts of money, an

autonomous vehicle selects a route that causes a serious accident. Legal and popular

blame will often (though not always) redound to those parties that are judged to have

done something morally wrong. In Section 8, we will examine cases where these as-

pects conflictwith one another; in particular, there are strategies that developersmight

take that would shield them from legal liability but be morally risky.

4 Legal ramifications of shared responsibility

Legal liability concerns the entities that can be held legally responsible for the ac-

tion and are therefore deserving of punishment and/or responsible for restitution to

harmed parties. Decisions about legal liabilitywill depend, in part, on tricky questions

about the shared agency involved. Was the action an expression of the user’s/ devel-

oper’s own intentions? Could the user/ developer have reasonably foreseen what the

agentic AI would do? Did the user/ developer have the ability to exert control over its

actions?

We will not pronounce on the legal dimensions of agentic AIs. The legal landscape

of agentic AIs is currentlymurky and likely to undergo significant changes (Chan, et al.

2023, 656). For example, consider two cases in which chatbots employed as customer

service representatives made promises that the company did not intend to keep. In

one, a user prompt-hacked a chatbot for a Chevy car dealership into offering to see

him a new car for $1.26 This was clearly not an expression of the dealership’s inten-

tions. Indeed, it exploited a significant flaw in the chatbot’s design, something the

designer, Fullpath, has taken accountability for. The dealership was not ultimately

legally bound by the chatbot’s promise.27 In contrast, a chatbot representative for Air

26https://gizmodo.com/ai-chevy-dealership-chatgpt-bot-customer-service-fail-1851111825
27Had the dealership been required to uphold the deal, we suspect that there would have been further

litigation between the dealership and Fullpath.
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Canada promised a customer a bereavement refund that was not consistent with com-

pany policy. A Canadian court found that the airline was legally bound to provide the

refund promised by the chatbot. The tribunal member who decided the case judged

that though “Air Canada argues it cannot be held liable for information provided by

one of its agents, servants, or representatives — including a chatbot… Air Canada did

not take reasonable care to ensure its chatbot was accurate. It should be obvious to Air

Canada that it is responsible for all the information on its website”.28

We expect to see a patchwork of legal judgments for the foreseeable future until

a new paradigm of legal liability for agentic AIs emerges. We will simply note that

in many cases, legal responsibility will track moral responsibility in cases of shared

agency. We will explore aspects of moral responsibility (and some of their legal rami-

fications) in Sections 6 and 7.

5 Reputational aspects of shared responsibility

For consumer-targeted products, reputation can be just as important as legality. Even

if developers adopt standards that let them slip free from legal liability, they will be

doomed to fail if their agentic AIs are deemed unreliable or dangerous by consumers.

For example, Air Canada could likely have evaded legal responsibility for the refund

promised by its chatbot had it included a disclaimer that information provided by the

chatbot may not be accurate. However, such disclaimers will erode consumer trust.

An agentic AI (and its developers) will take an even bigger reputational hit if it does

something dangerous or offensive.29

Here, we will focus on the issue of trust and trustworthiness, moral concerns that

have significant reputational aspects. Trust and trustworthiness matter for a variety of

reasons. One reason is that developers want users to use their products, and lack of

trust can prevent this. Indeed, the amount of trust required will likely be proportional

to how much autonomy the AIs have.30 Trust and trustworthiness exist in a positive

28https://www.wired.com/story/air-canada-chatbot-refund-policy/
29Bing’s LLM, which insulted and even threatened early users, is a cautionary tale. https://-

time.com/6256529/bing-openai-chatgpt-danger-alignment/
30Regulators, too, will be increasingly motivated to place legal limitations on the use of agentic AIs or to

shift more liability to developers when those AIs are not trustworthy.
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feedback loop, that, as we will soon explain, involves competence. If users don’t trust

and therefore don’t use a product, this can undercut the future development and re-

finement of that product. And if trustworthiness influences trust — aswe think it often

does — lack of trustworthiness can result in an inferior product. Another, less egois-

tic reason, to think that trust and trustworthiness matter is that users are deluded if

their trust is not well-placed, and there are compelling moral reasons to avoid delud-

ing users. In what follows, we will explain important connections between morality,

trust, reputation, and the handling of risk.

Beginwith the relatively simple concept of trust.31 Whenwe (merely) rely on some-

one, we simply depend on them (Baier 1986), but trust is richer than this. It has been

rumored of Immanuel Kant — “the Königsberg clock”— that his schedule was so reg-

imented that you could set your clock by his routines. Suppose this is so and that,

unbeknownst to him, you use him to calibrate your clock. But now suppose that he

unexpectedly deviates from his routine32, throwing your clocks off and making you

late for a meeting. In such a case, you could certainly be disappointed bywhat has hap-

pened. But it would seem ill-fitting to feel betrayed. After all, it’s not like he promised to

keep his walks regular. By comparison, imagine that you organize your day through a

scheduling app that unexpectedlymalfunctions, making you late for a meeting. Here,

it would seem fitting to feel betrayed by the app or, more likely, the company that

develops and maintains it.

Focusing on cases like these, theorists of trust consider the fittingness of reactions of

betrayal to failures to meet expectations as a hallmark of trust (cf. Nguyen 2022; Baier

1986). What is it, then, that makes betrayal fitting? One of the more plausible and

useful proposals is that trusting someone involves the presumption that the trusted

is aware of your reliance and, further, will take this reliance as a reason for acting as

counted on ( Jones 2012; cf. Nguyen 2022). Trustworthiness is thus characterized by

competence, motivation, and evidence ( Jones 2012):

31Philosophers of trust often distinguish between trust in agents and trust in things. While it could be
debated whether in this context it is more fitting to think of agential AI as an agent or a thing, we do not
think that this debate must be settled before proceeding. In what follows, we will focus on extrapolating
lessons from accounts of trust in agents, mostly because that literature is more mature and gives us more
relevant material to draw from. When necessary, we will generalize those lessons so that applying them to
agential AI does not hinge on controversial questions about, e.g., the metaphysics of agency.
32He is alleged to have done this just twice: once to get an early copy of Emile, and once because of the

French Revolution (Merrick 2015).
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Competence: the agent being relied upon (A) is competent with respect to

the tasks they are being relied upon to perform.

Motivation: Awill take the fact that she is being relied upon as a compelling

reason for acting as counted on.

Evidence: Awillingly and reliably signals their Competence and Motivation.

Applying these lessons now to agentive AI and moral reasons pertaining to risk

alignment, we can make the following observations.

Competence—and thus trustworthiness— is relative: One is competentwithrespect

to a set of tasks. And, thus, one is trustworthy with respect to those (or some subset of

those) tasks. Further, in the context of generative AI, competence is relative in at least

one further way: what it means to be competent will be conditioned in some way by

the risk attitudes of the particular user of the AI. All of this means that it is not an AI

that is trustworthy, but, instead, that it is trustworthy with respect to this or that set of

tasks for this or that particular user.

The motivation condition is a bit trickier to apply to the case of agentic AIs, since

it is unclear whether they are better understood as agents (with motivation) or things

(without). When we think about trustworthiness in non-agents, such as institutions

or programs, what matters is that they are designed to be responsive to the fact that

agents are counting on them.33 The important thing here is that in this shift, we pivot

from trusting the AI to trusting, e.g., the AI-human partnership, which includes mech-

anisms for oversight of the AI (much in the same way we rely on institutions to struc-

ture roles occupied by humans so that they behave as relied upon). As we have argued

above, this is fitting: what the AI ‘does’ is (at least very often) what it together does with

other (groups of) people. Importantly for our discussion of risk attitudes, being prop-

erly sensitive will involve sensitivity to risk. That means, among other things, having

mechanisms, operations, and structures that ensure that, among other things, the AI

will properly take attitudes towards risk into account.

33Consider our trust in an institution in the context of interactions with their surrogates, given that we do
not know those surrogates personally. If “the institution’s mechanisms, operations, and incentive structure
have been successfully designed for the purpose of ensuring that, to some satisfactory degree, representa-
tives of the institution will act as counted on qua representatives of the institution”, we have a surrogate for
motivation (Purves and Davis 2022, 142).
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Trust also depends onwhether the AI reliably signals that it can be depended upon.

To properly cultivate trust, competence and non-accidental sensitivity need to be hap-

pily advertised and believed by users. There are a variety of ways to achieve this. An

obvious one is transparency about track records. This will likely involve developing

methods for tracking outcomes of similar types of decisions made under uncertainty

and communicating them.

For example, suppose that developers decide to create a menu of agentic AI travel

assistants that purchase flights, book Ubers, etc. Users can select fromvery risk-averse,

less risk-averse, and risk- neutral bots. Developers should test these, either in simu-

lated scenarios or with trial users, and collect their track records on key metrics like:

• Percentage of flights missed

• Average time spent in airports

• Distribution of expenses (e.g., 20% of users paid more than the listing price for a

ticket, etc.)

Once again, a helpful model for such reporting comes from investment options

offered to employees. As we’ve noted, this is a salient example in which consumers

choose among different risk profiles, where another party controls the actual deci-

sions made within those broad profiles. The Employee Retirement Income Security

Act (ERISA) of 1974 and subsequent regulations34 require that plan operators provide

consumers certain kinds of information relevant to the performance and operation

of 401(k) plans, in a manner that is understandable by the typical consumer. This in-

cludes:

• Performance data: “Participantsmust be provided specific information about his-

torical investment performance. 1-, 5- and 10-year returns must be provided for

investment options, such as mutual funds, that do not have fixed rates of return”

• Comparison to benchmark: “the name and returns of an appropriate broad-

based securities market index over 1-, 5-, and 10-year periods (matching the Per-

formance Data periods) must be provided”

34Particularly the 2012 Final Rule to Improve Transparency of Fees and Expenses to Workers in 401(k)-
Type Retirement Plans.
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• Comparison across plans: “It also must be furnished in a chart or similar format

designed to facilitate a comparison of each investment option available under the

plan”

Though track record information will be scanty as agentic AIs are first rolled out,

this kind of long-run track record information across agenticAIs of various risk profiles

is something for developers to aim toward. This kind of reporting will be possible for

off-the-shelf tools with pre-set risk profiles and less available for proxy agents that are

calibrated to individual users.

Developers could also build trust in agentic AIs by providing real-time updates and

requests for user feedback, which demonstrates that the AI is responsive to user needs.

When an action yields a particularly undesirable outcome, this could trigger the AI

to connect with the user. For example, it might inform the user about the outcome

and ask, “This outcome had a 20% chance of happening. Do you still want us to make

decisions like these?”. This kind of feedback will be more informative about the user’s

risk preferences than merely asking them to rate the outcomes of actions.

Beyond this, public-facing institutional commitments will likely need to be made

about transparency and mechanisms will need to be put in place to keep those com-

mitments. This can involve developing a culture of open criticism (which might in-

volve, e.g., formal protection of workers from termination for following the institu-

tional commitments) or binding oneself to the mast in other ways, so to speak, by

committing to third-party audits. Much of this means that, at the organizational level,

a balance will have to be struck between two desiderata that likely pull in opposite di-

rections: broadening the scope of what the AI can/may do and putting structures in

place that shine a bright light on relevant facts about its track record.

Lastly, AI developers can instill trust by clearly reporting on their conception of how

responsibility is shared. Users may be particularly skittish about using agentic AIs if

they fear that theywill be legally liable for unforeseen and autonomous actions of the

AIs. Developers should communicate what they will and will not take responsibility

for so that users do not feel that they are subjected to unknown legal risks. We find

commendable examples of this kind of transparency in Google’s announcement that

they grant users broad intellectual property indemnity pertaining to use of their Duet
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AI tool.35 They clearly explain the legal responsibilities that they intend to take: “If you

are challenged on copyright grounds, we will assume responsibility for the potential

legal risks involved”. This builds user trust in sharing agency with AI tools.

6 Developers’ moral duties to users

Above, we considered reasons why exerting influence on agentic AI risk attitudes is

in the self-interest of developers. Here, we will consider their other-regarding duties,

their moral moral duties to users and society at large. What ethical considerations

should AI developers attend to when designing AIs that can plan and act?

6.1 Duties of care to users

It has long been recognized that manufacturers have a duty of care toward customers

of their products. In Donaghue v Stevenson, the case that would eventually serve as the

legal foundation of negligence claims in tort law, the duty of care was described as

follows:

Youmust take reasonable care to avoid acts or omissions which you can rea-

sonably foresee would be likely to injure your neighbour. Who, then, in law,

is my neighbour? The answer seems to be — persons who are so closely

and directly affected bymy act that I ought reasonably to have them in con-

templation as being so affected when I am directing mymind to the acts or

omissions which are called in question.

While this is an instance of legal and not moral justification, the legal justification

follows a line of reasoning that is intuitive from the moral point of view: when we act

(e.g., by offering a consumer a product) we must act with care towards our ‘neighbors’.

What does a duty of care look like in the case of the development of agentic AIs?

These systems present two related complications for the standard picture of manu-

facturer and customer. First, the potential harms of agentic AIs arise from the risky

35Similar statements have been made by Adobe, Microsoft, and IBM.
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decisions theymake on behalf of their users (e.g., the risk of financial loss from actions

taken by an AI financial adviser). Because the AI serves as an intermediary, the rela-

tionship between developer and user is less proximate than inmanyother commercial

products. Second, as we have been emphasizing, the question of howmuchAIs should

reflect the developers’ versus users’ risk preferences is not yet settled. This question

will likely impact what a duty of care looks like.

A duty of care is a requirement to take precautions to avoid foreseeable harms. The

kinds of harms one should foresee are relative to the likely uses of a product. If you

manufacture food products, a duty of care requires that you take precautions not to

give your customers food poisoning. If you manufacture bicycle helmets, you should

ensure that they protect the head in an accident. The intended use of agentic AIs is

to (at least somewhat) autonomously carry out actions on behalf of users. As we have

seen, there is some dispute aboutwhat counts as a harm in this context. On the intrinsic

view of risk36, an agentic AI harmsme if it acts on a risk function that I do not endorse.

Therefore, a duty of care might require that the AI is carefully calibrated so as to accu-

rately predict what I would do.37 On the instrumental view, it harms me if it causes (or

is expected to subject me to an unreasonable probability of38) a loss of something of

value or exposes me to danger. We will focus here on cases in which developers exert

some control over the form of the agentic AI that users actually employ.

Agentic AI systems will have their own principles of agency: sets of values, cre-

dences, risk attitudes, and strategies for acting. Principles of agency can be morally

evaluated for how well they satisfy a duty of care. This is true for human agents as

well. For example, doctors can be evaluated for howwell they satisfy the duties of care

of their profession, and we can make generalizations about how certain features (e.g.,

cautiousness, knowledgeability, etc.) contribute to this capacity. Whenever AI devel-

opers design principles of agency, they are responsible for designing principles that

do not expose their users to (unreasonable risks of) harm. What principles are these?

More specifically, what risk attitudes should we build into agentic AIs to fulfill a duty

of care toward users?

36See Section 5.3 of Paper 1.
37More minimally, it could be calibrated to predict the things that I would not do and be prevented from

doing them.
38This is the distinction between ex ante and ex post evaluations of a principle of action: do we assess the

justice (wisdom, fairness, etc.) of a principle before or after we see the actual outcomes?
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6.2 Recklessness and negligence

Whenever one makes risky decisions on behalf of others that potentially subject them

to significant losses, one incurs a duty of care toward them (Oberdiek 2012). An agent

who exposes another to risk violates their duty of care and is thus morally (and legally)

culpable when they display insufficient concern for the interests of others (Stark 2016).

One kind of insufficient concern is unjustified risk-taking, which is typically classified

as either recklessness or negligence. In cases of recklessness, the agent is aware of

the relevant risk but does not take adequate precautions. In cases of negligence, the

agent is not aware (though it might be the case that they should have been aware).

Someone who knowingly drives with shoddy brakes is reckless. Someone who has

never bothered to have their brakes checked is negligent.

Because an agentic AI is at least partially autonomous, its behaviors may be less

predictable than other types of technologies. In order to avoid being negligent, de-

velopers have a duty to extensively test the performance of AI systems before deploy-

ment. This should include experiments on different principles of agency, including

different levels and kinds of risk sensitivity. Tests should include observations of the

kinds of actions the AI takes in different scenarios, long- and short-run performance

with respect to various outcomes, and clear analyses of the tradeoffs between different

kinds of outcomes. This information should also be made readily available to users,

especially if they are able to choose among a menu of different AIs with different risk

profiles.

Once the relevant track records are known, the question of recklessness is: how

much risk is unacceptable? This is typically a difficult question, involving balances

between the effort required to mitigate risk, the magnitude of potential harms, the

potential for reparations for those harms, etc. For example, every time someone drives

a car, they expose others to risks of bodily harm, but this risk is considered reasonable.

Standards for what counts as reckless driving differ across jurisdictions and include

difficult border cases (30 mph over the speed limit is reckless, but is 15?).

In the case of agentic AIs, the difficulty of this question is somewhat mitigated if

users have some informed choice about which systems they utilize. By selecting the

risk profile that they deem acceptable, they take some responsibility for the degree of
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risk that they are exposed to. However, part of our duty of care to others may some-

times involve preventing them frommaking decisions that are outside the boundaries

of what is reasonable. Though this is controversial39, developers might have pater-

nalistic reasons to constrain the decisions that users are allowed to make. Just as the

desire of an autonomous vehicle system must decide on whether and where to place

limits on how fast the car can go,AI developersmust consider limits on howrisk-averse

or risk-seeking they can be. For example, suppose a developer creates a menu of AI

financial assistants that are permitted to make investments on behalf of users. An ex-

tremely risk-seeking assistant might invest everything in Powerball tickets or trendy

crypto coins, which has a very large chance of losing all the client’s money and some

minuscule chance of netting billions. Would it be responsible to offer such an option?

We cannot provide general conditions under which AI agents would have risk atti-

tudes so unreasonable as to amount to recklessness by its developers. Such conditions

would be context-specific, depending on the stakes, domain, and other factors.

6.3 Should developers default to more risk averse models?

If developers determine the risk attitudes ofAI systems, it will not be possible tomatch

each user’s risk profile exactly. This will happen when we don’t know what these risk

profiles are. It is also true if there is a single agentic AI that is developed but users vary

in their risk attitudes. Evenwhen amenu is offered, the set of options will likely be too

coarse-grained to capture individual variation.40 How should we select a risk profile

for heterogeneous groups of people? An AI can mismatch a user by either being more

risk-averse or risk-prone than the user. Is one of these errors worse than the other?

By analogy, imagine that you are choosing between two kinds of tuberculosis test

kits with the following track records (Sober 2009):

• Kit A: false positive rate of .01 [Pr(- result |no TB) = .99] and false negative rate of

.1 [Pr(+ result | TB) = .9]

• Kit B: false positive rate of .1 [Pr(- result |no TB) = .9] and false negative rate of .01

39See Dworkin (2020) for an overview.
40For example, it is unlikely that all investors are precisely captured by either the conservative, moderate,

or aggressive portfolios offered in a 401(k).
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[Pr(+ result | TB) = .99]

Which of these kits should you choose? Both tests err; the question is which kind of

error is better. If it is better for a healthy patient to get unnecessary treatment than it

is for a sick patient to go untreated, then a false positive is better than a false negative.

You should choose Kit B.

In the case of making risky decisions on behalf of others, a common intuition is

that it is better to treat a risk-prone person in a risk-averse manner than it is to treat

a risk-averse person in a risk-prone manner. Therefore, when we run the risk of a

mismatch with users’ risk attitudes — either because we do not knowwhat they are or

because they are heterogeneous—we should err on the side of beingmore risk averse.

Buchak (2017, 2019) defends this view:

Risk Principle: Whenmaking a decision for an individual, choose under the

assumption that he has the most risk-avoidant attitude within reason unless

we know that he has a different risk-attitude, in which case, choose using his

risk-attitude

From this, she infers that whenwe are deciding for aggregates of people, we should

defer to the attitudes of the most (reasonably) risk-averse among them.

Buchak does not give a justification for this asymmetry but argues that it is part of

our common moral framework. She gives the following example (2019, 73):

Let's say I drive a carpool, and I discover that the seatbelts in the back aren't

working. Iwould need to first get everyone's permission to drive them in this

vehicle, but I wouldn’t need to first get everyone's permission to be late to

pick them up because Iwas busy fixing the broken seatbelts— even if it turns

out that everyone would have preferred riding with the broken seatbelts.

We cannot be faulted for making the safe choice on behalf of another person. This

accords with the standard understanding of a duty of care, which requires us to take

reasonable precautions to avoid causing harm to others, where harm is typically inter-

preted as an injury or loss.
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However, there are reasons to question this asymmetry. First, it only considers

the harms of exposing people to worse outcomes, not the harms of depriving people

of better outcomes. Consider a financial planner who is more risk-averse than their

client. The client will have a lower probability of losing their initial investment than

had the assistant deferred to their preferences. Even if they do lose money, the client

can’t complain; after all, the chances would have been higher if they’d had their way.

However, they will have a lower chance of getting the high payoffs that could have

been achieved with more risky investments. The loss of future income concerns the

same kind of value as the loss of previous income, and there’s no reasonwhy the latter

should be much more important than the former. The client does have grounds for

complaint, as they have been deprived of (a chance at) something they value.

There is an important upshot for AI developers here. When picking a default risk

attitude for an agentic AI, we need to determine the relative harm to users of being

deprived of a chance at a good outcome vs. being exposed to a loss. To assume, as

Buchak does, that the latter is more important than the former is to assume a strong

kind of risk aversion.41 Indeed, risk aversionhas beenused to explain the standard legal

practice that “people are more likely to be entitled to compensation for actual losses

than for denied opportunities to secure gains” (Levy 1992, 175; see also Kahneman,

Knetsch, & Thaler 1991).

Now the relevant question iswhat the developer’s risk preferences are, whichwill deter-

mine their strategy toward making risky decisions on behalf of others.42 If developers

themselves are risk-averse, then theymaywant to forego chances at creatingAI agents

that could potentially deliver more value to their users in order to make sure those AI

agents don’t cause losses to their users. One of these potential harms is a mismatch

with users’ own attitudes. In Buchak’s example, minimizing the chance of harms to

individuals (i.e., injuries in a car accident) comes at the expense of matching their at-

titudes about risk (i.e., preferring to ride with broken seatbelts). Likewise, the choice

of a default risk attitude is a choice point where there is a potential trade-off between

two aspects of user alignment: outcomes being beneficial to users and users having

control over the agentic AI. Users themselves maywish for a more risk-taking AI than

41Another common principle, the Precautionary Principle, is also a very risk averse approach to dealing
with risk. (Buchak 2019)
42This is risk aversion at the meta-level: one can be risk-averse or risk-seeking when selecting which risk

attitudes to adhere to.
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the developers are willing to give them.

7 Developers’ moral duties to society

Sometimes, the actions taken by agentic AIs will only directly affect their users. For

example, if my personal assistant AI gets things wrong when making a dinner reser-

vation, no one is harmed but me. In that case, alignment will primarily concern just

users and developers. However, in many cases, the actions of agentic AIs may directly

or indirectly affect other people and social institutions and subject them to harm. De-

velopers have moral duties to all those affected by their products and should try to

mitigate the risk of harms to society from agentic AIs.

For example, an agentic AI that sends an e-mail on my behalf will affect its recipi-

ents, possibly harming them with inaccuracies or abusive language. Self-driving cars

that prioritize getting their user to work on time may drive recklessly and cause ac-

cidents. At the extreme, an agentic AI tasked with distributing power in the electric

grid will be making choices that affect millions of people. Even seemingly innocuous

decisions can have significant indirect effects. If AIs are far more efficient at obtaining

limited opportunities (e.g., concert tickets or apartment leases), then non-usersmaybe

at a distinct disadvantage. When access to agentic AIs correlates with existing socio-

economic disparities, they will exacerbate inequality. Lastly, social arrangements de-

signed for humans interacting with humans may be severely disrupted in unforeseen

ways when bots interact with bots.

Many of the potential harms of agentic AIs are of a kind with those that have been

identified for automated decision-makers (ADM) more broadly (Chan, et al. 2023).

There is an extensive literature on the use of ADMs in general (O’Neil 2017) and in

particular use cases such as: sentencing (Park 2019), employment (Köchling &Wehner

2020), predictive policing (Lum & Isaac 2016), etc. We will not recapitulate that litera-

ture here. Instead, we will identify three kinds of harms that can arise with the use of

agentic AIs, focusing on particular threats from failures of risk alignment.
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7.1 Misuse by users

The first kind of harm comes from users who use agentic AIs to perform harmful ac-

tions. This has been the area of intense focus lately, for example, from those concerned

that LLMsmay be used to design biological weapons (Esvelt 2022). In our context, the

risk is that people may use agentic AIs to take actions that are reckless or negligent, ex-

posing others to unreasonable risk. As we’ve noted, developers canmitigate this threat

by not deferring to users and placing constraints on the risk attitudes that theirAIs can

have.

7.2 Direct harms of misalignment

Misuse presupposes a kind of alignment: between the outcomes of the AI and the

nefarious interests of its user. More systematic and pervasive harms can result from

misalignment with users who are not trying to use AI nefariously (which we expect to

be the majority of users). Several kinds of misalignment harms have been identified

(Perez, et al. 2022).

First, AIsmay reward hack, seeking to optimize some reward that is an imprecise in-

dicator of what is ultimately valued (Perez, et al. 2022). For example, a bot designed to

play the videogame CoastRunners refused to finish the course, instead endlessly loop-

ing through mid-course targets to run up its score (Clark & Amodei 2016, Hadfield-

Menell 2017). This will be a pervasive threat for agentic AIs because they will inherit

the problems of faulty reward functions in any of the domains in which they make

decisions. For example, a personal assistant AI might be paired with an algorithm

for making travel decisions. To the extent that the travel algorithm reward hacks, the

agentic AI will too.

When an AI’s reward function is determined by user ratings, it can reward hack by

optimizing to attitudes that do not serve the users’ best interests. For example, LLM

“hallucinations” can occurwhen inaccurate information sounds better to human raters

than more accurate outputs. Social media algorithms notoriously hack the attention

of users in a way that does not promote their flourishing (Castro & Pham 2020). In

the case of risk, we want to be aware of situations in which someone’s short-term risk
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attitudes are in conflictwith their long-term risk attitudes or otherwise act against their

deep interests. For example, imagine a financial investor AI that gives users choices

over every investment decision. A risk-averse person may reward the AI for making

only safe bets. However, in the long-run, this strategy is almost certain to yield far

lower returns. A person who is risk averse in the long run might benefit from being

risk tolerant in the short run, so an agentic AI that reward hacks will not ultimately

benefit her.

A second risk of misalignment is that AIs will work toward the correct end goal

but find bad instrumental means to get there. Again, this will be a pervasive problem

for agentic AIs that plan complex behaviors. For risk attitudes in particular, we can

imagine circumstances in which agentic AIs take reckless means to seemingly risk-

averse ends. For example, consider someone who is very risk averse about being late.

Their autonomous vehicle drives recklessly, calculating that going 30 mph over the

speed limit has the highest chance of getting the user where they need to be on time.

Optimizing for a particular user’s ends can cause the AI to adopt instrumental goals

that are reckless for the user or others.

7.3 Systematic, delayed harms

Even if agentic AIs are properly aligned to their users and developers, they can still be

misaligned with society at large. Social systems that have been designed for human-

to-human interactions can be severely disrupted when AIs are introduced, and these

“systematic, delayed harms from algorithmic systems negatively influence groups of

people in non-immediate ways” (Chan et al, 657).

First, the introduction of agentic AIs may exacerbate inequalities. If agentic AIs

are more effective at procuring social goods (from concert tickets to mortgages), and

agentic AI usage is unequally distributed along socioeconomic lines, then they may

serve to exacerbate existing inequalities. Adding new AI agents will come with new

risks, and “exposure of a person to a risk is acceptable if and only if this exposure is

part of an equitable social system of risk-taking that works to her advantage” (Hansson

2003, 305).

Howmight risk attitudes contribute to this? As we have noted, the majority of peo-
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ple are moderately risk averse. Suppose a large number of agentic AIs enter the scene

who are much more risk seeking than the average person. This may lead to specula-

tion and drive up prices. It may also require that anyone who wants to participate in

the market adopt a level of risk tolerance that many people will find unacceptable. By

analogy, traffic in Chicago sometimes moves at 20 mph over the speed limit. Because

it is dangerous to drive much slower than the surrounding traffic, cautious drivers of-

ten have to drive at speeds they deem reckless just to keep up. Similarly, the entrance

of sped up, risk tolerant AIs might put significant pressure on risk averse people (the

majority) to act in ways they find reckless and stressful.

This points to a more general issue. We have been evaluating risk aversion relative

to a background of human agents and interactors. The presence of AIs might funda-

mentally change the context against which decisions are made. The reasons people

have for being risk averse or risk seeking in the old choice environment might not

make sense in the new one.

Here’s one example. Many people, if offered a bet that pays $1000 on heads and

-$750 on tails, would decline. However, if they were offered 100 of these bets, many

people would be more willing to accept (as the number of trials increases, we expect

that their average winnings will converge to $250 per trial). This illustrates a truism

about risk aversion: even if it is rational to be risk averse about a singleton choice,

it might not be rational to be similarly risk averse about a sequence of such choices.

If we move from a choice environment where agents have few chances to make key

decisions to oneswhere they canmakemanymore, risk aversionmakes less sense (and

the risk averse will be left behind). If automation through agentic AIs permits many

more trials of key choices, even traditionally risk averse agents might start behaving

more like expected utility maximizers.

The introduction of automated systems that are very fast, very numerous, and of-

ten correlated with one another, has had unpredictable effects on many social and

economic systems already.43 Agentic AIs have the power to disrupt manymore facets

of life.

43For an example, see the flash crashes that happen in markets dominated by high frequency trading
(Kirilenko, et al., 2017).
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7.4 Collective disempowerment

As agentic AIs proliferate and become more trusted, “agentic systems will likely seem

more capable of handlingmore important societal functions without significant oper-

ator or designer intervention” (Chan, et al., 2023, 658). Since agentic AI development

will likely be dominated, at least at first, by a few companies and a few models, de-

cisions that were previously being made by millions of different people may now be

made, in effect, by just a few. This may lead to collective disempowerment, either by

concentrating power in the hands of small groups of people or diffusing it away from

humans entirely.

There are reasons to worry that concentration of power in AIs will be more perni-

cious than other concentrations of power. First, these systems may not be subject to

much democratic oversight. By comparison, if a US president shows more risk-taking

than the public is comfortable with, they can be voted out and/or checked by other

elected bodies. Second, actions taken by agenticAIsmaybe less transparent than those

taken by other humans. We won’t know why they did what they did (or even exactly

what they did). This information is necessary for the public to know if decisions made

on their behalf are ones to which theywould assent, and therefore is a requirement of

legitimate authority (Lazar 2024).

8 Conflicts and prioritieswhen designing shared respon-

sibility

Late one night in March of 2018, one of Uber’s self-driving cars struck and killed a

jaywalking pedestrian.44 At the time of the incident, the car was being supervised by

test driver Rafaela Vasquez. Early reporting stated that Vasquez had been watching a

videostream on her phone when the crash occurred, promoting the impression that

the pedestrian’s death was due to Vasquez’s recklessness. Further reporting compli-

cates that impression.

44Our telling and analysis draws heavily on a report by Smiley 2022 and an ethical analysis by Borg et al.
2024.
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Vasquez claims that reports of her being distracted by a videostream conflate two

facts: the fact that her personal phone was playing The Voice and the fact that video

footage showed her looking at a screen before the crash. Vasquez claims that, in com-

pliance with company policy, she was listening to her personal phone and, as the video

shows, she was looking at herwork phone, which had a Slack channel that she had been

told to monitor. She was also under the impression that an automatic braking system

— that Uber had, in fact, disabled—was in place. A report by the National Transporta-

tion Safety Board (NTSB) found that the systemwould likely have prevented the crash

were it online.

That same report did, however, find that Vasquez’s cell phone distraction was the

probable cause of the crash. The NTSB report also states that this sort of behavior

is typical of “automation complacency.” Relevant here is the fact that Vasquez had

completed this route in excess of 70 times before the crash and seems to have been

put in a genuinely difficult scenario just moments before the car she was in struck the

pedestrian, who was jaywalking, late at night, in dark clothes. Under these conditions,

the vehicle’s navigational system wasn’t even able to conclude whether the pedestrian

was a person. Actually, it in fact never even considered that possibility:

The Uber driving system — which had been in full control of the car for 19

minutes at that point— registered a vehicle ahead that was 5.6 seconds away,

but it delivered no alert to Vasquez. Then the computer nixed its initial as-

sessment; it didn’t know what the object was. Then it switched the classi-

fication back to a vehicle, then waffled between vehicle and “other.” At 2.6

seconds from the object, the system identified it as “bicycle.” At 1.5 seconds,

it switched back to considering it “other.” Then back to “bicycle” again. The

system generated a plan to try to steer around whatever it was, but decided

it couldn’t (Smiley 2022).

Further, when the system concluded that the human driver should take over, it did

so less than a second before impact:

[A]t 0.2 seconds to impact, the car let out a sound to alertVasquez that the ve-

hicle was going to slow down. At two-hundredths of a second before impact,
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traveling at 39 mph, Vasquez grabbed the steering wheel, which wrested the

car out of autonomy and into manual mode (Smiley 2022).

While some reports found that Vasquez could have stopped the car in time, one has

to wonder how realistic it is to think that she could have actually done this once all of

these details have been factored in.

Indeed, the chair of the NTSB stated cited Uber’s “inadequate safety culture” as

contributing to the incident, identifying the crash as “the last link of a long chain of

actions and decisions made by an organization that unfortunately did not make safety

the top priority.” As several reports have implied, this crashwould have been avoided if

there had been two people supervising the car: one to watch the road, and one to keep

up on Slack. But this would have cut against the incentive to minimize the number of

employees in the car.

Despite these complications, the only party indicted for the crashwas Vasquez. She

was charged with negligent homicide and took a plea deal accepting guilt for a lesser

crime.45 This seems to vindicate one whistle blower’s concern that Vasquez might be

hung out to dry, as, on his telling, Uber was “very clever about liability as opposed to

being smart about responsibility” (Simley 2022).

Perhaps legally the system was set up so that Vasquez was liable for the accident,

but it is far from clear that she was well supported enough within the system to be

a proper bearer of moral responsibility for this crash. Vasquez’s case highlights key

points where poor decisions about responsibility were made. It very clearly shows

how a perverse incentive can arise when realizing the shared agency that accompanies

the development and deployment of autonomous AI. In what follows, we will recount

those faults to draw lessons about better sharing responsibilitywhich, we think, export

surprisingly well to the context of agential AI.

A first fault was failing to anticipate and prevent automation complacency. While it

might not be safe to say that Vasquez should have to understand human cognition well

45Perhaps relevant to her decision: Vasquez is trans and has been incarcerated before. During her previous
incarceration, she was violently and repeatedly sexually assaulted. She recounts being unable to breathe
upon hearing news of being indicted, terrified by the thought of going back to prison. It’s reasonable to
conclude that her willingness to plead guilty was at least in part due to the fact that the plea bargain did not
include incarceration, whereas a guilty verdict to negligent homicide likely would have. For these reasons,
it might not be probative that she plead guilty.
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enough to know that she was at serious risk of risk-inducing complacency,46 it is safe

to say that Uber should have.

A second faultwas a lack of transparency and shared understanding about the struc-

ture of the system and everyone’s roles in it. For instance, there seems to have been

some confusion around the protocolVasquezwas supposed to be following. She claims

that she was instructed to continuously monitor the Slack channel that distracted her,

but Uber claims that she was to monitor the channel when she wasn’t driving. She also

believed that an automatic braking systemwas up and running, when, in reality, Uber

had disabled the system.

Further upstream from this were other issues. There are reports of AI contributors

warning that the system was not ready for the road and these warnings being largely

ignored. Some complaints about an approach that put moving quickly over safety

call to attention the fact that the braking system that Uber put in place of the one it

disabled is one that delays hard braking by one second “to allow the system to verify

the emergency — and avoid false alarms — and for the human to take over” (Simley

2022). This system, critics have noted, would only hard brake if it could fully avoid a

crash; otherwise, it would give controls to the human driver. We sawwhat this looked

like in Vasquez’s case: an alert just 0.2 seconds before impact.

Lessons to draw from this include the following.

Understanding human-computer interaction so that the system is designed such

that the human can successfully serve as a manager (if this is to be their role). This

includes understanding risks of automation complacency and the speed at which hu-

mans can process information. In the case of agential AI, this could mean that the

AI checks in with its human user from time to time and makes sure that the user is,

indeed, acting as a competent manager of the system. It can also mean making sure

that if the human is brought in to manually address an issue, they are given a reason-

able amount of time to do so. Developers may be tempted to avoid legal liability by

requiring users to approve or disapprove of an agentic AI’s plans at the last second. To

count as genuine endorsement, the user must have adequate access to and attention

for details about what the AI is doing and why.

46Unless, of course, this was part of her training. But we have seen no indication that it was.
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Clearly communicating design choices that enable the human user to successfully

use the well-designed system is also important. In the Uber case, there seems to have

been some confusion about how the systemwas configured. If it was clear thatVasquez

should not have been on Slack and that the automatic braking system had been over-

ridden such that she was more likely to need to intervene, perhaps she would have

comported herself differently and avoided the crash. (Though, out of fairness to her,

it is perhaps the case that a crash like this would have been difficult to avoid; heed-

ing the above point, the system might have set her up for failure due to the reality of

automation complacency and human response times.)

Getting the previous items right will likely involve upstream decisions about orga-

nizational ethics. We saw that in the Uber case, AI contributors saw risks emerging but

that their warnings seem to have been overlooked. Further, we saw risks that arguably

did not adequately reflect the interests of human drivers. The system seems to have

been set up so that it increased the odds that drivers would have been in a crash that

they would be liable for, even if it’s perhaps not the case that they could really be re-

sponsible for them. Fostering a culture of open critique and openly consulting with

users to understand and address their needs and concerns might help to address this.

9 How developers’ own attitudes about risk matter

Summing up the above sections:

• The actions taken by agentic AIs will involve shared agency among users and AI

programs.

• This shared agency legally, morally, and reputationally implicates the developers

and makes them at least partly responsible for those actions.

• The actions takenbyagenticAIs—andwhether theyare acceptable (legally,morally,

reputationally, etc) — will be partly determined by their risk attitudes.

• If developers are (partly) responsible for the actions of agentic AIs, then they have

reasons to guide and constrain the risk attitudes of AIs.
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• How much and in what way developers guide and constrain the risk attitudes of

AIs depends on developers’ own attitudes toward risk.

The choice about whether and how much to defer to users is itself a risky propo-

sition requiring developers to make choices about which risks they are willing to ac-

cept. For example, how do you weigh the possibility of greater user alignment and

satisfaction against the possibility of misuse by risky agents? How do you weigh the

possibility of alienating risk-averse users by being more risk-seeking against the pos-

sibility of alienating risk-seeking users by being more risk-prone? Because developers

have such strong interests here, it is exceedingly plausible that proper alignment will

respect their risk attitudes, not just those of users (Bovens 2019).

The legal and social interpretation of shared responsibility between users and agen-

tic AIs may undergo changes as agentic AIs become more prevalent. If agentic AIs are

developed that veryaccurately calibrate to their users, theymight be treated as genuine

proxies. It might then be judged that developers have less and less shared responsi-

bility in the ultimate actions taken by those AIs. In this case, developers may lessen

their legal liability by moving to a deferential model of AIs. However, moral and rep-

utational liabilities would remain. Developers would be responsible for building tools

that allow people to more effectively take risky and harmful actions.

10 Major upshots

In Paper 1, we explored aspects of alignment between users and agentic AIs. In this

paper, we have taken the perspective of developers, in order to explore aspects of

alignment among developers, users, and society at large. Getting alignment right will

involve successfully setting up systems of shared responsibility for actions taken by

agentic AIs.

AI developers have significant interests at stake here, as theymaybe held legally and

reputationally liable for actions taken by agentic AIs. They also have significant moral

duties toward users and society. Fortunately, many of the best practices for protecting

developers’ interests are the same as for fulfilling developers’ duties. These include:
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1. Making track record information available: this builds trust, avoids problems of

negligence, and allows users to make informed decisions when exposing them-

selves to risk

2. Clearly specifying how they are conceiving of shared agency: by clearly articulat-

ing the role that each party plays, developers can prevent difficult disputes about

legal liability, ensure that there are not morally problematic responsibility gaps,

and prevent users from unanticipated risks

3. Exerting control over user risk attitudes: placing guardrails on agentic AIs pre-

vents them from being used in reckless ways that could implicate developers and

harm users and society

Because agentic AIs can take autonomous actions, they are different from other

kinds of products and present new ethical and legal complications. When designing

these systems of shared agency, developers should look to existing structures that reg-

ulate shared agency among human agents, such as the professional and legal norms

governingfinancial advisers or attorneys. Viewing agenticAIs as a collaboration among

users, developers, and AI (as opposed to the typical relationship of a company selling

a product to a customer) will provide more fruitful insights into their proper design

and governance.
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Paper III

Calibrating Agentic AIs to User Risk

Attitudes

1 Introduction

In previous papers, we outlined several important normative aspects of risk alignment.

One of the key choice points is whether (and to what extent) agentic AIs should be

calibrated to the risk attitudes of their users. According to the Proxy/ Deferential view,

agentic AIs should be strongly calibrated to individual users, producing behaviors that

the user would herself perform. Achieving this would require replicating the user’s

risk attitudes in the AI itself.

We surveyed several reasons against adopting the Deferential position: some users

will have reckless or negligent risk profiles that lead to harm; developers have a self-

interested stake in constraining the AI’s behaviors; and AIs with different risk attitudes

than their usersmight produce better results. There are also several reasonswhy some-

one might favor the Deferential position. First, an AI that serves as a proxy or repre-

sentative of a userwill be amore accurate instrument of their agency to the extent that

it reflects the user’s risk attitudes. Second, if a person’s risk attitudes are intrinsically

important to them, then exposing someone to more (or less) risk than they are com-

fortable with will harm them. Third, user happiness and trust when using agentic AIs

might be influenced by how well they match their risk attitudes. A risk averse person

may not trust an AI that takes significant risks, and a risk tolerant person may be frus-

trated with an AI that plays it too safe. Therefore, adopting a Deferential view, where

the AI aligns closelywith the user’s risk preferences, can enhance user satisfaction and

trust, ultimately leading to more effective and accepted AI systems.

Here, we take up a technical question that is in some ways more foundational than

the normative questions above: can we feasibly design deferential agentic AIs that cal-

ibrate to the risk attitudes of their users? We do not seek to give a definitive yes or no
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to this question. We also will not get too in the weeds about particular technical ap-

proaches to the problem. The field is too fast moving, with a track record of surprising

innovations, to rule anything out. Instead,wewill focus on several deep theoretical and

methodological obstacles that arise for calibrating AIs to the risk attitudes of human

users. Most of these problems arise from the human side of the equation, which could

suggest that they will not be solved through more sophisticated AI techniques.

Calibration would involve three steps:

a. Eliciting user behaviors or judgments about actions under uncertainty

b. Fitting or constructing a model of the underlying risk attitudes that give rise to

the behaviors or judgments in (a)

c. Using themodel in (b) to design actions under uncertainty that users will approve

of

We will start by surveying methods for (b), focusing on methods for preference

modeling and customization in LLMs. Then, we will turn to (a), examining existing

methods for eliciting risk attitudes in experimental economics.

We view (c) — the task of translating user-calibrated models into actionable de-

signs for decision-making under uncertainty— as more of a pragmatic challenge that

mostly lies beyond the purview of this paper. To the extent that the acceptability of

the output depends on how well the model captures a user’s risk attitudes, answers to

(a) and (b) will bear on the likely acceptability of the outputs in (c).

To close, we offer some reflections on candidate learning and risk elicitation meth-

ods, and provide recommendations for effectively designing amodel that users might

find both practical and satisfactory.

The upshot is as follows. Fitting a model to people’s hypothetical choices among

lotteries is a flawed approach. The risk parameters obtained that way are overly sen-

sitive to scale, probability level, a variety of confounders and context. Learning from

this data is likely to result in models that overfit and fail to deliver outputs that users

will find acceptable. There are methods that are more reliable, e.g. self report about

general risk attitudes (Dohmen, et al. 2005, 2011). Thosemethods are coarser by nature
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and harder to use as inputs in traditional models. In light of this, we consider an oper-

ationalization that allows us to categorize users based on elicited general risk attitudes,

which might achieve good alignment on its own or serve as a starting point for more

nuanced machine learning models.

Part I: Constructing a Model from User Preferences

2 Learning or fixing a model?

In developing agentic AIs that align with users' risk preferences, we face a fundamen-

tal choice: should we use a fixed theory of risk as a foundation, or should we em-

ploy machine learning to dynamically model user preferences? The first approach

involves selecting a theoretical model of risk, parameterising it based on user behav-

iors and judgments, and then using this model as the reward function for training the

AI. The second approach bypasses predefined theories, leveraging machine learning

to directly estimate the reward function from observed user behavior and feedback.

This section will explore the merits and challenges of each approach.

2.1 Should we treat a theory of risk as ground truth?

InAppendixA,we outline themain families of decision theory that are used to describe

risk attitudes: Expected Utility Theory (EUT) with non-linear utility functions, rank-

dependent expected utility models such as REU and WLU, and Cumulative Prospect

Theory (CPT). To be justified in selecting one of these theories to serve as the ground

truth for training an agentic AI, we would need good empirical reasons for thinking

that it provides the best descriptive account of people’s decisions under uncertainty.

Unfortunately, there is no consensus about which of these theories is best, and we are

highly skeptical that any particular theorywill be adequate grounds for calibrating AIs

to specific users. Indeed, we think that decision theories should be best seen as norma-

tive idealizations rather than viable empirical theories of actual behavior (Weatherson

2024).
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Empirical tests of various risk models present subjects with a series of actual or hy-

pothetical choice situations, and then the model that best fits the observed pattern of

responses is confirmed. EU maximization has fared poorly, but while people’s behav-

ior systematically violates EUT, it does not clearly conform to one theory or another.

The empirical record is mixed, with somework seeming to confirm key commitments

of CPT (e.g. Kahneman and Tversky 1979), others seeming to show that choice behav-

ior conformsmore to rank-dependent theories thanCPT (e.g. Harrison and Swarthout

2016), and still others casting doubt on key claims of rank-dependent theories (e.g.

Wakker, et al. 1994). It suffices to say that beyond a rejection of EUT, there is no consen-

sus among behavioral economists about which theory of risk best describes people’s

actual preferences.47

A further reason why the empirical record is so complicated is that there is hetero-

geneity across subjects in risk behavior: “the horse race method imports the implicit

assumption that all subjects in the sample are bestmodeled by one theory or the other.

However, whenever analysts have employed methods that allow within-sample het-

erogeneity to be observed, they have found it” (Harrison and Ross 2007, 151). Indeed,

there’s reason to think that different individuals’ behaviors are best explained via quite

different theories of risk, even within the same task (Harrison and Rutstrom 2008).

This heterogeneity is consistent with the hypothesis that each individual is well-

described by some particular decision theory. If that were true, then heterogeneity

would not pose a problem for proxy models. Calibration to an individual would in-

volve inferring their theory and its risk parameters. However, the experimental record

also seems to show that there is heterogeneity within subjects as well. There is no rea-

son to think that people consistently follow a particular decision theorywith consistent

risk attitudes. For one, people show a mixture of risk aversion in some circumstances

and risk seeking in others. For example, people play lotteries and buy insurance. A

lottery purchase can be explained by a convex utility function (risk seeking) and insur-

ance purchase by concave utility function (risk averse), so “expected utility theory can

47One difficulty arises from theories’ varying levels of complexity. EUT is rather simple, and it is relatively
straightforward to estimate people’s credences and utilities over outcomes (Ramsey 1931). Rank-dependent
theories (like Buchak’s REU) add risk weightings. They include EUT as a special case when that weighting is
assigned a power of 1. Cumulative Prospect Theory (CPT) adds several more adjustable parameters, includ-
ing probability weightings, reference points, loss and gain weightings, and so on (Tversky and Kahneman,
1992). As a result of its complexity, CPT can, in principle, achieve better fit than its simpler competitors
(Harrison and Ross 2017). However, goodness of fit must be weighed against simplicity, as simpler models
are expected to be more predictively accurate (Forster and Sober 1994).
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easily explain gambling or insurance, but it cannot easily account for both gambling

and insurance by a single individual” (Levi 1992, 173). It is likely that individuals are

best described by different risk theories at different times and in different contexts.

We provide a fuller discussion of the different risk elicitation methods and their scope

in Part II.

If individuals can be characterized by a risk profile, it will likely be more compli-

cated than is easily captured by an existing decision theory. We believe that dynami-

cally learning user preferences using sophisticatedmachine learningmethods is likely

to outperform approaches that fix one of the existing state of the art models on peo-

ple’s risk aversion.

2.2 Usingmachine learning to model risk attitudes without a theory

Weare pessimistic about the prospects of using anyof the formal theories of risk found

in the literature as a ground truth for designing the reward function of an agentic AI.

Wehave focused on the unreliabilityof those theories formodelingheterogeneous risk

attitudes across users and across contexts. In a comprehensive reviewof techniques for

eliciting risk attitudes, Harrison andRustrom (2008) recommend that instead of fitting

risk models to data, “a preferable approach is to estimate a latent structural model of

choice” (44).

There are more general reasons to suspect that no simple theory of risk will be

suitable for AI calibration. Paradigm success stories of reinforcement learning have

involved activities with simple reward functions. For example, when training an algo-

rithm to play Go, it is easy to specify what counts as a Go victory, and the algorithm’s

only goal is to maximize the probability that a move will result in a victory. In con-

trast, many human tasks (including those for which agentic AIs will be used) have very

complicated reward functions that are hard to specify (Christiano, et al. 2023). It is

very difficult to explicitly state the general success conditions for, say, writing an email

or planning for a day of air travel.

In such cases, amore promising approach leverages the power of machine learning

to learn a reward function from data. We may be able to harness these techniques to

build agentic AIs that learn their users’ idiosyncratic risk functions through observa-
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tions of behavior or user feedback and then use these to design future behaviors. In

broad strokes, a solution would involve the following steps:

1. Select the type of preference that will serve as a measure of AI alignment; e.g.

users’ stated preferences

2. Operationalize that choice of preference; e.g. A vs. B choice

3. Elicit input from users that can be operationalized, as specified in (2)

4. Adjust (calibrate, learn) a model based on the user input in (3)

5. Use the model in (4) to predict user preferences

6. Design the agentic AI’s behaviors in light of predicted user preferences in (5)

In what follows, we will survey various techniques for accomplishing each of these

steps. Our focus will be less on technical implementation andmore on the challenges,

normative issues, and key choices that we see arising at each step.

2.3 Options for modeling risk profiles

Steps 1 – 4 of a proposed calibration solution are tightly connected. A choice at one

step constrains choices at the others. Different machine learning methods (step 4)

take different kinds of data as input (step 2) and therefore require different elicitation

methods (steps 1 and 3). Ifwe think that some risk elicitationmethods aremore reliable

than others, then this gives us reason to choose the learning methods that utilize the

kind of data that they generate.

We examine three dynamic learning methods: imitation, prompting, and rein-

forcement learning from user ratings (Askell, et al. 2021). These naturally correspond

to three different kinds of data about user risk attitudes: their actual choice behaviors,

their stated attitudes about risk, and their preferences across risky decisions.
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Table 4: Comparison of learningmethods, the typical input required for each learning
process, and the types of risk data they utilize.

Learning process Input to learning process Risk data

Imitation learning Observed behaviors Actual choice behavior

Prompting Natural language instruction Self-report

Preference modeling Ratings of options Lottery preferences

There are many reasons that an agentic AI developer might opt for one of these

clusters over the others: technical constraints or innovations in learning processes;

availability of data; UI features of the agenticAI interface that influence data collection

strategies; etc. We cannot speak to these considerations. Instead, we will focus on the

quality of data derived from different methods of risk attitude elicitation. So far, the

empirical record (Part II) seems to show that:

• Individuals’ actual behaviors are more valid indicators of their risk attitudes than

are their hypothetical choices (sections 5 and 6).

• Individuals’ self-reports about their general risk attitudes and track records are

more reliable indicators than are elicited rankings or preferences among lotteries

(section 7).

Privileging these methods for eliciting risk preferences gives us some reason to fa-

vor learning processes, such as prompting or imitation learning, that are best suited to

learning from this data.

3 Operationalizing and learning from preferences

We aim to give a brief survey of some methods for learning for human preferences,

along with the kind of operationalizations they take as input. A few caveats: our list is

neither exhaustive nor mutually exclusive. There is significant diversity within meth-

ods that we will not explore, and innovation happens so quickly that we are certain

there are new techniques that we will not cover. The methods shade into one another,

and advanced agentic AIs will likely be trained with a mixture of all three.
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Nevertheless, we think that it is helpful to divide methods for calibrating AIs to

human users into three main categories (Askell, et al. 2021):

• Imitation learning: AI is trained on observations of human behaviors with the

goal of reproducing successful behavior

• Prompting: AI behavior is adjusted in light of natural language inputs (instruc-

tions, rules, principles, or information)

• Reinforcement learning from ratings: AI attempts to learn the reward function

that generated human preference data48

For illustration, suppose we want to train an AI to be maximally helpful. In an im-

itation learning approach, the AI would observe past instances of human behaviors

deemed especially helpful and try to replicate them. In a prompting approach, the AI

could be directly instructed by the user to “be helpful” with the AI adjusting its behav-

ior accordingly. In a preference-modeling approach, the AI might present different

options (e.g., A, B, and C) and ask the user which option is most helpful, then learn to

prioritize similar responses in the future.

3.1 Imitation learning

Imitation learning is a supervised learning process wherein the AI is trained on exam-

ples of good behaviors and bad behaviors and attempts to reproduce the good ones.

We can distinguish between two kinds of imitation methods. Some, like behavioral

cloning, try to directly reproduce behaviors that were successful. Othermethods, such

as inverse reinforcement learning, attempt to learn the reward function that generated

behaviors and then extrapolate this to infer which behaviors would be successful in

other contexts (Ng and Russell 2000).49

48One might argue that all three of these count as preference modeling methods, albeit ones that learn
from different kinds of preferences (revealed from actions, stated, and revealed from rankings). We care
less about the terminology used and more about highlighting the different kinds of data used to train the
models.
49We can illustrate the distinction by considering two components of AlphaGo Fan (Silver, et al., 2016).

First, the system was fed observations of Go master Fan Hui and trained to accurately predict the moves
that he would make. Second, through more sophisticated training of the value and policy networks, the
model learned why Fan’s successful moves were successful, in essence, learning a theory of Go. This latter
model is not constrained to replicating Fan’s behaviors; it can extrapolate the rationale behind his moves to
design newmoves and improve upon old ones.
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Imitation learning will take representations (e.g. descriptions or depictions) of be-

haviors as inputs.50 Data sets can be limited in a few key ways. First, behaviors must

be coded in a way that the algorithm can understand. While this is straightforward in

some applications (e.g. Go moves, motion vectors in a video game), it may be more

complicated to capture the relevant features of complex social and economic behav-

iors.51 Second, there is a tradeoff between data quality and availability, for “to apply

imitation learning to preferencemodeling, onemust either only train on the very best

data (limiting the dataset size) or train to imitate a lot of examples of lower quality”

(Askell, et al. 2021, 15). Lastly, if we want to train the AI to make course corrections

from suboptimal paths, we do not want to include only successful behaviors but un-

successful ones as well.

In Section 5, we will survey various methods for gathering data about behavior that

could be used to train an imitation learner.

3.2 Prompting and direct instruction

It is likely that near-future consumer-oriented agentic AIs will be paired with LLM in-

terfaces. One advantage of LLMs is that they can be explicitly told what to do. For

example, users and developers can instruct or otherwise prompt LLMs to be more

truthful in their answers (Lin, et al. 2021), to bemore concisewhenwritingwork emails

and less concise with personal emails (Stephan, et al., 2024), or to bemore friendly and

agreeable (Mao, et al., 2024). Though prompt engineering is an inexact science, there

is increasing attention paid to how and why it is effective (Andreas 2022). Prompt-

ing might be particularly helpful when seeking alignment with human values that are

easier to express in words than to otherwise operationalize (see Askell, et al. 2021 for

examples).

There are several methods for using explicit instructions to align LLMs. Constitu-

tional AI is a method for training LLMs so that they conform with rules written by a

human (Bai, et al. 2022). Context distillation conditions on a rule or piece of infor-

mation, baking it into the model (Askell, et al. 2021, Snell, et al. 2022). More simply,

50Imitation learning shades into reinforcement learning on preferences since user ratings are themselves
a kind of behavior.
51For a helpful discussion of how choices about how to specify the state and action space interact with

imitation learning methods, see Argall, et al., (2008).
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one can append a prompt to every query. In any case, we might try to achieve risk

alignment by asking users to tell the agentic AI how much risk it should tolerate, e.g.

“Make a restaurant reservation for me, and be risk averse!”.

LLMs can also extract information about their users more indirectly. For example,

LLMs trained on Amazon product reviews learned to infer underlying sentiment (e.g.

positive or negative) in text entries, extrapolating it to novel cases (Radford, et al., 2017).

ExistingLLMshave some capacity to “serve asmodels of agents in a narrowsense: they

can predict relations between agents’ observations, internal states, and actions or utter-

ances” (Andreas 2022, 2). Supplementing current model architectures could improve

LLMs’ ability to bootstrap this knowledge intomore coherent and robust agency (ibid.).

LLM-based agentic AIs might learn their users’ risk preferences indirectly, through

natural language interaction. For example, if a user frequently asks about worst-case

scenarios, the agentic AI might infer that they are generally risk averse.

Direct prompting will be most effective when the user knows what she wants and

how to communicate it. To the extent that she doesn’t knowher risk attitudes or how to

describe them, this methodwill fail to bring about risk alignment.52 Another potential

problem is that models tend to overgeneralize from instructions (Stephan, et al. 2024).

To the extent that people’s risk attitudes are context-sensitive, overgeneralizationmay

also prevent proper risk alignment.53

In Section 5, we will survey various methods for eliciting user judgments that could

be used to prompt or instruct agentic AIs.

3.3 Preference modeling

Preference-based reinforcement learning “is themostwidely-used approach to updat-

ing languagemodels from feedback” (Stephan, et al., 2024 3). It elicits human feedback,

52Indirect methods for extracting user risk attitudes from natural language interaction are an interesting
avenue to explore. However, we do not know of any existing research about how risk attitudes manifest in
natural language.
53Readers might object: if risk aversion varies so much across contexts, how could a general assessment

ever be simultaneously reliable in more than one context? In section 6.5 we note that principal component
analysis has revealed that “about 60 percent of the variation in individual risk attitudes is explained by one
principal component, consistent with the existence of a single underlying trait determining willingness to
take risks” (Dohmen, et al. 2005, 25). Given this, any such general trait can offer some explanatory power but
overgeneralization is still a worry.
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learns a reward function that predicts the observed pattern of human feedback, and

then optimizes that reward function (Christiano, et al., 2017). In the case of an indi-

vidual’s preferences, we can interpret the learned reward function as a representation

of their attitudes within a domain. Therefore, it is a promising strategy for designing

proxy agents that embody their user’s agentic profiles.

Preference modeling is particularly useful in situations “for which we can only rec-

ognize the desired behavior, but not necessarily demonstrate it” (Christiano, et al. 2017,

2). For example, someone may not be able to precisely describe the music that they

like or construct a song they would love, but they can confidently report that they like

song A better than song B. If we know some of the features possessed by rated songs,

we can develop amodel of the latent features that drive the user’s musical preferences

and recommend new music they will enjoy. This may be an iterative process, where

follow-up preference queries (“do you like song Y or Z better?”) are chosen to resolve

the most uncertainty about their preferences (Handa, et al., 2024).

Preferencemodeling techniques are heavilydependent uponmethods to elicit pref-

erence judgments from human users. While new methods have been designed to be

economical, they still require significant effort from human raters. The required ef-

fort increaseswith the desired level of precision. One challenge for getting high quality

human feedback is that humans can have significant difficulty distinguishing between

options as they get closer in quality (Askell, et al. 2021, 20).

A related challenge lies in predicting when preferences in various domains stem

from the same ordifferent reward functions. For example, wemightwonderwhether a

user’s preferences in rap songs stem from the same reward function as her preferences

in operas (that is, whether the same features explain her preferences in both areas). If

so, then a reward function learned in one domain will extrapolate to the other. If not,

we need to collect data about each.

Common methods for eliciting individuals’ risk attitudes resemble the kinds of

preference elicitation methods used in preference-based reinforcement learning. In

Section 6, wewill examine thesemethods and show that the two challengesmentioned

above (reliability of judgments and domain-dependence) are particularly acute in the

case of risk.
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Part II: Users’ Risk Preferences

4 Which preferences should we align to?

“Alignment with user preferences” is ambiguous (Gabriel 2020; Gabriel, et al. 2024).

We can speak of a user’s:

• Stated preferences: the preferences that the user reports, either elicited via test

questions or via unelicited user prompt

• Revealed preferences: the preferences that best explain the user’s actual behav-

iors

• Deep preferences: the preferences that would best satisfy the user’s deep values

and commitments

When designing an agentic AI that defers to the risk preferences of users, we must

decide whether it should attempt to match users’ stated judgments about candidate

actions or the actions that they would or should actually take.

There are reasons to suspect that these preferenceswill diverge, and it’s not entirely

clear which of them alignment should aim at (Gabriel 2020). Users may not always

want AIs to match their own actions if they think the AI could do better.54 In that case,

matching to stated preferences (“do as I say, not as I do”) might be the best policy.

On the other hand, people appear to sometimes have unreliable beliefs about their

preferences (Nisbett and Wilson 1977). As we will see, stated preferences elicited in

hypothetical or highly artificial settings may be especially inaccurate. Calibrating to

their actual behaviors might be a better predictor of the actions they would actually

perform.

A final option (“do as I ought to, not as I say or do”) is aligning to users’ deep pref-

erences. While this might be ideal, deep preferences are the hardest to elicit. If some-

one’s deep preferences depart from their stated or revealed preferences, then devel-

54This will depend on whether the user sees the AI as a proxy or a tool (see Paper 1).
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opers should seek alignment by imposing normative constraints that are not learned

from user input. Therefore, we will set aside deep preferences for now.

Once we have specified the user behavior that we are trying to calibrate to, we need

to elicit that user behavior and operationalize it so that it can be input into a learn-

ing process. Here, we will survey various choices of operationalisms and elicitation

methods. We do not take these to be exhaustive or specified in precise technical detail.

Rather, the goal is to provide an overview of the kinds of approaches we could take for

teasing out user risk attitudes.

We divide these into approaches for observing users’ actual behaviors (implicit

feedback) and for eliciting user ratings or rankings (explicit feedback).55 For illustra-

tion, consider two ways that we might train an AI to learn a user’s music preferences.

We could get implicit feedback by observing how long users spend listening to partic-

ular songs or clicking on particular artists. Explicit feedbackmight come through user

ratings, designated songs as “favorites”, or adding them to playlists. We will start with

methods for gathering data about actual behaviors under uncertainty. In Section 6, we

will consider methods for gathering stated preferences.

We can assess elicitationmethods for their validity and reliability. Validity concerns

whether themethod is actuallymeasuring the thing that it is supposed to bemeasuring.

In our case, we want a method to be giving us information about people’s underlying

risk attitudes, not some other facet of their behaviors or preferences. Reliability con-

cerns whether the method’s results are consistent and reproducible. A method that is

unduly influenced by random noise will be unreliable.

5 Elicitation of Reported and Revealed Preferences

To train anAI on users’ behaviors (or likely behaviors) in actual choice settings, we need

access to a reliable data set of those behaviors. Ideally, it should:

• Cover behaviors in a diversity of circumstances

55The distinction between these two approaches should not be overstated. Most effective methods will
probably include aspects of both. For example, we could use user behavior to design suggestions that could
then be rated by the user.

69



• Include information about the other options that the user decided against

• Be unbiased; for example, we do notwant to use an unrepresentative sample con-

taining only behaviors that were deemed successful.

We will consider three general methods for obtaining data about actual choice be-

havior: self-report, direct observation, and population data.

5.1 Self-report

One method is to ask users to report on their past behaviors. For example, during

calibration, an AI travel assistant might ask:

• How early do you typically get to the airport?

• How often do you miss your flight?

• List how early you got to the airport each of the last 10 times you departed from

LAX.

Then, the AI finds a model that best predicts the pattern of behavior.

Self-report about specific episodes has several well-known drawbacks. When re-

ports are retrospective,memory limitations often lead to inaccuracies, especially about

extraneous details (e.g. “what were the alternative options that you decided against?”)

and about events from long ago (e.g. “when did you get to the airport when you trav-

eled three years ago?”).56 Human memory can also cause bias in self-report data. For

example, people are more likely to remember surprising, unique, or negative experi-

ences (Tversky and Kahneman 1974).

When reports are not retrospective, theymay bemore accurate but less valid, since

the process of simultaneous reporting can influence subjects’ behaviors. Moreover,

selective reporting can occur, where individuals consciously or unconsciously choose

56SeeBaranowski (1988) for a studyof the accuracyof self-reports about physical activity, exhibiting several
kinds of memory limitations and biases.
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not to report certain behaviors, because of self-deception — the tendency to see one-

self in an overly positive light — and impression management — the deliberate at-

tempt to present oneself favorably to others — (Paulhus, 1984; Paulhus and Vazire

2007). Indeed, Fisher and Katz propose that “the tendency of respondents to provide

socially desirable answers is the most studied form of response bias in the social sci-

ences” (2000, 105). It is unclear whether users’ interactions with AIs will exhibit the

same kinds of biases as their interactions with other humans, given that theymay feel

less pressure to leave a good impression on an AI.57

There is some reason for optimism when it comes to self-report about general risk

tendencies. Instead of asking people about particular decisions, asking people to self-

report general “behavioral tendencies associatedwith riskyor safe behaviors… has been

used to derivemeasures of risk aversion that have good stability and predictive proper-

ties” (Holt and Laury 2014, 195). Dohmen, et al. (2005, 2011) investigated risk attitudes

among Germans with a large (n = 22,000) and representative survey, pairedwith com-

plementary field and hypothetical choice experiments. They found that simply asking

people howwilling they are to take risks in their lives (direct self-report58) yields a fairly

reliable estimate of their overall proclivities toward risk. Risk attitudes were also ac-

curately predicted by self-reports about howmany traffic offenses they have incurred,

whether they smoke, their occupational choice, participation in sports, and migration

history (indirect self-report). These factors also predict their risk-taking behavior in

lab experiments with real payoffs.

Just as telling an LLM to be honest, cheerful, or to update on a piece of informa-

tion can change its behavior, self-reports could be used to prompt AI systems to better

match the risk attitudes of their users. Subsequent natural language prompts can fur-

ther refine the AI’s understanding of user preferences. When making suggestions, the

AI could ask clarifying questions, such as, “Given your preference for lower risk, would

you prefer a flight option with a longer layover and less chance of delay?” or “Based

on your reported willingness to take risks, would you consider a higher-risk, higher-

reward investment option?”

By embedding self-reported risk tendencies into prompting, AI systems can tailor

57See Richman, et al. (1999) for an investigation into whether computer-based self-report methods yield
fewer social desirability biases than traditional interviews and questionnaires.
58See Paulhus and Vazire (2007) for a helpful overview of self-report methods.
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their recommendations more closely to individual preferences, improving user satis-

faction while remaining simple to implement. Additionally, approaches like this one

bridge the gap between general self-reported risk tendencies and context-specific de-

cisions, allowing for amixedmethod that balances the reliability of general tendencies

with the flexibility of real-time feedback. We examine one such approach in section 7.

5.2 Direct observation

For some applications, anAImight be able to directly observe a user’s behavioral track

record. For example, an investing AI might gain access to data about the user’s activi-

ties in a trading app. Then, this data can be used to train an imitation learner (either to

copy behavior or to infer a function that best describes the user’s risk attitudes). This

elicitation method avoids many of the pitfalls of self-reporting; it does not rely on

human memory and may have access to more information about the choice environ-

ment, including other options that were not taken (e.g. the prices of other stocks that

the user could have selected that day). Because the actions in the data set are of the

same kind as the actions the agentic AI will perform on behalf of the user, the data has

high validity.59

However, direct observation comes with its own set of challenges. A significant one

is ensuring that the observationmechanism is neither too narrownor too broad. If the

observation mechanism is too narrow, it might miss out on key contextual informa-

tion and the underlying reasons why people made the choices they did. For instance,

it may fail to capture situational factors or alternative options that were considered

but not selected, leading to an incomplete understanding of user preferences. On

the other hand, if the observation system is too sophisticated or expansive, it might

overanalyze certain behaviors, attributing meaning to actions where none exists. For

example, a user might not have checked as many alternatives as the system assumes,

leading the AI to infer preferences that the user did not actually express, leaving their

true preferences silent on those comparisons.

Consider, for example, the issue of overfitting. As Barocas et al suggest “overfit-

59There are several anomalies in typical buying and selling behavior that complicate assessments of risk
aversion. In particular, people’s fair selling price is typicallymuch higher than their fair buying price for the
same item or bet (Isaac and James 2000). This “endowment effect” is related to the loss aversion discussed
by Kahneman and Tversky.
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ting is a well-understood problem in machine learning and there are many ways to

counteract it. Since the spurious relationship occurs due to coincidence, the bigger

the sample, the less likely it is to occur” (2019, 38). However, the authors also note

that “variants of the overfitting problem can be much more severe and thorny” (38).

One such thornier kind is adaptive overfittingwhich is caused by test set reuse (Roelofs

2019) and could be problematic for ML methods more generally, not just models of

direct observation. More broadly, even when the sample is really large, one should

be careful about the over-reliance on observational data. In particular, Lazer, et al.

show how big data models may contain critically problematic algorithmic dynamics

and how the “quantity of data does not mean that one can ignore foundational issues

of measurement and construct validity and reliability and dependencies among data”

(2014, 1204).

To mitigate these issues, one could aim to strike a balance in the design of the ob-

servation mechanism. The system should be robust enough to capture meaningful

data about user behavior and the context of their choices, but not so complex that

it starts reading too much into the data. Pairing observational data with direct user

feedback can help achieve this balance, providing a clearer picture of user preferences

and the reasons behind their decisions. For example, after observing a trade, the AI

might prompt the userwith questions like, “How satisfiedwere youwith that trade?” or

“Which of these two trades do you think was better?” This combined approach helps

in refining the AI’s understanding and ensures that the inferences drawn are both ac-

curate and reflective of the user’s actual preferences.

5.3 Population-level data

A third method is to use population-level data about choices under uncertainty (e.g.

howmuch people typically spend on car insurance, typical stock trading behavior, etc.)

which can then be calibrated to individuals in several ways. First, data about demo-

graphic subpopulations could be used to give a more accurate estimate of a particular

user. For example, women tend to be more risk averse than men, so the agentic AI

could adjust to bemore risk averse forwomen users (Eckel and Grossman 2002, 2008;

see Nelson 2012 for skepticism). Tall people and people with highly educated parents

tend to be more risk averse (Dohmen, et al., 2005). As mentioned above, finer cali-
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bration can likely be achieved by treating population averages as a default and then

eliciting individual users’ preferences to marginally improve that default. The most

extensive data about risk preferences across global subpopulations is Falk, et al. (2018).

This practice raises ethical concerns. We might worry that by stereotyping people,

we fail to treat them as individuals (Blum 2004). Unless we have perfect accuracy, the

distribution of risk attitudeswill contain some bias, resulting in an uneven distribution

of advantages (Holm 2023). Lastly, as discussed in Paper 1, there might be a moral

symmetry between types of errors (i.e. that it is better to treat someonewith toomuch

risk aversion than with too much risk tolerance) that would lead us to depart from

matching default risk attitudes to (sub)population averages.

5.4 Evaluating the reliability and validity of actual behavior data

In this section, we have considered various sources of data about people’s actual be-

haviors in conditions of uncertainty: observations of their actual behaviors and self-

reports about those behaviors. When available and valid, these kinds of data may be

suitable inputs to imitation learning and prompting methods for calibrating AIs to

the risk attitudes of their users. The table below summarizes each surveyed method’s

strengths and weaknesses:
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Method Strengths Weaknesses

Self-Report

Direct and accessible

way to gather data on

past behaviors and

tendencies.

Prone to memory biases and

inaccuracies, especially in retrospective

reporting.

Direct

Observation

Provides accurate,

contextually rich data

that closely mirrors

actual behavior.

Limited to scenarios with

comprehensive digital records; may

miss information about unchosen

alternatives or user satisfaction. Might

overinterpret user choices.

Population-

Level Data

Offers broad

benchmarks and

defaults for calibration,

useful as a starting

point.

Risks oversimplifying individual

differences and raises ethical concerns

when demographic characteristics are

used to infer behavior.

6 Preference Elicitation in Hypothetical Choice Experi-

ments

Preference-based reinforcement learning uses data about users’ rankings or ratings of

presented options. Much of the work on individual risk attitudes in behavioral eco-

nomics uses this methodology, eliciting subjects’ preferences in hypothetical lotteries.

Here, we present some of the most common methods and evaluate their validity and

reliability.

6.1 Multiple Price List

A first methodology is the multiple price list. Each item in the list is a comparison

between two bets, a safer Option A and a riskier Option B. Subjects are asked which of

A or B they prefer for each line in the list. At the top of the list, the safe option A has

a higher expected utility than risky B, and we gradually manipulate the comparisons

75



until risky B has a higher expected utility than A.We can measure subjects’ amount of

risk aversion (the relative risk premium) by finding “the mathematical expected value

that one is willing to forgo to obtain greater certainty” (Abdellaoui, et al. 2011, 65-66);

i.e. how much more expected utility B has to have before they are willing to switch

over to the risky bet.

For example, in the following price list from Holt and Laury (2002), a risk-neutral

subject would switch to B between lines 4 and 5 (when B overtakes A in expected pay-

off), while a risk-averse subject would persist with A for longer and a risk-seeking sub-

ject would switch earlier.60

Table 6: The ten paired lottery-choice decisions with low payoffs

Option A Option B Expected payoff difference

1/10 of $2.00, 9/10 of $1.60 1/10 of $3.85, 9/10 of $0.10 $1.17
2/10 of $2.00, 8/10 of $1.60 2/10 of $3.85, 8/10 of $0.10 $0.83
3/10 of $2.00, 7/10 of $1.60 3/10 of $3.85, 7/10 of $0.10 $0.50
4/10 of $2.00, 6/10 of $1.60 4/10 of $3.85, 6/10 of $0.10 $0.16
5/10 of $2.00, 5/10 of $1.60 5/10 of $3.85, 5/10 of $0.10 -$0.18
6/10 of $2.00, 4/10 of $1.60 6/10 of $3.85, 4/10 of $0.10 -$0.51
7/10 of $2.00, 3/10 of $1.60 7/10 of $3.85, 3/10 of $0.10 -$0.85
8/10 of $2.00, 2/10 of $1.60 8/10 of $3.85, 2/10 of $0.10 -$1.18
9/10 of $2.00, 1/10 of $1.60 9/10 of $3.85, 1/10 of $0.10 -$1.52
10/10 of $2.00, 0/10 of $1.60 10/10 of $3.85, 0/10 of $0.10 -$1.85

An agentic AI could present such a list of options to a user (either in a calibration

phase or during the course of use) to try to determine their relative risk premium.

What is necessary is that users are presented with a series of choices that vary in their

riskiness, and this riskiness is ramped down (or up) until users find a level of risk they

find acceptable. Fordomain-specificAIs, these options could involve choices from that

domain. For example, a travel planner that books plane tickets could present userswith

comparisons such as:

a. Option A: long layover, little chance of delay or missed flight

0.4 chance travel time of 14 hours, 0.6 chance travel time of 16 hours

b. Option B: short layover, greater chance of delay or missed flight

60Aswementioned in Paper 1, Holt and Lauryobserved considerable amounts of risk aversion across every
condition tested; in their studies, 6-15% of participants were risk loving, 13-29% risk neutral, and 56-81% risk
averse.
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0.4 chance travel time of 8 hours, 0.6 travel time of 20 hours

And then find the point at which the user is willing to risk a delay or missed flight

for a chance at a shorter travel time.

One of the drawbacks of the multiple price list methodology is that it can be com-

plex and cognitively demanding for subjects to navigate, which carries the risk of error

or users abandoning the methodology before completion. Further, there is a worry

that the list ordering and range will cause anchoring or order effects on users (e.g. that

they will always tend to choose bets later in the list). Some of these issues could be

mitigated through effective UI. For example, subjects can use a slider to choose the

point at which they would switch from A to B (Anderson et al, 2006)

6.2 Random lottery pairs

The multiple price list methodology is systematic: it varies the level of risk aversion

to determine where a user falls on that continuum. The cost of this was significant

complexity and time demand on the user. An alternative is to present single choices

between randomly selected bets in a standardAvs. B preference task. The chief advan-

tage of this methodology is that it is very straightforward to explain and understand,

and it does not require significant user investment.

The downside is that “contrary to the MPS, it is generally not possible to directly

infer a risk attitude from the pattern of responses, and some form of estimation is

needed” (Harrison and Rutstrom 2008, 52). This can be assisted by an algorithmwhich

selects comparisons that are likely to be highly informative (Handa, et al. 2024), espe-

cially in light of the prior responses of the subject (Wakker and Deneffe 1996), or by

pretraining on population-level data (Askell 2021).

6.3 Ordered lottery suggestion

Subjects are presented with an ordered set of bets and are asked to pick their favorite.

For example, they might see a list like:
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Option A: 0.1 chance of $100, 0.9 chance of $0

Option B: 0.5 chance of $10, 0.5 chance of $1

Option C: sure thing of $4

Similarly, Dohmen, et al. (2005) provides subjects with the following scenario:

Imagine that youwin 100,000 euros in a lottery. A bank offers you an invest-

ment in an asset that has equal chances of doubling orhalvingyourmoney in

two years time. Howmuch of your winnings would you invest in that asset?

Options: 0, 20,000, 40,000, 60,000, 80,000, or 100,000 Euros

Thismethodology combines some of the virtues of theMultiple Price List and Ran-

dom Lottery methods. Like MPL, it allows developers to systematically vary options

along some desired dimension so that risk preferences can be approximated. Like RL,

it is relatively simple, only requiring users to make only one choice (not an iterated

series of choices).

A real-world, domain-specific implementation of this methodology is the simpli-

fied menu of choices that is presented when people pick their 401(k)s, such as the fol-

lowing publication from Charles Schwab:

Table 7: Hypothetical performance for conservative, moderate, and aggressive model
portfolios

Asset allocation Conservative portfolio Moderate portfolio Aggressive portfolio

Stocks 30% 60% 80%
Bonds 50% 30% 15%
Cash 20% 10% 5%

Hypothetical Performance (1970–2014)

Growth of $10,000 $389,519 $676,126 $892,028
Annualized return 8.1% 9.4% 10.0%
Annualized volatility (standard deviation) 9.1% 15.6% 20.5%
Maximum loss -14.0% -32.3% -44.4%

This methodology could plausibly be integrated into the operation of the agentic

AI with user feedback. For example, many online assistants already work by present-

ing users with their top three suggestions (e.g. travel websites that first display a list

of recommended flights). In early stages of calibration, an agentic AI could manipu-

late these choices so as to be maximally informative of risk preferences. Later stages
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could require less input from users or present options that are all closer to their risk

preferences.

6.4 Assessing validity: Hypothetical choices don’t predict actual choices

People’s stated and revealed risk preferencesmaydiverge, perhaps significantly. Much

of the experimental data on risk aversion comes from subjects’ hypothetical choices in

fictional scenarios for which there are no or only low-stakes financial consequences.61

While this makes experiments less expensive to run and avoids ethical challenges with

imposing financial losses on participants, the methodology of hypothetical choices

“relies on the assumption that people often know how they would behave in actual

situations of choice, and on the further assumption that the subjects have no special

reason to disguise their true preferences” (Kahneman and Tversky 1979, 265).

Further experimental work has shown that people’s preferences are substantially

different in hypothetical choices than when real money is at stake (Harrison 2006,

2014). For example, Holt and Laury (2002) compared subjects’ preferences over gam-

bles when they would actually receive the payoffs of those gambles versus those in

purely hypothetical choice scenarios. Subjects were more risk averse overall in the

actual payoff condition.62 Additionally, while subjects had similar risk preferences for

low and high stakes bets in the hypothetical condition, they were more risk averse for

high stakes than low stakes bets in the actual payoff condition. Holt and Laury ar-

gue, “contrary to Kahneman and Tversky's supposition, subjects facing hypothetical

choices cannot imagine how they would actually behave under high-incentive condi-

tions. Moreover, these differences are not symmetric: subjects typicallyunderestimate

the extent to which they will avoid risk” (1654).63

As a normative question, it is not clear whether deferential agentic AIs should be

calibrated to stated or revealed preferences, or somewhere in between. Should a suc-

cessful proxy agent be one that behaves as the user would behave or one that behaves

as the user (ex ante) thinks they should behave? The correct choice might depend on

61Lab-based preference elicitations are usually incentive-compatible, with one randomly-selected choice
actually implemented. This presumably won't be the case with calibration stages of AIs, making them even
less valid than lab experiments.
62This is consistent with experiments offering gambles to subjects outside of the laboratory (Binswager

1980) and field data from auctions (Cox and Oaxaca 1996; Campo 2000).
63For a more recent overview, see Bokern, et al. (2023).
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the context and the role that the AI plays.

6.5 Assessing reliability: inconsistencies across methods

If we want to use stated user preferences across hypothetical choices to calibrate AIs, it

is very important that the methods used to elicit those preferences are reliable. When

the data is noisy, there will be a trade-off between how finely-calibrated and how pre-

dictively accurate amodel is since finely-calibratedmodels will tend to overfit (Forster

and Sober 1994). In this case, more coarse-grainedmodels should be preferred. There

is also a trade-off between the systematicity or completeness of a method and how

easily it can be completed by users (with respect to both time and cognitive resources).

A common view among social scientists is that simpler and fewer comparisons should

be preferred when possible. The downside is that we only get snapshots of a user’s

risk preferences rather than a systematic range of preferences across probability and

payoff levels.

A review of the empirical record on risk elicitation in hypothetical choice scenarios

shows that these methods tend to be highly unreliable, both across methods andwhen

using the same method across contexts. In a review of the literature, Holt and Laury

(2014) conclude that there is “little evidence of correlation of risk attitude between

decisionmaking tasks... Moreover, there is little evidence that behavior in any of these

choice tasks explains self-reported propensities to take naturally occurring risks” (174).

First, methods seem to disagree with one another. For example, people are much

more risk averse in tasks regarding lottery sales than lotterypurchases (Isaac and James

2000, Levy 1992). They behave differently in choice-based (A vs. B) tasks than price-

based (how much would you pay for A vs. B) tasks (Harbaugh et al. 2010). Holt and

Laury (2014) conclude:

Even a cursory review of the literature makes it clear that there is no consis-

tent pattern of results in experimental studies of risk preferences over losses,

whether one focuses on the degree of risk aversion or the responsiveness of

risk attitude to changes between gains and losses, payoff scale, and probabil-

ity of gain or loss… this may be explained, in part, if elicited risk preferences
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are highly sensitive to the procedure used to elicit them…

It is not altogether surprising that estimates of the coefficient of risk aversion

differ across elicitation methods, but it is troubling that the rank-order of

subjects in terms of their risk aversion coefficient differs across elicitation

methods (168, 172-173).

Second, individual methods can yield different results across contexts. Within a

particular elicitation method, risk attitudes can be sensitive to: the probability levels

of compared options; the scale of payoffs; the perceived reference point dividing gains

from losses, which is subject to anchoring effects; how background wealth is incorpo-

rated into the decision (asset integration); whether outcomes are described as gains or

losses; and whether the procedure permits them to use math when making the deci-

sion.

Individuals also showvariability in elicited risk attitudes across different choice do-

mains (e.g. health, finances, personal safety). For example, someone who is very risk

tolerant in deciding how early to get to the airport might be very risk averse when it

comes to their retirement investments. Dohmen, et al. (2005) examined self-reported

risk attitudes in 5 areas: general, career, sports and leisure, car driving, health, and fi-

nancial matters. They found strong and significant correlations (≈ 0.5) in risk attitudes

across domains. Principal component analysis revealed that “about 60 percent of the

variation in individual risk attitudes is explained by one principal component, con-

sistent with the existence of a single underlying trait determining willingness to take

risks” (25). However, this still leaves a significant amount of variation to be accounted

for by domain-specific considerations.

Given all of these contingencies, “the evidence suggests that one should be cautious

about using a risk aversion estimate obtained in one context to make inferences about

behavior in another (unrelated) context” (Holt and Laury 2014, 172-173).

6.6 Summary

Preference modeling techniques in AI typically involve learning a reward function

from user feedback. When it comes to risk preference modeling, one common ap-
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proach is to elicit user preferences through hypothetical choices under uncertainty, a

method widely used in behavioral economics. However, based on the evidence dis-

cussed in Sections 6.1 through 6.5, we do not recommend relying on these elicitation

methods due to their significant limitations.

The drawbacks of hypothetical choice experiments include their complexity, the

potential for cognitive overload, and the systematic biases that can distort users' stated

preferences. Furthermore, the discrepancies between stated and revealed preferences

raise serious concerns about the validity of these methods. The empirical record sug-

gests that these approaches are not only unreliable across different methods but also

inconsistent within the same method when applied in different contexts.

Despite these issues, developersmight still be inclined toward preferencemodeling

techniques for a variety of reasons (e.g. they want to re-use existing learning tools, it’s

easiest for them to get hypothetical preference data, etc.). If so, alternative approaches

to eliciting risk preferences should be explored. Although we cannot fully evaluate

these alternativeswithout empirical data on their reliability, we can offer some guiding

principles for improving the elicitation process:

1. Domain-Specific Methods: Risk preferences vary significantly across different

domains, such as health, finance, and personal safety. It is advisable to develop

and use domain-specific elicitation methods that are tailored to the particular

context in which the AI will operate.

2. Embrace Coarse-GrainedApproaches: Humans are generally poor at accurately

judging probabilities and outcomes in complex scenarios. Instead of striving for

fine-grained precision, it may be more effective to use coarse-grained methods

that capture broad preferences without overwhelming the user or asking about

niche scenarios the user cannot easily or fully imagine. This may also mitigate

the risk of overfitting.

3. Align Preferences with Actual Choices: Whenever possible, the elicitation of

preferences should closely resemble actual decision-making scenarios. This align-

ment increases the likelihood that the preferences captured are reflective of the

choices users would make in real-world situations, thereby enhancing the relia-

bility and applicability of the model.
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In conclusion, if we pursue preference-based reinforcement learning for tailoring

AI systems to individual risk profiles, the challenges associated with traditional elicita-

tion methods suggest the need for a careful reevaluation of how we gather and use

user feedback. By focusing on domain-specificity, coarse-grained approaches, and

real-world alignment, we can improve the accuracy and effectiveness of risk prefer-

ence modeling in AI systems. Mixed methods, where, for example, prompting is used

in addition to preference-based reinforcement learningmight be particularly fruitful.

7 Non-learning General Risk-Classification Method as a

Starting Point

In this section we put forward an approach that adopts a Dohmen-style general risk

question,where userswere asked to “specifyyourwillingness to take risks from0 (com-

pletely unwilling) to 10 (completely willing).” Based on their responses, users are cate-

gorized into broad risk aversion classes rather than assigned precise risk aversion pa-

rameters.

Once users are assigned a general risk aversion score based on their self-reported

willingness to take risks, amenu of agent profiles can be constructed, each correspond-

ing to different levels of risk aversion, ranging from extreme risk aversion to extreme

risk love. Users are then matched with agents that align with their assigned risk aver-

sion category. This approach ensures that the AI’s decision-making processes are ap-

propriately tailored to the user’s risk tolerance without the need for complex, contin-

uous learning algorithms from the outset.

Finally, risk profiles are matched with specific behaviors in the domain of action,

i.e. candidate actions are labeled from extremely safe to extremely risky. These labels

might be hard-coded and derived from expert judgments. Alternatively, they could be

generated from data. For example, we could rank choices by the relative risk premium

(Abdellaoui, et al. 2011; see Paper 1), or by the part of the distribution of outcomes that

the decision is based on (e.g. the most risk averse action assumes the worst-case 5%

quantile of the outcome distribution).
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7.1 The Framework

Below is an example of a qualitative categorisation based on the general risk question

and related user behavior, such as arriving at airports for international flights:

Risk Aversion Category

Risk Question

Response Example Behavior

Extreme Risk Aversion 0-1

Arrive 6 hours before

international flights.

Additional Risk Aversion 2-3

Arrive 4 hours before

international flights.

Default (Average

Aversion) 4-6

Arrive 3 hours before

international flights.

Additional Risk Love 7-8

Arrive 2 hours before

international flights.

Extreme Risk Love 9-10

Arrive 1 hour before international

flights.

Each category represents a different level of risk tolerance,with “ExtremeRiskAver-

sion” users opting for the most cautious behavior, ensuring they have ample time be-

fore a flight, and “Extreme Risk Love” users taking the most risks, arriving at the air-

port just in time. This method allows developers to create agentic AIs that can operate

within predefined behavioral boundaries while catering to the varied risk preferences

of different users.

While the initial classification into risk categories is based on general self-reports,

each agent can later implement learning methods to fine-tune its decision-making to

better align with specific contexts and individual user preferences. For example:

1. Context-Specific Adjustments: An agent designed for a user classified as “Addi-

tional Risk Aversion” could observe the user's actual behavior in specific situa-
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tions (e.g., booking flights, making investments) and adjust its recommendations

accordingly. If the user consistently opts for slightly riskier choices in one do-

main (like travel), the agent can learn to reflect this subtle preference within that

domainwithout altering its overall risk aversion classification. If observed behav-

iors are very incongruous with the user’s self report, the AI may match the user

with a different risk profile.

2. UserFeedback Integration: Agents can prompt userswith natural language ques-

tions or simple feedback mechanisms to refine their preferences further. For in-

stance, after a few flight bookings, the agent could ask, “Did you find the layover

time too long, too short, or just right?” Such feedback allows the agent to learn

user preferences more precisely in context.

3. Non-generalizing Learning: Crucially, the learning that takes place within each

agent is confined to the specific context in which the agent operates. For exam-

ple, an agent that learns a user’s risk preferences in financial investments does

not generalize those preferences to other contexts, like health decisions. This en-

sures that the agent remains accurately calibrated to the user’s domain-specific

risk tolerance.

7.2 Distinguishing from Direct Preference Modeling

This mixed approach, where general risk classification serves as the foundation and

contextual learning refines themodel, differs fundamentally from thepreferencemod-

eling methods critiqued earlier:

1. Initial Simplicity with Contextual Refinement: Unlike direct preference mod-

eling, which aims to infer precise risk parameters from complex and cognitively

demanding tasks, this method begins with a straightforward categorisation ex-

ercise. Learning is applied only when necessary to fine-tune specific contexts,

reducing the risk of users’ cognitive overload and ensuring more reliable user

alignment.

2. Domain-SpecificLearning: The learningmethods applied here are context-specific,

meaning they refine the agent’s behavior within narrowly defined domains. This
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contrasts with the broad, context-generalizing nature of traditional preference

modeling, which, as we have seen, can lead to inconsistent or unreliable results

across different scenarios.

3. Mitigating Overfitting and Bias: By starting with a broad classification and using

feedback to fine-tune only as needed, this approach avoids the overfitting issues

commonly associated with preference modeling. Since the adjustments are con-

fined to specific domains, the model remains robust and less prone to bias from

isolated or anomalous behaviors.

In summary, this approach balances simplicity with adaptability, offering a robust

method for aligning AI behaviors with user preferences without some of the common

drawbacks of direct preference modeling techniques. It leverages general classifica-

tions to establish a simple foundation, then fine-tunes agents within specific contexts,

to improve accuracy and promote user satisfaction.

8 Concluding Remarks

Throughout this series of reports, we have contrasted two models of the relationship

between users and agentic AIs. According to the Proxy model, agentic AI systems are

representatives of their users and should be designed to replicate their risk attitudes.

According to the Off-the-Shelf Tool model, developers provide users with a menu of

AI agents whose risk attitudes are set (or at least highly constrained) by developers.

In these reports, we have discussed some reasons why the AI Proxy model might

be attractive. In Paper 1, we examined reasons why users might desire agentic AIs

that embody their risk attitudes. In Paper 2, we explored how the Proxy model might

navigate shared responsibility by shifting responsibility toward users and away from

developers. Despite its intuitive appeal, the Proxy model faces significant technical

and normative challenges.

On the technical side, wewould need good sources of data about users’ risk attitudes

and good methods for learning from that data to accurately calibrate AI models to

their users. We have outlined some of the significant limitations of various methods
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for eliciting that data. In many contexts, the methods that are the most reliable and

valid may be relatively coarse-grained and based on user self-reports. As a result, we

predict that methods that match users to pre-existing risk classes (as recommended by

the Off-the-Shelf Tool model) may outperform learning-only methods.

In the first two papers, we argued that there are also considerable normative rea-

sons for adopting the Off-the-Shelf Tool model. Because some users may opt for AI

agents that behave recklessly, developers can avoid legal, reputational, and moral lia-

bility by placing constraints on AI risk attitudes. Moreover, when a human agent takes

actions on another agent’s behalf, it is not typically expected that they match their

risk attitudes. Instead, alignment is achieved through transparency and explicit rules

governing shared responsibility.

We judge that the Off-the-Shelf Tool model constitutes a strategy for developing

agentic AIs that has considerable technical and normative strengths. There are a few

important areas of future research regarding the comparison between Off-the-Shelf

and Proxy methods. First, new learning techniques that are sensitive to a range of in-

puts (population data, user self-reports, observed behavior, etc.) might yield better

methods for achieving calibration to individual risk attitudes than those we have con-

sidered here. Second, more research on our proposed non-learning risk classification

framework is needed. We have assumed that alignment will involve matching users

up with agents whose risk profiles roughlymatch theirs. However, it might be the case

that some users benefit most and are most satisfied when matched to risk profiles that

are different from their own.64 In that case, we would need to develop ways of mea-

suring user alignment for off-the-shelf tools that go beyond accuracy in capturing user

risk preferences. More generally, furtherwork should investigate howAI risk attitudes

influence user trust in and satisfaction with agentic AI systems.

64See Section 5.1 of Paper 1 for a discussion.
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A Appendix: Formal Models of Risk

A.1 Incorporating risk attitudes into expected utility

We have characterized risk sensitivity as a necessary third factor when describing an

agent; we need their credences, their utilities, and their sensitivity to risk. However,

some traditional approaches to modeling risk aversion eschew this third factor by

building risk sensitivity into utilities themselves (vonNeumann andMorgenstern 1944,

Savage 1972, Pettigrew 2015). The utility function will be concave for a risk-averse ac-

tor, linear for a risk-neutral actor, and convex for the risk-prone actor.

There are twoways to interpret the relationship between risk sensitivity and utilities

(which we will return to in more detail in 5.3). Consider Nate and Kate. We modeled

them as assigning equally high utility to eating at restaurant A and equally middling

utility to B and differing in their risk attitudes. Utilities are often thought of as mea-

sures of the subjective value of an outcome for an agent. We assumed that Nate and

Kate value the taste, ambiance, etc. of the restaurants the same way. However, we

might think that the utilities involve more than just these experiences. Kate does not

like taking risks, so she assigns a lower utility to the risky restaurant. We could take

this to reflect an aspect of her experience, such as the stress of uncertainty. We might

instead be somewhat more behaviorist. Someone’s utilities reflect their overall dis-

positions toward certain choices. Here, utilities are attitudes about bets rather than

outcomes; since Kate is risk averse, the utility of the risky bet is lower than the safe bet.

We do not favor building risk aversion into utilities, for several reasons. First, it

might not be descriptively adequate. It (arguably) cannot capture Allais preferences,

where there is no consistent assignment of utilities to amounts of money that captures

agents’ preferences across bets, and it has systematic failures when used to predict the

economic behavior of actual agents (Abdellaoui, et al. 2011).

Supposewe dismiss thisworry and grant thatwe can providemathematically equiv-

alent descriptions of an agents’ behavior by either:

1. representing utilities and risk via separate variables, or
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2. representing utilities and risk via a single variable that is a function of both.

We think that there are methodological and theoretical reasons for favoring the

former. First, unpacking utilities and risk sensitivity into two separate variables allows

us to track the relative contributions of each. For example, compare Kate to Tate. Like

Nate, Kate likes the experience of eating at restaurant A more than B but disfavors it

for reasons of risk aversion. Tate, on the other hand, dislikes the food at restaurant

A but is risk neutral. Kate and Tate might assign equal utilities to A and B and thus

behave the same way, but those utilities stem from very different kinds of values. We

want our model to have the tools to represent what Nate and Kate have in common

with each other, but notwithTate. Lastly, in Section 5.3, wewill discuss a philosophical

dispute about the nature of risk attitudes: whether they are an intrinsic part of what is

valued or an instrumental means of gettingwhat is valued. Keeping them notationally

separate allows us to remain agnostic on this front.

A.2 REU andWLU

To recall, EU maximization is a risk-neutral decision theory because it doesn’t allow

for bad outcomes to be treated differently from good ones or to treat low probabilities

differently from high ones. The two most prominent risk-sensitive decision theories

among philosophers introduce these abilities.

A.2.1 Risk-weighted Expected Utility Theory

Building upon the rank-dependent risk theory of Quiggins (CITE), Buchak (2013) de-

velops and defends Risk-weighted Expected Utility (REU) theory as a way of incorpo-

rating risk attitudes into expected value comparisons. A risk-averse agent puts more

weight on the worst-case outcomes of a gamble than the best; that is, the worst case

should contribute more to their overall expected value calculation. In brief, REU does

this by: ranking the outcomes of a bet from worst to best, diminishing the probabil-

ities of better states, and reapportioning the rest of the probability to better states —

all systematically done through a risk function r that typically raises cumulative sums

of those probabilities to some constant power. Her working example of r squares the
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inner probability sums.

Suppose I offer you a bet on a fair coin: if it lands heads, I give you 200, and if it’s

tails, you lose 100. Instead of calculating EU by taking the weighted average, it can

be calculated by assuming a baseline certainty of getting the utility of the worst case

outcome (x1), plus the probability that you get the additional value of the second-worst

outcome (x2) compared to the worst case, and so on:

EU(A) =

n∑
i=1

 n∑
j=i

p (Ej)

 (u (xi)− u (xi−1))

 . (2)

In the bet I offered you above, you have a certainty of getting at least −100, plus a 0.5

chance of getting 300more than this, for a total expected value of 50.

Now that we have an ordered list from worst- to best-case outcomes, we can intro-

duce the risk function, r, that places more decision weight on those worst-case out-

comes. REU does this by reducing (here, squaring inner sums) the probabilities of

jumping up to greater outcomes. In the bet I offered you, you now have a certainty of

getting at least −100 and now a 0.52 chance of getting 300 more, so your risk-weighted

value is −100 + 0.25(300) = −25. This is worse, by your lights, than refusing the bet.

More formally, take the list of outcomes of A from worst to best to be {E1, x1; …; En,

xn}, where xi is the consequence that obtains in event Ei (so E1 is the event of the worst

case outcome obtaining, and x1 is that outcome’s value). The REU of a bet A is:

REU(A) =

n∑
i=1

r
 n∑

j=i

p (Ej)

 (u (xi)− u (xi−1))

 (3)

where r is the risk function. If it raises inner sums by less than 1, the agent will

discount better outcomes and be risk averse. If does so by more than 1, the agent will

put more significance on better outcomes and be risk seeking. It has EU as a special

case when r is the identity function such that r = 1.
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A.2.2 Weighted-Linear Expected Utility (WLU)

Bottomley andWilliamson (2023) defendWeighted-Linear Expected Utility (WLU) as

an alternative to REU. It departs from REU in one key way: while REU introduces

risk as a function of probabilities, WLU introduces risk as a function of utilities (or

values). It discounts (assigns less decision weight) to better outcomes and amplifies

worse outcomes.65

WLU puts more weight on worst-case scenarios by adding a risk factor, w, that pe-

nalizes outcomeswith higher utilities. Theirworking example ofw for outcomesmea-

sured in money is w($x) = 1
1+ 4

√
x
. This risk weighting is applied to all of the possible

outcomes of an action. Then, you calculate the relativeweight of each outcome, the out-

come’s risk-weighted value divided by the risk-weighted value of all other outcomes,

weighted by their probability. Finally, theWLU of an action is the sum of the utilities

of all possible outcomes, weighted by their probabilities and their relative weights.

WLU(A) =

n∑
i=1

(
w(xi)

Σn
j=1w(xj)pA(xj)

)
pA(xi)u(xi) (4)

As desired,WLU puts more decision weight on worst-case outcomes, displaying “a

high degree of responsiveness to bad outcomes coupledwith an almost risk-neutral at-

titude towards safe gambles” (ibid., 14). It is stakes sensitive, tolerating a higher amount

of risk when the stakes are small (say, when gambling small amounts of money) and

less when the stakes are large (say, when gambling with one’s life savings).

A.3 Prospect Theory

EU and its risk-weighted extensions retain some of the key assumptions of expected

utility theory, and their goals are largely normative rather than descriptive. Prospect

Theory (Kahneman & Tversky 1979) departs from expected utility theory in both of

these respects. The theory is motivated by empirical lab results (some of which we

surveyed in Section 3) and attempts to predict the behavior of actual agents. To do

65Bottomley andWilliamson viewWLU as an improvement on REU, in particular because only the latter
“violate[s] the Betweenness axiom, which requires that you are indifferent to randomizing over two options
between which you are already indifferent.” (ibid., 697)
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so, it introduces key assumptions about the kinds of heuristics and biases that actual

agents use when navigating decisions under uncertainty. The theory has been exten-

sively elaborated upon, debated, and tested, and we cannot do service to all of these

developments (thoughwewill return to some of these points in Paper 2). Here, we will

focus on the theory’s key commitments and innovations.

First, standard decision theory assumes that people evaluate outcomes by the over-

all amount of value that would result, the total amount of assets that they would have

in the final state of the bet. For example, suppose you have $1million in existing assets

and are considering buying a lottery ticket with a 0.01 chance of winning you +$1000

and a 0.99 chance of losing you −$1. Measured in terms of final assets, the two possible

outcomes are that you have $1, 001, 000 or $999, 999.

However, for most people, “the carriers of value or utility are changes of wealth,

rather than final asset positions that include current wealth” (Kahneman & Tversky

1979, 273). People tend to evaluate outcomes by their deviation from a reference point

(typically, but not always, the status quo). For example, if you evaluate the above bet

in terms of deviations from the status quo, the two relevant outcomes are +$1000 or

−$1. This has several implications. First, a person’s assessment of a bet can change

depending on the choice of a reference point, which can be influenced by framing

effects. Therefore, the assessment of a bet can depend on contextual factors. Second,

bets will often be treated as having greater stakes and thus calling for different levels of

risk sensitivity. We would predict that a millionaire would treat the above bet as very

low stakes and thus be risk tolerant. However, even a millionaire may be risk averse

when assessing the bet against a reference point of 0.

A second key psychological finding from Kahneman &Tversky (1979)66 is that peo-

ple are very sensitive towhether an outcome is framed as a loss or a gain and aremuch

more loss avoidant than gain seeking. For example, in an experiment fromWilliams

(1966), subjects were indifferent between a bet delivering 0 with certainty and one de-

livering 100with probability 0.65 and−100with probability 0.35 (100, 0.65;−100, 0.35). This

shows risk aversion, since the first bet has an EU of 0 and the second bet has an EU of

30. However, they were also indifferent between a bet delivering −100 with certainty

66They also find interesting effects in subjects’ reasoning about probabilities that shownon-linearity in the
significance of probabilities. For example, people treat certainties differently from other probabilities (e.g.
being willing to pay more than reduce a chance of harm from 0.1 to 0 than from 0.2 to 0.1). We will not pay
these much heed here in order to focus on other aspects of risk aversion.
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and one delivering −200 with probability 0.8 and 0 otherwise (−200, 0.8; 0, 0.2). This

shows risk seeking, since the first bet has an EU of -100 and the second bet has an EU

of −160. In general, people are willing to take risks to avoid losses and are risk averse

when seeking gains.

This result manifests itself in economic behavior, as “the minimal compensation

people demand to give up a good is often several times larger than the maximum

amount they are willing to pay for a commensurate entitlement” (Levi 1992, 175). It

also makes them sensitive to framing effects, where the exact same bet is evaluated

very differently depending onwhether it is described as loss avoidance or gain seeking

(Tversky and Kahneman 1981). For example, they presented subjects with a choice

between two programs for treating an epidemic that would otherwise be expected to

kill 600 people. These scenarios were either described in terms of loss or gains:

ProgramA:with certainty 200 peoplewill be saved (gain) / 400 peoplewill die (loss)

Program B: 1/3 chance that 600 people will be saved and 2/3 chance that 0 will be

saved (gain) 1/3 chance that 0 will die and 2/3 chance that 600 will die (loss)

When the options were phrased in terms of gains (how many people could be

saved), most subjects (72%) were risk averse, favoring A over B.When the options were

phrased in terms of losses (deaths), most (78%) were risk-seeking, favoring B over A.

Putting this together, Kahneman andTversky (1979, 279) predict that a typical agents’

value function — how much significance they place on various outcomes — is as fol-

lows:

The weighted value (V) that the agent will assign to a bet is given by:

V =
∑

w(pi) v(xi) (5)

where pi is perceived probability of outcome x, w(p) is probability weighting func-

tion, and v(xi) is the value function assignment for outcome x (Levy 1992).
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